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Abstract: Regulatory monitoring networks are often too sparse to support community-scale PM2.5

exposure assessment, while emerging low-cost sensors have the potential to fill in the gaps. Recent
advances in air quality monitoring have produced portable, easy-to-use, low-cost, sensor-based
monitors which have given a new dimension to air pollutant monitoring and have democratized the
air quality monitoring process by making monitors and results directly available at the community
level. This study used PurpleAir © sensors for PM2.5 assessment in California, USA. The evaluation of
PM2.5 from sensors included Quality Assurance and quality control (QA/QC) procedures, assessment
concerning reference-monitored PM2.5 concentrations, and the formulation of a decision support
system integrating these observations using geostatistical techniques. The hourly and daily average
observed PM2.5 concentrations from PurpleAir monitors followed the trends of observed PM2.5 at
regulatory monitors. PurpleAir monitors also captured the peak PM2.5 concentrations due to incidents
such as forest fires. In comparison with reference-monitored PM2.5 levels, it was found that PurpleAir
PM2.5 concentrations were mostly higher. The most important reason for PurpleAir’s higher PM2.5

concentrations was the inclusion of moisture or water vapor as an aerosol in contrast to measurements
of PM2.5 excluding water content in FEM/FRM and non-FEM/FRM monitors. Long-term assessment
(2016–2023) revealed that R2 values were between 0.54 and 0.86 for selected collocated PurpleAir
sensors and regulatory monitors for hourly PM2.5 concentrations. Past research studies that were
conducted for mostly shorter periods resulted in higher R2 values between 0.80 and 0.98. This
study aims to provide reasonable estimations of PM2.5 concentrations with high spatiotemporal
resolutions based on statistical models using PurpleAir measurements. The methods of Kriging and
IDW, geostatistical interpolation techniques, showed similar spatio-temporal patterns. Overall, this
study revealed that low-cost, sensor-based PurpleAir sensors could be effective and reliable tools for
episodic and long-term ambient air quality monitoring and developing mitigation strategies.

Keywords: PurpleAir; low-cost sensor; PM2.5; IDW; Kriging

1. Introduction

Epidemiological studies have long established the impact of fine aerosols on human
health worldwide [1,2]. PM2.5 refers to the atmospheric particulate matter (PM) that has
an aerodynamic diameter equal to or less than 2.5 µm, which is about 3% the diameter of
a human hair [3]. Exposure to higher PM2.5 concentrations is a greater threat to human
health due to their higher levels of toxicity, stronger tendency towards deposition deep
in the lungs, and longer lifetime in the lungs [2] linked to an increase in morbidity and
mortality [4] and the central nervous system [5]. The influence of fine ambient aerosol
concentrations may be seasonal or episodic, with higher concentrations during the winter.
The emission sources of ambient PM2.5 can be both natural (volcanic dust, windblown dust,
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sea salt, etc.) and anthropogenic, and may be both local and regional since PM2.5 may be
transported over long distances [6]. Thus, the PM2.5 issue is a deeply critical matter and
emission sources may even be global, generating local air pollution, which needs to be
addressed in depth on both regional and local scales.

Until now, PM2.5 attainment demonstrations and exposure assessments have used
PM2.5 concentration data from regulatory monitoring networks under the assumption that
PM2.5 concentrations measured at fixed observation sites reasonably reflect ambient air
PM2.5 concentrations in surrounding areas. However, research studies such as [7,8] have
established that the spatial resolution of PM2.5 concentrations may vary significantly within
a region; therefore, PM2.5 concentrations observed at regulatory sites may not accurately
represent the PM2.5 concentrations present near people who are concerned about their
possible health effects.

The monitoring methods and procedures promulgated by the United States Environ-
mental Protection Agency (U.S. EPA) called Federal Reference Methods (FRMs) and Federal
Equivalent Methods (FEMs) are used by all states and other monitoring organizations to
measure outdoor air pollutants accurately and reliably for the evaluation of implementation
of measures needed to attain National Ambient Air Quality Standards (NAAQS) [9]. These
regulatory monitoring networks are often too sparse to support community-scale PM2.5
exposure and air quality assessments especially when communities are impacted by events
such as wildfires [10]. Often, the sparse regulatory monitoring networks result in poor
statistical air quality and exposure assessments. Recently emerging low-cost sensors enable
individuals to monitor air quality at finer spatial and temporal resolutions of PM concen-
trations in local and regional areas [10–14]. Low-cost PM2.5 sensors have the potential to
fill in the gaps in regulatory monitoring networks and might overcome the limitations and
improve the statistical assessments [15].

Recent advances in air quality monitoring have produced portable, easy-to-use, low-
cost, sensor-based monitors. It has given a new dimension to air pollutant monitoring and
democratized the air quality monitoring process by making monitors and results directly
accessible at the community level in an efficient and cost-effective manner [15]. Sensor
monitors can provide rich data for urban pollution monitoring at high spatiotemporal
levels that may be used for regulating air quality [16]. Low-cost sensors are useful for the
assessment of air quality models on finer scales as required for urban air quality [12]. One
such low-cost, sensor-based extensive monitoring network, PurpleAir ©, Draper, Utah,
USA (https://www2.purpleair.com) (accessed on 13 October 2023), provides PM2.5 data
to the public. It has over 10,000 monitors worldwide with a growth rate of ~30 per day
in 2018 [13]. In 2020, California State has over ~8000 such active monitors, as shown in
Figure 1. These sensors count suspended particles in sizes of 0.3, 0.5, 1.0, 2.5, 5.0, and 10 µm.
Particle counts are processed by the sensors using a complex algorithm to calculate the
PM1.0, PM2.5, and PM10 mass concentrations in µg/m3.

There are limited studies, and only recent studies [17–19] have focused on the evalua-
tion of low-cost PM2.5 monitors with regulatory monitored PM2.5 concentrations [20–23]
and have emphasized that low-cost sensors sampling networks can be used to improve the
spatio-temporal resolution of PM2.5 concentrations, despite limitations.

Although still in their developing stages, sensor-based monitors are becoming more
effective at measuring particulate matter. In a comprehensive analysis of eight months
using two inexpensive sensors, the study [24] predicted seasonal variations in sensor
performance, with poorer correlations during the wildfire season with regulatory monitors.
The impact of environmental variability on elements such as temperature and relative
humidity was considered using correction factors in previous long-term evaluations of
sensor monitors [25], based on annual averages. In addition, the research study [26]
scrutinized the long-term performance of seven inexpensive sensors for a period of seven
months in Beijing, China, and showed substantial biases for high PM2.5 concentrations
during times of increasing relative humidity. Thus, the low-cost sensors were evaluated in
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the aforementioned research for relatively shorter time periods, spanning from one month
to a year with varied responses.
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Figure 1. PurpleAir and regulatory monitoring sites in California State.

This study was focused to assess long-term assessment of low-cost sensor monitors
since their deployment and particularly uses PurpleAir monitored PM2.5 concentrations
for its assessment. Long-term assessment of PurpleAir monitored PM2.5 (five years) will
address the response of the sensors to varying meteorological conditions (relative humidity
and temperature).

Thus, the reliability of the PurpleAir PM2.5 monitored concentrations with respect to
the reference monitor is still a question. Research studies have addressed the accuracy and
precision issues related to these sensors-based PM2.5 concentrations [21,23,27], highlighting
the bias associated with sensor-based PM2.5 levels. Since there are no established best
procedures, practices, and guidelines on operation and maintenance available for these
monitors, it becomes essential to conduct quality assurance and quality control (QA/QC)
of the datasets before its application in fields of air quality assessments and integrated air
quality decision support systems.

The aim of this study was to assess long-term PurpleAir PM2.5 sensors with reference-
monitored PM2.5 concentrations at selected sites across California State (Figure 1) and to
formulate a decision support system, integrating these observations using geostatistical
techniques. California has four designated nonattainment areas for daily and/or yearly
PM2.5 National Ambient Air Quality Standards (NAAQS) [28,29]. Geostatistical interpola-
tion techniques such as Inverse Distance Weight (IDW) [30] and Kriging [31] were applied
to PurpleAir PM2.5 concentrations to assess if these sensors can fill in the gaps of regu-
latory monitors. The geostatistically predicted and observed PM2.5 concentrations were
qualitatively and quantitatively evaluated. This study aimed to deepen understanding of
behavior of PurpleAir PM2.5 sensors over longer time periods and to assess if they provide
reasonable estimations of PM2.5 concentrations with high spatio-temporal resolutions over
extended time periods. The sensor data were then integrated with data from reference mon-
itors to understand the spatial distribution of PM2.5 concentrations over state of California.
Beyond evaluating sensor performance through different types of statistical correlations
with reference monitors, this study also investigates the degree to which data from sensors
can reproduce similar temporal patterns and episodic events such as wildfires in the long
term, in comparison to high resolution reference monitors.
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2. Methodology
2.1. PurpleAir PM2.5 QA/QC

PurpleAir PM2.5 5-min data were downloaded from the very first data record in August
2016 until 31 December 2021, from https://www2.purpleair.com/ (accessed on 13 October
2023), for the entire California State and neighboring States. This was only for sensors
within 20 m of distance from FEM/FRM and non-FEM/FRM monitors data updated until
14 May 2023. The dataset was raw and without any correction adjustment. Therefore,
quality assurance and quality check (QA/QC) routines of the data were developed and
performed. PurpleAir monitors consist of two sensors for PM2.5 channels A and B. Data
were stored and transmitted through these channels, which provide measures for quality
control of the data. Therefore, the data in this study were cleaned and considered valid if
the differences between channels A and B were substantiated as discussed below. The 5-min
averaged data for the years (2016–2023) were downloaded from online sensors, and were
then processed using Python script and analyzed. The atmospheric PM2.5 variable labeled
as “pm2_5_atm” was used in this work. The three criteria used for QA/QC of Purple Air
PM2.5 for 5-min PurpleAir PM2.5 data in case of all sensor monitors were as follows:

1. 5-min PurpleAir PM2.5 for all monitors

• for PurpleAir channel A PM2.5 ≤ 0.3 µg/m3: Invalid.
• for PurpleAir channel A PM2.5 between >0.3 and ≤100 µg/m3: if difference

between channel A and B within ±10 µg/m3: Valid.
• for PurpleAir channel A PM2.5 > 100 µg/m3: if difference between Channel A

and B within ±10 %: Valid.
• for PurpleAir channel A PM2.5 > 500 µg/m3: Invalid.

2. The hourly average calculated with only valid 5-min data.
3. Daily average calculated with only valid hourly averages with number of data avail-

ability for hours in a day ≥ 20 considered as valid.

Raw data inherit some peculiar challenges. As a result, the PurpleAir PM2.5 monitors
were also installed indoors. For a few of the PurpleAir monitors, the location labels
‘outdoor’ and ‘indoor’ were missing. For the monitors missing the location label, the tests
below were performed and labelled accordingly. Only ‘outdoor’ monitors were considered
in the analysis.

1. Daily minimum and maximum temperature ‘temp_f’ were calculated from average
hourly data.

2. The difference between daily maximum and daily minimum temperature was calcu-
lated.

3. Number of days with daily difference ‘temp_f’ of >10 F and ≤10 F were counted.
4. For monitors with ‘number of days (daily difference) > 10 F’ greater than the ‘number

of days (daily difference) ≤ 10 F’ were not considered.

Aside from that, another challenge is the particle count to mass conversion algorithm,
which is not available to the public; the identity or ‘id’ number of the monitor remains the
same, with changes in location or geo-coordinates. This happens when, for some reason,
a monitor is moved from one corner of the building to another corner and/or from one
building to another. After performing QA/QC on PurpleAir PM2.5 concentrations, only
valid data were used in this analysis. As of now, over 8000 outdoor PurpleAir monitors are
in all counties across California State, as shown in Figure 1. Some sites had over 5 years of
data, while others had data from a single week or season.

2.2. Geostatistical Interpolation

Two geo-statistical techniques, Inverse Distance Weighting (IDW) and Kriging meth-
ods, were used to estimate PM2.5 concentrations at monitored and unmonitored locations.
These two methods are briefly explained below. Figure 2 shows the flow diagram of the
work in the study. Daily average PurpleAir PM2.5 was used in Kriging and IDW to interpo-

https://www2.purpleair.com/
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late PM2.5 concentrations across California State. The interpolated PM2.5 was extracted at a
few select FEM/FRM and non-FEM/FRM sites across California. Later, interpolated PM2.5
concentrations were evaluated with observed daily average PM2.5 from FEM/FRM and
non-FEM/FRM available from U.S. EPA AQS system [32].
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2.2.1. Kriging

Kriging is a geostatistical tool used for interpolation for which the interpolated val-
ues are modelled by a Gaussian process governed by prior covariances. Under suitable
assumptions, Kriging gives the best linear, unbiased prediction of the intermediate values.
The method is widely used in the domains of spatial analysis and computer experiments.
Kriging determines the spatial structure of outputs with proven inputs represented by
variogram/semi-variogram analysis, which is the variance/half variance of the difference
between input data and represents a measure of association in geo-statistics [33]. To relate
PurpleAir PM2.5 to regulatory monitored PM2.5, Kriging tool was used with PurpleAir
monitored daily averaged PM2.5 to estimate PM2.5 concentrations at regulatory monitored
PM2.5 sites. The daily average PurpleAir PM2.5 was calculated from hourly average PM2.5
concentrations, as described earlier. The Kriged PM2.5 concentrations at few regulatory
monitors were extracted and evaluated with the observed PM2.5.

2.2.2. Inverse Distance Weight

Inverse Distance Weight is a deterministic way of finding concentrations at unmoni-
tored locations using PurpleAir PM2.5 concentrations at the point of interest of regulatory
monitors. The concentrations at regulatory monitors were calculated with a weighted
average of the PurpleAir PM2.5 available at the known points. The name given to this type
of method was motivated by the weighted average applied, since it resorts to the inverse of
the distance to each known point (“amount of proximity”) when assigning weights. The
formula for the estimated concentration is:

PEst. =
∑n

i=1
Pi
dp

i

∑n
i=1

1
dp

i

(1)

where PEst. is the estimated concentration at the regulatory monitor, dp
i is the distance from

the unmonitored location to the i monitored concentration points to the power of p, Pi is the
concentrations at i monitored locations. The better accuracy is achieved when the power
p equals to 2. Due to the sparse network of existing air quality monitors, the maximum
observed data points n was set to five. The nearest five PurpleAir monitors were identified
at the regulatory monitoring sites for each day.
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3. Results and Discussions
3.1. Observed PurpleAir and Regulatory PM2.5

To ensure quality PM2.5 data from PurpleAir, the developed QA/QC routine has
eliminated about 15% of the 5-min PM2.5 data for further analysis. It was imperative to
evaluate and validate PurpleAir PM2.5 with observed PM2.5 at regulatory sites. Figure 1
also shows FEM/FRM and non-FEM/FRM-monitored PM2.5 sites in California during
2016 and 2023. Details of these sites are in Tables 1 and 2, and Supplementary Material
Tables S1 and S2 with AQS ID, site name, PurpleAir monitor ID, and dates of monitoring. It
also shows the approximate distance calculated between PurpleAir monitor and regulatory
site. Regulatory monitor data were downloaded from EPA AQS Datamart from 2016 to
2022 [32]. The most recent PM2.5 data are available until October 2022 and were used for
the analysis. PurpleAir monitored PM2.5 was graphically and statistically evaluated for
both FEM/FRM and non-FEM/FRM monitored PM2.5. All regulatory sites with PurpleAir
monitor within 20 m were analysed. Time-series and scatter plots are shown only for four
FEM/FRM, and four non-FEM/FRM sites were selected, covering the North to South of
California for discussions.

Table 1. Statistical assessment of hourly average PurpleAir PM2.5 at selected sites for the years 2016
and 2022 at FEM/FRM and non-FEM/FRM sites.

Site Name and AQS
ID, POC

PurpleAir
Sensor Index

Distance,
mts Dates Duration Num. of Paired

Observation (#) R2 Mean Bias
(µg/m3) RMSE

FEM/FRM
El Rio-Rio Mesa Schl.
061113001, 3 9594 0.18 2 April 2016 to 31

August 2022 30,798 0.50 3.5 7.85

Fresno-Garland
060190011, 3 2358 1.87 31 July 2017 to 9

December 2019 17,194 0.83 5.7 11.85

Goleta-Fairview
060832011, 1 16,705 0

29 September
2018 to 30 June

2022
28,532 0.56 3.4 6.93

Lompoc 060832004, 1 16,703 0
29 September

2018 to 30 June
2022

28,482 0.60 2.1 6.21

non-FEM/FRM
Bakersfield
060290014, 3 2350 0.6 31 July 2017 to 8

March 2019 34,583 0.73 4.3 11.70

Calexico-Ethel Street
060250005, 3 1174 0.0

24 October 2017
to 2 February

2018
2486 0.89 3.5 11.60

Sacramento-T Street
060670010, 3 8440 2.1

2 February 2019
to 11 December

2020
14,797 0.86 4.2 10.20

Riverside
060658001, 9 1854 8.5 10 July 2017 to 31

December 2019 14,604 0.69 5.7 9.70

Figures 3 and 4 show hourly average PM2.5, in black lines, at four FEM/FRM and
four non-FEM/FRM sites and PurpleAir PM2.5 in purple dots (x-axis is in MM/YY format).
From these figures, it is very clear that PurpleAir monitors captured the trend of PM2.5 at
regulatory monitors from 2016 to 2022. PurpleAir observed higher PM2.5 concentrations for
both FEM/FRM and non-FEM/FRM regulatory monitors. They also captured the PM2.5
events due to forest fires along with regulatory monitors. PurpleAir PM2.5 followed the
trends of regulatory monitors for both less than 100 µg/m3 and greater than 100 µg/m3

PM2.5 concentrations. PM2.5 above 200 µg/m3 were captured by PurpleAir at Fresno-
Garland (Figure 3c) and all non-FEM/FRM sites with the exception of one day spike at El
Rio-El Rio Mesa School (Figure 3d). Spikes in PM2.5 concentrations at Sacramento-T Street
(Figure 4c) were observed due to forest fire and the trend can be seen by both regulatory
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and PurpleAir monitors. Thus, the sensors have been able to capture local and regional
episodic events.

Table 2. All sensors daily average PM2.5 summary over different regions in California for the
year 2018.

Bay
Area

Sacramento
Metro San Diego San Joaquin South Coast

Observations 31,130 2219 2355 11,234 103,236
Minimum 0.31 0.36 0.51 0.31 0.32
Maximum 198 197 73 192 190
Mean 14.57 18.93 12.95 20.15 15.05
Std. Error of Mean 0.14 0.57 0.2 0.19 0.04
Median 6.59 10.97 10.72 12.78 12.04
Std. Deviation 24.3 26.7 9.6 20.1 11.4
Skewness 3.9 3.84 1.26 1.95 1.57
Std. Error of Skewness 0.01 0.05 0.05 0.02 0.01
Kurtosis 17.78 18 1.79 5.93 5.29
Std. Error of Kurtosis 0.03 0.1 0.1 0.05 0.02
Percentile 25 3 4 6 6 7
Percentile 50 7 11 11 13 12
Percentile 75 15 24 17 28 21
Percentile 90 31 38 27 47 31
Percentile 95 56 53 32 59 36
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(a) Goleta (b) Lompoc-H St. (c) Fresno-Garland and (d) El Rio-El Rio Mesa School.

Figure 5 shows scatter plots with hourly average PurpleAir PM2.5 concentrations on
the y-axis and regulatory monitored PM2.5 concentrations on x-axis. Detailed monitoring
information can be found in Table 1. These plots show PurpleAir monitored higher concen-
trations than regulatory monitors for most of the time. Scatter plots also show +/−25%
dotted lines and, for the majority of times, the scatter dots were out of +/−25% range with
higher number of dots towards the y-axis or PurpleAir PM2.5. The linear fit line for all
sites is on the positive side of +25%. Only El Rio School site (Figure 5b) site has shown a
one-to-one linear fit.
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PurpleAir-monitored PM2.5 were mostly higher than the regulatory monitored PM2.5.
This may be because PurpleAir monitors were calibrated by the manufacturer using par-
ticles with completely different properties than particulate matter in the ambient air [34],
and the conversion of particle counts to mass is also unknown [15]. Aside from that, it was
found that the ambient air also includes water droplets with aerodynamic particle size.
Traditionally, both FEM/FRM and non-FEM/FRM monitors measure PM2.5 by removing
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water content in the sample inlet. This was achieved by heating the sample air in the inlet
pipe. However, on the contrary, PurpleAir sensors measure PM2.5 concentrations without
removing moisture content in aerosols. It is the water content in the ambient air that makes
PM2.5 measured by PurpleAir as an “Absolute PM2.5” or, in context to regulatory monitors,
as “Wet PM2.5”. The adjustment of water content in the PurpleAir measured PM2.5 during
the conversion from particle count to mass is unknown. Therefore, even before the compar-
ison between PurpleAir PM2.5 with FEM/FRM and non-FEM/FRM monitored PM2.5, the
PurpleAir PM2.5 concentrations will be greater than regulatory monitors most of the time.

Table 1 shows a statistical evaluation of PurpleAir monitors in comparison with reg-
ulatory monitors. For statistical evaluation of the PM2.5 corelation coefficient (R2), mean
bias (MB) and root mean square error (RMSE) were performed. Mean bias is primarily
used to estimate the average bias between two variables. The coefficient of determination,
R-squared (R2), determines how well data fit the regression model compared to observation
data. The Root Mean Square Error (RMSE) is a frequently used measure of the difference be-
tween two actual measures and how much error there is between two variables. Equations
of the evaluation indices are shown below:

MB =
1
n ∑n

i=1(Pi − Ri) (2)

RMSE =

√
1
n ∑n

i=1(Pi − Ri)
2 (3)

R2 =

 ∑n
i=1 PiRi − ∑n

i=1 Pi ∑n
i=1 Ri√[

n ∑n
i=1 Pi

2 − (∑n
i=1 Pi)

2
][

n ∑n
i=1 Ri

2 − (∑n
i=1 Ri)

2
]


2

(4)

where Pi is PurpleAir PM2.5 concentrations, Ri is regulatory PM2.5 concentrations, R is
mean of Ri, P is mean of Pi, and n is the number of hourly samples.

For all FEM/FRM (Table 1 and Table S1), coefficient of determination, R2 values were
between 0.23 and 0.9 with an average of 0.62. For all non-FEM/FRM (Tables 2 and S2), R2

values were between 0.27 and 0.92 with an average of 0.74, which was lower than reported
studies conducted for shorter durations [10,21,23]. The coefficient of determination, R2, of
Goleta, El Rio-El Rio School, and Lompoc-H Street has shown the lowest values of 0.56, 0.5,
and 0.6, respectively. These three sites are along the coastlines of Southern California. It
is expected that the moisture content in the coastal air will be higher than the inland area.
This affirms that moisture content plays a significant role in PurpleAir PM2.5 monitoring.
Moisture in the air attracts PM due to its hygroscopic characteristics and results in higher
concentrations. As of now, PurpleAir monitors do not heat inlet air compared to regulatory
monitors. The rest of the sites, located inland, have shown higher R2 of greater than 0.70.
The mean bias is highest at Fresno-Garland of 9.62 µg/m3 followed by 6.93 µg/m3 at
Sacramento-T Street, as shown in Supplementary Material Tables S1 and S2. The mean
bias for all sites were positive, showing higher PM2.5 from PurpleAir than FEM/FRM and
non-FEM/FRM.

After validation of the performance of purple air sensors with observed daily average
data, the sensor data were used to perform detailed summary statistics across different
regions of California: from Bay Area Air Quality Management District (AQMD) (Bay Area),
Sacramento Metropolitan AQMD (Sacramento), San Diego Air Pollution Control District
(APCD) (San Diego), San Joaquin Valley APCD (San Joaquin), and South Coast AQMD
(South Coast) according to the availability of data from sensors for recent years (2018–2020).
After excluding poorly performing sensors (around 4%), all the purple air sensors were
used in this statistical analysis. Tables 2–4 show results from this analysis.
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Table 3. All sensors daily average PM2.5 summary over different regions in California for year 2019.

Bay Area Sacramento
Metro San Diego San Joaquin South Coast

Observations 184,662 8918 5239 24,497 115,764
Minimum 0.31 0.32 0.31 0.32 0.3
Maximum 185 100 62 155 185
Mean 7.26 9.99 10.91 12.63 13.28
Std. Error of
Mean 0.02 0.13 0.12 0.1 0.03

Median 4.95 5.57 9.14 7.61 10.43
Std. Deviation 8 12.4 8.3 15 11.2
Skewness 3.49 2.78 1.84 3 2.22
Std. Error of
Skewness 0.01 0.03 0.03 0.02 0.01

Kurtosis 21.7 9.84 5.06 11.89 9.38
Std. Error of
Kurtosis 0.01 0.05 0.07 0.03 0.01

Percentile 25 2 3 5 4 5
Percentile 50 5 6 9 7 10
Percentile 75 8 11 14 14 17
Percentile 90 15 26 20 29 27
Percentile 95 22 36 27 44 34

Table 4. The daily average PM2.5 summary of all sensors over different regions in California for the
year 2020.

Bay Area Sacramento
Metro San Diego San Joaquin South Coast

Observations 457,924 27,377 14,124 31,743 155,801
Minimum 0.3 0.3 0.31 0.33 0.31
Maximum 200 198 187 199 195
Mean 14.58 21.89 14.14 26.53 16.48
Std. Error of
Mean 0.03 0.17 0.11 0.17 0.04

Median 7.06 10.36 11.13 14.59 11.8
Std. Deviation 22.8 28.6 13.2 30.5 16.6
Skewness 4.11 2.77 2.93 2.31 2.96
Std. Error of
Skewness 0 0.01 0.02 0.01 0.01

Kurtosis 21.05 9.81 14.46 6.87 15.12
Std. Error of
Kurtosis 0.01 0.03 0.04 0.03 0.01

Percentile 25 3 4 6 6 6
Percentile 50 7 10 11 14 12
Percentile 75 15 30 18 38 21
Percentile 90 34 52 27 62 35
Percentile 95 50 72 37 82 46

The sensor dataset revealed a wide range of PM2.5 concentrations, with a maximum
24 h average concentration of about 200 µg/m3 measured in the Bay Area in 2020. Other
northern Californian regions (Sacramento), which showed the next highest daily concen-
trations, were followed by the South Coast and San Diego, respectively. Dry weather [35]
and forest management techniques over the past few decades have also contributed to
a rise in the frequency and intensity of wildfire outbreaks in California, contributing to
the severity of the 2020 fire season there. Even though they were less severe than in 2020,
California experienced record-breaking wildfires in 2018, which also displayed comparable
trends in all the aforementioned districts. San Diego was less affected by the wildfires.
Residential fire burning and other incidents, such as fire starting from electric transmission
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lines, contributed to higher maximum PM2.5 concentrations in Northern California in 2019.
Land–sea breezes can significantly pollute Northern California’s coastal areas. The influ-
ence of a combination of wildfires and anthropogenic emissions was felt at South Coast as
well, leading to higher concentrations in this region.

Additionally, across the entire state of California, the standard deviation ranged from 8
to 30 µg/m3 for the individual counties, with higher variabilities in the northern California
regions most affected by fires. The median PM2.5 concentration of the dataset was between
5 and 13 µg/m3, while the mean concentrations ranged from 7 to 30 µg/m3. Overall,
the PM2.5 measurements showed higher maxima and standard deviation values in 2020
compared to 2019 or 2018, which is commiserate with the fact that wildfire intensity peaked
in 2020, as previously mentioned.

A region-wise inter-comparison (Bay Area, San Diego, Sacramento, San Joaquin, and
South Coast) in the State of California of the daily average of sensor data for the years
2018–2020, as seen from Tables 2–4, revealed that areas in northern California, including
Bay Area, Sacramento, and San Joaquin, had distinctly higher 95th and 75th percentile
concentrations in comparison to South Coast during the year of extensive wildfires in 2020.
This reemphasizes the importance of wildfire impact on air pollution in the Northern Cali-
fornia. Therefore, 2020 may be considered the year of the highest daily PM2.5 concentrations
measured in California.

The number of sensors has also increased significantly, from around 369 in 2018 to
around 773 sensors in 2020 in the Bay Area, a growth of a huge 110 percent. The other two
areas, Sacramento and San Diego, exhibit a more modest growth of sensors (18 percent in
San Diego and 94 percent in Sacramento) in comparison to the Bay Area. The southern
part of California (South Coast) witnessed a growth of sensors from around 552 in 2018 to
around 741 in 2020, a growth of 34 percent.

Table 5 shows the total number of daily-average (or 24 h average) PM2.5 of all sensors’
observations and exceedances in the regions of California. For all regions, in contrast to 3%
in 2019 and 7% in 2018, the overall average percentage of exceedances over all regions of
the state of California was almost 11% in 2020. In terms of overall exceedances in 2020, the
Bay Area has the highest percentage of exceedances (58%), followed by the South Coast
(21%), San Joaquin (12%), Sacramento (8%), and San Diego (1%). The South Coast had
the largest percentage of exceedances in 2019 (51%), followed by the Bay Area (27%), San
Joaquin (17%), Sacramento (4%), and San Diego (1%). 2018 saw the highest percentage
of exceedances in the South Coast (54%), followed by the Bay Area (24%), San Joaquin
(18%), and San Diego (0.7%). The analysis demonstrates the impact of COVID-19 in the
South Coast in 2020, when anthropogenic emissions were lower than in 2018. However, the
effects of the California wildfires were more noticeable in 2020.

Table 5. Daily average observations and exceedances of all sensors in regions of California during
years 2018–2020.

Total
Daily Ob-
servations

Total
Daily Ex-
ceedances

Total
Daily Ob-
servations

Total
Daily Ex-
ceedances

Total
Daily Ob-
servations

Total
Daily Ex-
ceedances

2020 2019 2018

Bay Area 457,924 43,383 184,662 3033 31,130 2699
Sacramento 27,377 5794 8918 482 2219 299
San Diego 14,124 795 5239 116 2355 0.78
San
Joaquin 31,743 8764 24,497 1884 11,234 2152

South
Coast 155,801 15,468 115,764 5548 103,236 6215

To test the significance of the annual variations (2018–2020) in the distribution of
daily mean PM2.5 levels, as measured by the sensors across the state of California, the
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non-parametric Kruskal–Wallis test was performed to determine whether the distribution
of daily means was identical to each other or showed any significant difference amongst
them for the years (2018–2020). The null hypothesis that many samples were taken from
the same population was tested using this non-parametric technique, which is arguably the
most extensively used test for this purpose. Since the null hypothesis was rejected across
the years for all the regions of California, a post hoc test Dunn’s test was conducted to
perform a multi-comparison analysis across all years for all regions in California to find
out which samples (years) were different from each other. The Dunn’s test results from
Bay Area have been displayed below for the years 2018, 2019, and 2020 as a representative
result in Table 6.

Table 6. Dunn’s test for area in California for the years 2018–2020.

Sample Year
1-Sample Year 2 Test Statistic Std. Error Std. Test Statistic Sig.

Bay Area
2018–2019 −64,059.5 1197.3 −53.5 0.000
2019–2020 79,655.9 538.7 147.9 0.000
2018–2020 15,596.4 1144.6 13.6 0.000

Sacramento Metro
2018–2019 −4862.3 263.8 −18.4 0.000
2019–2020 5418.8 135.6 40.0 0.000
2018–2020 556.5 245.4 2.3 0.023

San Joaquin
2018–2019 −8310.5 226.9 −36.6 0.000
2019–2020 10,625.7 169.3 62.8 0.000
2018–2020 2315.2 218.6 10.6 0.000

South Coast
2018–2019 −21,381.8 499.1 −42.8 0.000
2019–2020 17,860.4 452.4 39.5 0.000
2018–2020 −3521.3 467.9 −7.5 0.000

San Diego
2018–2019 −1272.6 157.0 −8.1 0.000
2019–2020 1495.3 102.4 14.6 0.000
2018–2020 222.7 140.9 1.6 0.114

The tables show that the differences in concentrations were significant across all years
at the 95th confidence level (Table 4) since p = 0.00 < p = 0.05. In the case of San Diego, the
differences in daily mean concentrations for 2018 and 2019, and between 2019 and 2020
were significant (p = 0.00) but there were no significant differences between 2019 and 2020
(p > 0.05). For South Coast, there were significant differences in daily mean concentrations
of PM2.5 across all the years considered (p = 0.00). For San Joaquin, the differences in
daily average PM2.5 concentrations over the years were significant. For Sacramento, the
differences were not significant for the years 2018 and 2020 (p > 0.05) but were significant
across the other years.

3.2. Geostatistically Predicted and Observed PM2.5

The regulatory monitoring network is too sparse to support community-scale PM2.5
exposure assessments. PurpleAir monitoring network provides more dense monitors
up to community-scale and spatially across California State compared to the existing
regulatory monitoring network. Geostatistical interpolation techniques—Kriging and IDW
using PurpleAir PM2.5—might help to bridge the gap between PurpleAir and regulatory
monitored PM2.5. Interpolation was conducted using the daily average PurpleAir PM2.5 for
the years 2018 and 2020 as the PurpleAir monitoring began in California in 2016, and fewer
monitors were in operation until the end of 2017. Figure 6 shows statistically interpolated
PurpleAir, FEM/FRM, and non-FEM/FRM daily average PM2.5 on 16 November 2018,
by Kriging and IDW. Both statistical interpolation techniques have captured the smoke
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dispersion from CAMP fire started on 8 November 2018 [36]. The difference in spatially
interpolated daily average PurpleAir PM2.5 in the northern part of California was due to a
difference in interpolation approaches by Kriging and IDW. For both years, the interpolated
sensor data provided a realistic representation of daily PM2.5 concentrations and thus may
reduce the uncertainty introduced by interpolation errors due to a sparse observational
network of FRM and non-FRM monitors for effective decision-making. However, although
the sensor data are subject to some uncertainty, as discussed earlier, the interpolated PM2.5
from PurpleAir has shown a better representation of PM2.5 due to the dense number
of PM2.5 monitors for interpolation in comparison to the thinly distributed network of
FEM/FRM and non-FEM/FRM monitors. For further analysis, four regulatory sites across
California State without monitors were selected for its assessment. The reason for not
selecting collocated monitored sites was to avoid the influence of monitored PurpleAir
PM2.5 at the same location.
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Figure 6. Statistically interpolated daily average PurpleAir PM2.5 across California State on 16
November 2018, by Kriging and IDW.

Figure 7 shows observed daily average PM2.5 concentrations in black lines and interpo-
lated PM2.5 concentrations at the four above-mentioned regulatory monitoring sites (x-axis
is in MM/YY format). The time-series plots show a good agreement between observed
and interpolated PM2.5. Both IDW and Kriging methods captured the peaks of observed
PM2.5. However, for many days, Kriging and IDW over-predicted the PM2.5, as shown
in Figure 7. The reason of the over prediction can be due to higher observed PM2.5 by
PurpleAir monitors. Scatter plots with interpolated PM2.5 on y-axis and regulatory on x-axis
show good agreement, and most of the interpolated falls between +/−25%. Both Kriging
and IDW geo-statistically demonstrated that these can be used to interpolated daily average
PurpleAir PM2.5 at unmonitored locations for exposure and air quality assessments. The
agreement between geo-statistically interpolated PurpleAir and observed daily average
PM2.5 gives confidence in using PurpleAir PM2.5 with regulatory monitors to estimate
PM2.5 at unmonitored locations. This demonstrates that low-cost PM2.5 sensors have a



Pollutants 2023, 3 490

potential to fill in the gaps in the regulatory monitoring networks and might be useful
to overcome the limitations and improve the air quality assessments and other scientific
assessments. These PurpleAir PM2.5 can be integrated and used with observed regulatory
PM2.5 to formulate a decision support system using geostatistical techniques, but before
that, the uncertainty due to sensor measurements should be minimized prior to their usage
to supplement regulatory monitors.
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Figure 7. Time-series plot of statistically predicted and observed daily average PM2.5 concentrations
at (a) Oakland-West, (b) Mira Loma, (c) Stockton-Hazelton, and (d) Otay Mesa.

Table 7 shows a statistical evaluation of interpolated daily averaged PurpleAir PM2.5,
using Kriging and IDW techniques, with daily averaged observed PM2.5 concentrations.
The interpolated PM2.5 by Kriging has lower Root Mean Square Error (RMSE) and Mean
Bias (MB) values than IDW. Corelation co-efficient values for the Oakland-West and
Stockton-Hazelton sites were above 0.76 and were lower for the Mira Loma and Otay
Mesa sites.

Table 7. Performance evaluation of statistically predicted and observed PM2.5 concentrations at
selected sites in California.

Oakland-West Stockton-Haz. Mira Loma Otay Mesa
IDW Kriging IDW Kriging IDW Kriging IDW Kriging

No. of Pairs 1084 1084 1079 1079 1083 1083 1052 1052
Mean Bias (µg/m3) 2.48 1.30 3.46 0.78 4.53 1.04 2.89 2.35
RMSE 12.49 11.54 15.77 13.19 9.78 7.72 8.38 7.94
R2 0.82 0.83 0.79 0.77 0.69 0.63 0.59 0.50

4. Conclusions

Recently emerged low-cost sensor-based monitoring technology has given a new
dimension to air quality monitoring. Due to their portability and low-cost, sensors have
made community-based micro-environment monitoring of air pollutants possible by pro-
viding access to local community members and enabling them to be a part of the air quality
monitoring process. Currently, PurpleAir monitoring network is the densest sensor-based
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PM2.5 monitoring network that exists on a global scale. This sensor-based network has
successfully achieved the objectives of educating the community about air pollution and
helped alert the community for higher PM2.5 concentrations due to incidents such as forest
fires on account of its high density of air quality sensors. However, due to the lack of best
operational procedures, practices, and guidelines, this publicly available dataset cannot
be used without QA/QC for air quality and other scientific assessments. The evalua-
tion of PurpleAir PM2.5 for California State conducted in this study included QA/QC
procedures, assessment with reference to monitored PM2.5 concentrations, and the for-
mulation of a decision support system integrating these sensor-based observations using
geostatistical techniques.

The hourly and daily average observed PM2.5 concentrations from PurpleAir monitors
generally followed the trends of observed PM2.5 levels at regulatory monitors. PurpleAir
monitored PM2.5 also captured essential peaks of PM2.5 concentrations due to incidents
such as forest fires over the fire-year period. In comparison with reference-monitored PM2.5
levels, it was found that PurpleAir PM2.5 concentrations were mostly higher. For longer
time periods, the correlation coefficient R2 values were between 0.54 and 0.86 for selected
collocated PurpleAir for both FEM/FRM and non-FEM/FRM monitors.

PurpleAir monitors can fill in a void in the data representation of PM2.5 predictions
on a localized scale. The methods of Kriging and IDW show similar patterns on spatial and
temporal interpolation from PurpleAir PM2.5, but before that, the uncertainty due to sensor
measurements should be minimized prior to their usage to supplement regulatory monitors.
Still, low-cost sensor-based monitors need to be integrated with regulatory monitors to
provide higher spatio-temporal observed data for regulatory and policy purposes. They
are great tools at local community levels to assess air quality and build awareness amongst
citizens on risks of air pollution. This is evident in this study, as seen in the substantial
increase in sensors across California over the years. Although there is an overall decrease in
PM2.5 concentrations, there are still problem areas due to wildfires in Northern California
and local air pollution in Southern California which require further thinking and the
development of mitigation strategies to retrieve the situations. The high number of sensors
would help in enhancing the spatial density of observations. Overall, this study revealed
that, despite its shortcomings, low-cost PurpleAir sensor-based measurements could be an
effective tool for ambient air quality monitoring. The efficacy of the application of low-cost
sensors in this study implies that sensor networks may be broadened worldwide, especially
in developing countries where there is a scarcity of regulatory air quality monitors to
investigate high PM2.5 concentrations. This would entail building a global roadmap for the
scientific community on the usage of these sensors for air quality assessments and their
subsequent impact on human health.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pollutants3040033/s1, Table S1: Statistical assessment of hourly
average PurpleAir PM2.5 at selected sites for the years 2016 and 2022 at FEM/FRM; Table S2: Statistical
assessment of hourly average PurpleAir PM2.5 at selected sites for the years 2016 and 2022 at non-
FEM/FRM.
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