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Abstract: The presence of potentially harmful metals in commercially available saltwater fish has been
extensively documented in scientific literature. This has demonstrated the significance of monitoring
the crucial copper (Cu) levels in fish fillets from a perspective focused on human health risks (HHR).
This study aimed to evaluate the human health risk (HHR) associated with the presence of Cu in
40 different species of commercial marine fish purchased from Malaysia. The fish samples were
gathered from various sources from April to May 2023. The 40 species of commercial marine fish
had concentrations of Cu (0.72–82.3 mg/kg dry weight) that fell below acceptable levels defined by
seafood safety recommendations. Therefore, these fish are considered good sources of the essential
element. The target hazard quotient values for Cu were below 1, suggesting that the hazards of Cu
from fish eating are non-carcinogenic. Furthermore, it was discovered that the computed values
for the predicted weekly consumption were lower than the defined provisional tolerated weekly
intake of Cu. Consuming fish purchased from Malaysia is unlikely to harm consumers’ necessary
copper intake. However, it is crucial to consistently monitor the safety of consumers who heavily
depend on commercially caught marine fish from Malaysia. This monitoring is an essential aspect of
implementing environmental, social, and governance (ESG) practices, which industries are concerned
about and report on annually.

Keywords: commercial fish; health risks; fish consumption; Cu

1. Introduction

Throughout the literature concerning metals in palatable fish, copper (Cu) was consis-
tently identified and documented. This phenomenon may be ascribed to the fact that this
metal, despite being a common essential element that provides substantial health benefits,
is a potentially toxic metal (PTM) when consumed more often than the threshold that
poses a risk to human health (HHR) [1]. Dorsey et al. [2] and Roney et al. [3] extensively
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documented the toxicological characteristics of Cu. The World Health Organization (WHO)
guidelines [4] also specify the environmental health criteria for Cu. This demonstrates that
consideration has been given to the environmental and human health dangers associated
with Cu [5]. Cu is a cofactor for enzymes involved in glucose metabolism, the synthesis
of hemoglobin, connective tissue, and phospholipids [6–10], and is necessary for iron
utilization. However, exceedingly high concentrations of Cu have the potential to cause
severe toxicity. Cu derived from marine fish is a significant source of human health. While
excessive consumption of Cu from marine fish may lead to adverse health effects, such as
harm to the liver and kidneys, it does not possess carcinogenic properties in humans and
animals [7].

Fish, being an essential provider of animal protein for humans, also contain copper in
their tissues. The Cu content in fish indicates their eating patterns since both carnivorous
and herbivorous species can have elevated quantities [11]. Nevertheless, it is crucial to
acknowledge that although Cu is essential for regular metabolic functions in fish, elevated
levels can hurt aquatic creatures. Fish have a tendency to gather Cu from their water
environment, and this gathering tends to reach a maximum level as the concentration of Cu
increases [12]. In addition, Cu can react with other pollutants, including ammonia, mercury,
and zinc, resulting in an increased harmful impact on fish [13]. The excessive accumulation
of Cu in fish can harm their well-being and the broader ecology. Therefore, it is vital to
comprehend the level of Cu content in fish for environmental management and human
consumption [14].

Cu is an inherent trace metal found in the aquatic environment, existing in small
amounts that are minor nutrition for plants and animals [15]. Nevertheless, if the con-
centration of Cu is beyond specific thresholds, it becomes detrimental to the survival of
aquatic organisms [16]. It is imperative to meticulously control and supervise copper con-
centrations in fish to guarantee the aquatic ecosystem’s and human consumers’ well-being.
Cu is a vital metal for plants and animals since it plays a critical role in forming enzymes
and physiological functions [17]. Nevertheless, although Cu is indispensable, it needs
meticulous regulation in most organisms. Aquatic species, such as fish, have a tendency to
collect Cu from their surroundings [12]. The accumulation of Cu in fish is affected by their
dietary preferences since both carnivorous and herbivorous species can exhibit elevated
levels of copper in their bodily tissues. The consequences of high Cu concentrations in
fish are not entirely confirmed; however, data indicate they can cause poisoning [15,16].
Hence, it is crucial to monitor Cu levels in fish to guarantee the well-being of the aquatic
environment and safety for human consumption. Ultimately, the level of Cu found in fish
is of utmost importance for ecosystem control and human consumption. Elevated levels of
Cu in aquatic habitats can cause significant harm to the creatures inhabiting the ecosystem
and the general ecological well-being [15]. Moreover, Cu can have comparable effects
on invertebrates and amphibians, leading to a decrease in the generation of sperm and
eggs [17]. The impact of Cu on aquatic organisms can eventually disturb the equilibrium
and operation of the entire ecosystem [17].

Consuming fish that contains elevated amounts of Cu can harm human health. Con-
suming fish with elevated Cu levels can result in a range of health complications, such
as gastrointestinal troubles, liver impairment, and neurological abnormalities. Therefore,
monitoring Cu levels in fish consumed by people is crucial for ensuring the safety of
their consumption and safeguarding human health [14]. Hence, it is crucial to consis-
tently check the Cu levels in fish and implement suitable measures to avoid excessive
accumulation, safeguarding the well-being of both the environment and human consumers.
Furthermore, it is crucial to conduct biomonitoring of Cu levels in fish intended for human
consumption. Monitoring Cu levels in fish is crucial for guaranteeing safety for human
consumption and preserving the general well-being of aquatic ecosystems [12,14]. To miti-
gate Cu contamination in aquatic ecosystems, it is recommended to adopt effective waste
management practices, encourage the utilization of alternative materials and technologies
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that do not depend on Cu, and raise public awareness of the detrimental consequences of
Cu pollution [18–21].

PTM concentrations in fish from various countries have been thoroughly examined: In-
dia [22–24], Pakistan [14,25–28], Malaysia [29], Indonesia [30], the Persian Gulf or Iran [31–35],
Bangladesh [36–38], Tanzania [39], and others [40–49]. Pre-2000 studies provide most
monitoring data and direct comparisons to PTM food safety regulations. Recently, marine
fish HHR evaluations have employed PTM provisional tolerable weekly intake (PTWI) and
target hazard quotient (THQ). Babji et al. [50] measured four PTMs (Cu included) in six
Peninsular Malaysian marine fish species to food standard MPLs. Kureishy et al. [22] mea-
sured six Andaman Sea marine species metals, including Cu. These levels violated seafood
safety. In addition to PTM concentrations, Fathi et al. [51] observed that three marine fish
species from Mersing, on Peninsular Malaysia’s east coast, had estimated daily and weekly
intakes of four PTMs (including Cu) well below the PTWI limits. In addition to zinc surpass-
ing food safety norms, Jahangir Sarker et al. [38] found THQ values below 1.0 for all fish
species, indicating no public health risks. Alipour et al. [52] revealed high non-carcinogenic
metals for Malaysian and Bangladeshi newborns and adults. Malaysians acquire 60–70%
of their protein from marine fish [53]. Hence, various PTM monitoring studies have been
published [15,16,50,51,54–62]. Agusa et al. [54] tested twenty-one trace elements (including
Cu) in twelve Malaysian coastal marine fish species. Peninsular Malaysia’s east coast bigeye
scads have seven PTMs, including Cu, higher than those of the west coast. Wan Azmi
et al. [58] observed that all 46 Peninsular Malaysian coastal marine fish species had THQ
values below 1, suggesting minimal non-carcinogenic risk and safe ingestion. According
to Salam et al. [59], Kedah and Selangor residents who consume torpedo scad (Megalaspis
cordyla) have a high chronic risk using the THQ value.

However, there is no current information on the Cu health risk on commercial marine
fish purchased from Malaysia. Therefore, this research aimed to determine Cu levels and
estimate Cu health risks in 40 marine commercial fish species purchased from Malaysia.

2. Materials and Methods
2.1. Sample Collection

A total of 40 different commercial marine fish samples were purchased and collected
from 31 March to 2 May 2023 in random locations of all types of markets in Malaysia
(Table S1; Figure S1). The common name, scientific name, exact purchase location, and
purchase time were recorded in a table. The edible dorsal muscles of all fish samples were
dissected for metal analysis as it is the primary storage site for Cu accumulation [29].

Fish were categorized using www.fishbase.org (accessed as of 1 September 2023),
Mohsin and Ambak [63] and Matsunuma et al. [64]. To verify each fish species’ name,
family, and niche habitat, web data (https://www.fishbase.in/search.php; accessed as of
1 September 2023) were used.

2.2. Sample Preparation

Immediately after collection, the samples were stored in a refrigerated ice package
to preserve their freshness. Ice was utilized to mitigate tissue degradation and maintain
a moist environment throughout transportation. After rinsing the samples with water to
remove any foreign particulates, the fish absorbed any remaining water using a paper
towel. After weighing each fish with an electronic balance, a ruler determined its length.
The fish’s length was determined by measuring from the upper mandible’s snout to the
tail’s extremity. Following this, the dorsal musculature of the fish was dissected. In total,
10–20 g of dorsal muscle were excised from each fish. Rahman et al. [36] suggested that the
musculature of fish is the principal site for metal storage.

The specimens were preservation-frozen and subsequently transported to the labora-
tory at the Universiti Putra Malaysia, where they were categorized by species to prevent
any potential for cross-contamination. Subsequently, the specimens were placed in a freezer
until the time came for metal analysis. In the laboratory, the samples are defrosted at

www.fishbase.org
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ambient temperature. The specimens of each species were fragmented and merged in order
to create a composite sample. The muscles were then desiccated at 60 ◦C for 72 h in an
oven until their weight remained constant. Drying eliminates surplus water and ascertains
the moisture content of the fish, a critical parameter for the conversion to a wet weight
(ww) basis. The moisture content could be ascertained by measuring weight reduction
after drying. The specimens were homogenized by pulverizing them with mortar and an
agate pestle. The sample powder was refrained from further analysis and stored in an
impermeable plastic container.

2.3. Cu Analysis

After measuring approximately 0.50 g of the homogenized dried sample, the digestion
tube received 5.00 mL of concentrated nitric acid (HNO3; AnalaR grade, BDH 69%). A
hot block digester pre-digested the materials for one hour at 40 ◦C. Later, samples were
digested at 140 ◦C for three hours [65]. After digestion, the solution settled for 30 min
before being diluted with distilled water to 40 mL. After filtering (with Whatman no 1), the
acid-digested samples were placed in acid-washed pillboxes.

The Cu concentrations in digested samples were measured using an air–acetylene
flame atomic absorption spectrophotometer (FAAS) Model 800. FAAS Cu detection limits
were 0.010 mg/L. All plastics and glassware were washed with distilled water, dried, and
then placed in 10% nitric acid overnight before use. The quality of procedure blanks and
sample triplicates was evaluated. To maintain analytical integrity, each experiment utilized
blanks simultaneously. The method accuracy and metal data were verified using dogfish
liver certified reference material (CRM) (DOLT-3, National Research Council Canada). The
procedure is reproducible: Cu CRM = 31.2 mg/kg, Cu measurement = 32.9 mg/kg, and
CV = 1.16%. The recovery was good (106–119%).

2.4. Cu Data Treatment for Human Health Risk Assessment

For human health risk assessment (HHRA), dry weight (dw) two-metal values were
translated to ww using a fish species conversion factor (Table S1). To estimate the HHRA
from eating fish, three evaluations were made:

(a) Direct MPL comparisons

Three Cu seafood safety recommendations from the FAO [66], Ministry of Agriculture,
Fisheries, and Food [67], and Malaysian Food Regulation 1985 (MFR) [68] were utilized in
this investigation.

(b) THQ estimation

First, the estimated daily intake (EDI) was determined to calculate THQ. Using body
weight (BW) and fish-eating rate, EDI estimates metal intake. It was determined using
Equation (1):

EDI = (Mc × CR)/BW. (1)

Assuming a ww basis, Mc = metal concentration in fish muscles (mg/kg). Table S1
lists all dorsal muscle fish water contents and conversion factors. It may be 50% of the
water content for all fish species studied. Since big catfish have 53.8% water content [69],
the conversion factor for all fish samples in this investigation was 0.50.

The fish consumption rate among Malaysian adults is 100g per person per day, based
on data collected from 2675 respondents. The respondents were categorized into three
ethnic groups: Malay (76.9%), Chinese (14.7%), and Indian (8.4%). The weight used for
adult Malaysians was 62 kg, according to Nurul Izzah et al. [70].

Later, Equation (2) computed THQ:

THQ = EDI/ORD. (2)

ORD stands for oral reference dose. The ORD calculates the maximum amount of a
pollutant that may be consumed daily over a lifetime without causing harm to health [71].
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The ORD values (Cu = 40 µg/kg/day) from the USEPA regional screening level [72] were
used in this study.

(c) EWI vs. PTWI comparisons

The provisional tolerable weekly intake (PTWI) was formed by the Joint FAO/WHO
Expert Committee on Food Additives (JECFA) [73,74]. An analysis was conducted to assess
the health risks associated with consuming fish. This was carried out by estimating the
amount of metal exposure weekly and comparing it to the acceptable limits according to
the PTWI standards. The PTWI is a calculated quantity of a chemical present in food or
water that may be consumed weekly without causing any harm to health. It is expressed in
mg/kg of body weight [72].

Hence, computations were conducted to ascertain the number of fish from this study
that exceeded the PTWI limits. The JECFA calculated the PTWI for Cu to be 3.50 mg/kg
body weight per week based on its initial maximum tolerated daily intake of 0.50 mg/kg
body weight per day. The Cu PTWI for a 62 kg adult is 217 mg/week. The estimated
weekly intake (EWI) of fish constituents is used to assess the level of exposure risk. The
value of EWI equals EDI times 7.

The EWI is calculated by applying Equation (1) and then multiplied by seven to
account for the seven-day week. By comparing the EWI to the established PTWI limits for
a 62 kg adult, it may be determined whether the EWI is lower than the Cu level.

3. Results and Discussion

Based on a total of 119 individuals of 37 species (three species were unrecorded) of fish
purchased from all different markets or sources from Malaysia, the total body wet weights
ranged from 3.00–4.00 g (Valumugil seheli) to 245–315g (Euthynnus affinis) (Table S1). Based
on a total of 113 individuals of 35 species of fish (five species were unrecorded) purchased
from all different markets or sources from Malaysia, the maximum body lengths ranged
from 14.7–16.4 cm (Selaroides leptolepis) to 80.0–93.0 cm (Trichiurus lepturus) (Table S1).

Carangidae (six species), Sciaenidae (three species), Stromateidae (one species), Clu-
peidae (one species), Chirocentridae (one species), Scrombidae (two species), Dasyatidae
(one species), Nemipteridae (one species), Lactariidae (one species), Trichiuridae (one
species), and Ariidae (one species) were among the 40 marine fish species analyzed. These
families have specialized environments, including amphibious, demersal, potamodromous,
anadromous, oceanodromous, catadromous, reef-associated, pelagic, neritic, tropical, and
benthopelagic (Table S1).

3.1. Comparison of Cu Food Safety Recommendations and Reported Cu Amounts in Fish Species

In 40 fish species, Cu concentrations varied from 0.06–16.9 mg/kg ww (0.72–82.3 mg/kg
dw) (Figure 1; Table 1). This Cu range exceeds the 0.29–1.80 mg/kg ww; 1.50–7.83 mg/kg dw
were reported for the 19 Setiu commercial fish species from the east coast of the Malaysian
Peninsular [29]. The present Cu range (0.06–16.9 mg/kg ww) was significantly below the
MPLs proposed by FAO [66] of 20–70 mg/kg ww, MAFF (20 mg/kg ww) [67], and MFR
(30 mg/kg ww) [68]. Thus, eating fish purchased from Malaysian does not pose a Cu
danger. Similarly, even though the skin parts of some selected fish species have higher
levels of Cu than those in the dorsal muscle, their levels are well below the three MPLs
(Figure 2).
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Figure 1. Mean concentrations (mean, mg/kg wet weight) of Cu in the dorsal muscles of 40 commer-
cial marine fish purchased from Malaysia. Note: MPL = maximum permissible limit; MPL-1 = MAFF 
[67]; MPL-2 = MFR [68]; MPL-3 = FAO [66]. Note: 1 = Abalistes stellaris, 2 = Alectis indicus; 3 = Alepes 
melanoptera; 4 = Anabas testudineus; 5 = Arius arius; 6 = Atule mate; 7 = Carangoides armatus; 8 = Decap-
terus macrosoma; 9 = Drepana punctata; 10 = Elagatis bipinnulata; 11 = Eleutheronema tetradactylum; 12 = 
Epinephelus tauvina; 13 = Escualosa thoracata; 14 = Euthynnus affinis; 15 = Lates calcarifer; 16 = Lep-
tomelanosoma indicum; 17 = Megalaspis cordyla; 18 = Nemipterus tambuloides; 19 = Parastromateus niger; 
20 = Pennahia argentata; 21 = Plectorhinchus flavomaculatus; 22 = Pomadasys kakaan; 23 = Rastrelliger 
brancy soma; 24 = Rastrelliger kanagurta; 25 = Sardinella fimbriata; 26 = Scomberoides lysan; 27 = Scomber-
omorus commerson; 28 = Scomberomorus guttatus; 29 = Selar boops; 30 = Selar crumenophthalmus; 31 = 
Selaroides leptolepis; 32 = Siganus javus; 33 = Sphyaera putnamae; 34 = Sphyraena obtusata; 35 = Tenualosa 
toli; 36 = Thunnus tonggol; 37 = Trichiurus lepturus; 38 = Tylosurus crocodilus; 39 = Upeneus sulphureus; 
40 = Valumugil seheli. 
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Figure 1. Mean concentrations (mean, mg/kg wet weight) of Cu in the dorsal muscles of 40 commercial
marine fish purchased from Malaysia. Note: MPL = maximum permissible limit; MPL-1 = MAFF [67];
MPL-2 = MFR [68]; MPL-3 = FAO [66]. Note: 1 = Abalistes stellaris, 2 = Alectis indicus; 3 = Alepes melanoptera;
4 = Anabas testudineus; 5 = Arius arius; 6 = Atule mate; 7 = Carangoides armatus; 8 = Decapterus macrosoma;
9 = Drepana punctata; 10 = Elagatis bipinnulata; 11 = Eleutheronema tetradactylum; 12 = Epinephelus
tauvina; 13 = Escualosa thoracata; 14 = Euthynnus affinis; 15 = Lates calcarifer; 16 = Leptomelanosoma
indicum; 17 = Megalaspis cordyla; 18 = Nemipterus tambuloides; 19 = Parastromateus niger; 20 = Pennahia
argentata; 21 = Plectorhinchus flavomaculatus; 22 = Pomadasys kakaan; 23 = Rastrelliger brancy soma;
24 = Rastrelliger kanagurta; 25 = Sardinella fimbriata; 26 = Scomberoides lysan; 27 = Scomberomorus
commerson; 28 = Scomberomorus guttatus; 29 = Selar boops; 30 = Selar crumenophthalmus; 31 = Selaroides
leptolepis; 32 = Siganus javus; 33 = Sphyaera putnamae; 34 = Sphyraena obtusata; 35 = Tenualosa toli;
36 = Thunnus tonggol; 37 = Trichiurus lepturus; 38 = Tylosurus crocodilus; 39 = Upeneus sulphureus;
40 = Valumugil seheli.

Table 1. Overall statistics of Cu concentrations (mg/kg wet weight), estimated daily intake (EDI),
target hazard quotient (THQ), and estimated weekly intake (EWI) in the 40 commercial marine fish
species purchased from Malaysia (N = 40).

DW WW EDI High EDI THQ High THQ EWI High EWI PTWI% High PTWI%

Minimum 0.72 0.06 0.10 0.20 0.00 0.01 0.70 1.41 0.00 0.00
Maximum 82.3 16.9 27.3 54.6 0.68 1.37 191 382 0.09 0.18

Mean 10.2 2.17 3.50 6.89 0.09 0.17 24.1 48.2 0.01 0.02
Median 4.66 0.98 1.58 2.57 0.04 0.07 9.01 18.0 0.00 0.01

SD 17.7 3.65 5.89 11.82 0.15 0.29 41.4 82.8 0.02 0.04
Variance 313 13.3 34.7 139 0.02 0.09 1712 6848 0.00 0.00

SE 2.80 0.58 0.93 1.87 0.02 0.05 6.54 13.1 0.00 0.01
Skewness 3.36 3.26 3.26 3.25 3.25 3.25 3.25 3.25 3.25 3.25
Kurtosis 10.7 10.3 10.3 10.2 10.2 10.2 10.2 10.2 10.2 10.2

Note: SD = standard deviation; SE = standard error.
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Figure 2. Mean concentrations (mean, mg/kg wet weight) of Cu in the dorsal muscles and skins of
10 commercial marine fish purchased from Malaysia. Note: MPL = maximum permissible limit;
MPL-1 = MAFF [67]; MPL-2 = MFR [68]; MPL-3 = FAO [66]. Note: 1 = Drepana punctata;
2 = Elagatis bipinnulata; 3 = Selar crumenophthalmus; 4 = Eleutheronema tetradactylum; 5 = Pomadasys
kakaan; 6 = Megalaspis cordyla; 7 = Trichiurus lepturus; 8 = Siganus javus; 9 = Leptomelanosoma indicum;
10 = Scomberoides lysan; 11 = Tenualosa toli.

3.2. Comparison to Reported Studies

Marine fish Cu concentrations from 99 studies (28 citations) are presented in Table S4.
The lowest and highest Cu concentrations among 40 fish species were found in Arius arius
(0.06 mg/kg ww) and Tylosurus crocodilus (16.9 mg/kg ww). Yap and Al-Mutairi [29] found
the highest and lowest Cu concentrations in Atule mate (1.80 mg/kg ww) and Pampus
chinensis (0.29 mg/kg ww) among 19 Setiu commercial fish. Table S3 and Figure 1 reveal
that 40 commercial marine fish species exhibit Cu ranges of 0.06–16.9 mg/kg ww, like
99 reports from 24 citations (Tables 2 and S4). In 46 marine fish from selected main fish
landing ports of the Fisheries Development Authority of Malaysia and wholesale markets
in the Peninsular of Malaysia, Wan Azmi et al. [58] discovered that M. cordyla had the
highest Cu content (1.61 mg/kg ww) and Otolithoides biauritus the lowest (0.039 mg/kg).

Table 2. Overall statistics of Cu concentrations (mg/kg wet weight) (WW) with recalculation of
estimated daily intake (EDI), target hazard quotient (THQ), and estimated weekly intake (EWI) in the
24 marine fish species cited from the literature (99 reports of 24papers) (N = 99).

DW WW EDI High EDI THQ High THQ EWI High EWI PTWI% High PTWI%

Minimum 0.05 0.01 0.01 0.03 0.00 0.00 0.10 0.20 0.00 0.00
Maximum 42.8 11.2 18.1 36.1 0.45 0.90 126 253 0.06 0.12

Mean 4.24 0.94 1.51 3.02 0.04 0.08 10.6 21.2 0.00 0.01
Median 2.50 0.58 0.94 1.87 0.02 0.05 6.55 13.1 0.00 0.01

SD 5.45 1.33 2.15 4.30 0.05 0.11 15.05 30.1 0.01 0.01
Variance 29.7 1.78 4.62 18.5 0.00 0.01 226 906 0.00 0.00

SE 0.55 0.13 0.22 0.43 0.01 0.01 1.51 3.03 0.00 0.00
Skewness 4.42 5.35 5.35 5.36 5.36 5.36 5.36 5.36 5.36 5.36
Kurtosis 25.5 35.5 35.5 35.6 35.6 35.6 35.6 35.6 35.6 35.6

Note: SD = standard deviation; SE = standard error.
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Yap and Al-Mutairi [29] observed that A. mate contained the most Cu (1.80 mg/kg ww),
followed by Decapterus macrosoma, Rastrelliger kanagurta, M. cordyla, and others. Figure 1
and Table S3 show that A. mate’s Cu level (0.81 mg/kg ww) was reported on within the
three literature studies (1.53 mg/kg ww) (0.82–1.90 mg/kg ww) (Table S4). D. macrosoma
contains 1.53 mg/kg ww Cu, consistent with five investigations (0.70–11.20 mg/kg ww)
(Table S4). D. macrosoma had a higher Cu content than Yap and Al-Mutairi [29] (1.42 mg/kg
ww) but lower than Kuala Terengganu (11.2 mg/kg ww) (Table S4). R. kanagurta possesses
2.08 mg/kg ww Cu, similar to 16 investigations (0.27–3.30 mg/kg ww) (Table S4). R.
kanagurta contains 1.45 mg/kg ww more Cu than Yap and Al-Mutairi [29]. Compared
to Mersing (east coast of Peninsular Malaysia), Indonesia, Thailand, Saint Martin Island,
Andaman Sea, Peninsular Malaysia, Port Dickson, Pahang coastal waters, Co-chin coast,
Palk Bay, Kochi coast, Langkawi Island, and Kunduchi fish market in Dar es Salaam, Cu
levels were higher.

The present Cu level in M. cordyla (0.95 mg/kg ww) matches 19 studies (1.40–25.7 mg/kg
ww) (Table S4), including Yap and Al-Mutairi [29]’s (1.03 mg/kg ww). The Cu level
was higher than Langkawi, Port Dickson, Kelantan, Cambodia, Thailand, Kuala Kedah,
Pahang coastal waters, Mersing, and Cochin coast. It was below Tanjung Sepat (Selangor),
Peninsular Malaysia marine fish, and the west coast. Nurnadia et al. [75] found 1.56 mg/kg
ww of Cu in M. cordyla, more than the previous study (0.95 mg/kg ww).

S. leptolepis possesses 0.97 mg/kg ww Cu, which is comparable with five investigations
(0.05–1.41 mg/kg ww) (Table S4), including Setiu’s 0.89 mg/kg [29]. S. leptolepis had more
Cu than Peninsular Malaysian marine fish, Port Dickson, and Pahang coastal waters but
less than the West coast. This was below Nurnadia et al.’s 1.41 mg/kg ww [75]. Table S4
shows that S. commerson’s Cu level (2.02 mg/kg ww) matches that of six literature studies
(0.30–2.90 mg/kg ww). Cu levels exceeded those of Setiu (0.43 mg/kg ww), Koh Kong
(Cambodia), Marine fish Peninsular Malaysia, and Zhongsha. T. lepturus had 1.78 mg/kg
ww Cu in four literature investigations (0.46–1.98 mg/kg ww) (Table S4). The Cu level was
greater than Setiu [29], Kutubdia Island, and Mumbai Harbor (India) (0.66 mg/kg ww).

The Cu ranges (0.06–16.9 mg/kg ww) of 40 commercial marine fish species (Table S3;
Figure 1) were mostly consistent and greater than reported values. Celik and Oehlen-
schläger [76] discovered Cu concentrations of 0.12 to 1.14 mg/kg ww in 49 eastern Mediter-
ranean Sea commercial fish species (Izmir Outer Bay, Homa Lagoon/Izmir, and Mersin
Bay). Simanjuntak et al. [77] detected 0.09–0.35 mg/kg ww Cu in eight North Sumatra
marine species. Tuzen [78] found 0.65–2.78 mg/kg ww Cu in eleven Black Sea fish species.
El-Moselhy et al. [19] reported Cu in fourteen benthic and pelagic fish species from three
key Red Sea landing sites (Shalateen, Hurghada, and Suez) at 0.17 to 0.77 mg/g ww. Blevins
and Pancorbo [79] observed that 17 species from nine sites had muscle Cu levels of 0.12 to
2.20 mg/kg ww after five years in different surface water systems in eastern Tennessee.

Ong et al. [16] observed five Setiu marine species with Cu levels of 0.69–3.04 mg/kg dw,
while Yap and Al-Mutairi [29] recorded 19 species with 1.50–7.83 mg/kg dw. Fish muscle
Cu in Malaysian coastal waters was 0.86–3.48 mg/kg dw [54]. Rejomon et al. [80] found
that Caranx melampygus had the greatest Cu levels in its muscle tissues off Mangalore and
Kochi. Seven marine fish species from the Miri coast had Cu concentrations in their muscles
between 8.50 and 13.3 mg/kg dw [81], which was higher than those from the Mediterranean
Sea (3.40–5.88 mg/kg dw) [82], Mumbai Harbor (0.87 to 6.51 mg/kg dw) [27], the Turkish
Sea (0.16–10.7 mg/kg dw) [83], the Palk Bay of India (0.90–8.68 mg/kg dw) [84], and
Langkawi Island, Malaysia (11.5–13.9 mg/kg dw; [57]). Similar findings were reported
by Prasath and Khan [85]. Jahangir Sarker et al. [38] detected 4.63–73.6 mg/kg dw Cu in
Bangladeshi Meghna River estuary fish. Nine Turkish Black and Aegean Sea fish showed
Cu levels of 0.73–1.83 mg/kg dw [46]. According to Dural Eken et al. [86], three marine
fish species from Turkey’s Tuzla Lagoon had Cu concentrations of 0.26–0.82 mg/kg dw.
Off Newfoundland, Hellou et al. [87] detected 1.00 mg/kg dw Cu in northwest Atlantic
bluefin tuna muscle tissue. The researchers discovered <1.2–1.5 mg/kg dw Cu levels in
Newfoundland cod muscle [87].
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3.3. Cu Health Risk Assessment

Tables S3 and S4 provide Cu values for EDI, THQ, and EWI in marine fish from our
research and published data. In Table 1 and Figure 3, Cu (mg/kg ww), EDI, THQ, and EWI
are shown for 40 marine fish species. Table 2 indicates Cu concentrations (mg/kg ww) and
the recalculation of EDI, THQ, and EWI in 28 marine fish species from 99 literature reports
of 24 papers. EDI and THQ are comparable to Setiu fish values of 0.46–2.90 and Cu THQ of
0.01–0.07 [29] (Table S3).
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Figure 3. Target hazard quotient (THQ) values of Cu in 40 commercial marine fish purchased from
Malaysia. Note: High THQ values indicate two times the consumption of the average consumption
rate. Note: 1 = Abalistes stellaris, 2 = Alectis indicus; 3 = Alepes melanoptera; 4 = Anabas testudineus;
5 = Arius arius; 6 = Atule mate; 7 = Carangoides armatus; 8 = Decapterus macrosoma; 9 = Drepana
punctata; 10 = Elagatis bipinnulata; 11 = Eleutheronema tetradactylum; 12 = Epinephelus tauvina;
13 = Escualosa thoracata; 14 = Euthynnus affinis; 15 = Lates calcarifer; 16 = Leptomelanosoma indicum;
17 = Megalaspis cordyla; 18 = Nemipterus tambuloides; 19 = Parastromateus niger; 20 = Pennahia ar-
gentata; 21 = Plectorhinchus flavomaculatus; 22 = Pomadasys kakaan; 23 = Rastrelliger brancysoma;
24 = Rastrelliger kanagurta; 25 = Sardinella fimbriata; 26 = Scomberoides lysan; 27 = Scomberomorus
commerson; 28 = Scomberomorus guttatus; 29 = Selar boops; 30 = Selar crumenophthalmus; 31 = Selaroides
leptolepis; 32 = Siganus javus; 33 = Sphyaera putnamae; 34 = Sphyraena obtusata; 35 = Tenualosa toli;
36 = Thunnus tonggol; 37 = Trichiurus lepturus; 38 = Tylosurus crocodilus; 39 = Upeneus sulphureus;
40 = Valumugil seheli.

Cu THQ levels were below 1 in all 40 commercial fish species (Figure 3) and selected
fish species’ skin portions (Figure 4), indicating low non-carcinogenic risk and safe human
intake. The absence of Cu health risks was also established. Consuming contaminated
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seafood may raise Cu levels. In comparison to worldwide recommendations, this study
found Cu concentration acceptable. Yabanli and Alparslan [88] also discovered lower EDIs.
Adult Cu has an EDI of 0.07, and 12-year-olds 0.04. Yabanli and Alparslan [88] reported
lower THQ in kids and adults. Children and adults had THQs below 1.00. Praveena and
Lin [89] observed that marine fishes from Port Dickson (west coast of Peninsular Malaysia)
had Cu THQ values below 1, suggesting no Cu adverse effects from eating.
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Figure 4. Target hazard quotient (THQ) values of Cu in the dorsal muscles and skins of 10 commercial
marine fish purchased from Malaysia. Note: High THQ values indicate two times the consumption
of the average consumption rate. Note: 1 = Drepana punctata; 2 = Elagatis bipinnulata; 3 = Selar
crumenophthalmus; 4 = Eleutheronema tetradactylum; 5 = Pomadasys kakaan; 6 = Megalaspis cordyla;
7 = Trichiurus lepturus; 8 = Siganus javus; 9 = Leptomelanosoma indicum; 10 = Scomberoides lysan;
11 = Tenualosa toli.

According to Table 1 and Figure 5, Cu EWI ranged from 0.10 to 27.3 µg/kg BW/week,
with Arius arius and Tylosurus crocodilus having the lowest and greatest concentrations.
Figures 5 and 6 show reduced EWI in 40 fish species’ dorsal muscles and 10 fish species’
skin parts compared to the Cu (3500 µg/kg BW/week) determined PTWI. The FAO/WHO
JECFA guideline states that eating fish does not cause Cu toxicity. Wan Azmi et al. [58]
reported Cu EWI ranged from 0.69 to 27.65 (µg/kg BW/week) in 46 marine fish species from
Peninsular Malaysia’s coastal waters, using nine heavy metals. From 99 Cu data in marine fish,
EWI ranged from 0.20 to 253 (µg/kg BW/week). In Bulgaria, Peycheva et al. [90] observed
Cu EWI 0.48–1.28 g/kg BW/week.
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Figure 5. Percentages (%) of estimated weekly intake (EWI) to provisional tolerable weekly intake
(PTWI) of Cu in 40 commercial marine fish purchased from Malaysia. Note: High PTWI values
indicate two times the consumption of the average consumption rate. Note: 1 = Abalistes stellaris,
2 = Alectis indicus; 3 = Alepes melanoptera; 4 = Anabas testudineus; 5 = Arius arius; 6 = Atule mate;
7 = Carangoides armatus; 8 = Decapterus macrosoma; 9 = Drepana punctata; 10 = Elagatis bipinnulata;
11 = Eleutheronema tetradactylum; 12 = Epinephelus tauvina; 13 = Escualosa thoracata; 14 = Euthynnus
affinis; 15 = Lates calcarifer; 16 = Leptomelanosoma indicum; 17 = Megalaspis cordyla; 18 = Nemipterus
tambuloides; 19 = Parastromateus niger; 20 = Pennahia argentata; 21 = Plectorhinchus flavomaculatus;
22 = Pomadasys kakaan; 23 = Rastrelliger brancysoma; 24 = Rastrelliger kanagurta; 25 = Sardinella fimbriata;
26 = Scomberoides lysan; 27 = Scomberomorus commerson; 28 = Scomberomorus guttatus; 29 = Selar boops;
30 = Selar crumenophthalmus; 31 = Selaroides leptolepis; 32 = Siganus javus; 33 = Sphyaera putnamae;
34 = Sphyraena obtusata; 35 = Tenualosa toli; 36 = Thunnus tonggol; 37 = Trichiurus lepturus; 38 = Tylosurus
crocodilus; 39 = Upeneus sulphureus; 40 = Valumugil seheli.

Ates et al. [83] found Cu EDI and EWI values for Turkish adults’ economically relevant
fish consumption. These values were determined by assuming a 70 kg individual consumes
20 g fish/day or 140 g/week. Eight commercially relevant fish species from the Aegean
and Mediterranean seas had EWI levels of 165–987 µg/70 kg BW/week, well below the
necessary PTWI values of 3500 µg/kg BW/week and 245,000 µg/70 kg BW/week for
70 kg adults.

Adults take 0.9–2.2 mg Cu daily. Children are estimated to eat 0.6–0.8 mg/day
(0.07–0.1 mg/kg BW/day) [4]. The lowest permitted oral consumption is 20 µg Cu/kg
BW/day. In babies, this is 50µg Cu/kg BW/day [4]. Estimated daily human Cu intake
is 1.0–1.3 mg (0.014–0.019 mg/kg) [2]. In the US, adults consume 0.93–1.3 mg Cu/day
(0.013–0.019 mg Cu/kg BW/day using a 70 kg reference BW) [2].
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Figure 6. Percentages (%) of estimated weekly intake (EWI) to provisional tolerable weekly intake
(PTWI) of Cu in the dorsal muscles and skins of 10 commercial marine fish purchased from Malaysia.
Note: High THQ values indicate two times the consumption of the average consumption rate.
Note: 1 = Drepana punctata; 2 = Elagatis bipinnulata; 3 = Selar crumenophthalmus; 4 = Eleutheronema
tetradactylum; 5 = Pomadasys kakaan; 6 = Megalaspis cordyla; 7 = Trichiurus lepturus; 8 = Siganus javus;
9 = Leptomelanosoma indicum; 10 = Scomberoides lysan; 11 = Tenualosa toli.

3.4. Correlations of Cu Concentrations and Body Size of Fish

Figure 7 compares Cu concentrations to body lengths and wet weights in 36 Malaysian
commercial marine fish species. Overall, Cu levels and body size (length and weight) are
similar (p > 0.05). The literature suggests contradictory relationships [58,91–96]. Wan Azmi
et al. [58] found no significant Cu–body length relationship in 46 marine fish species from
Peninsular Malaysia’s coastal waters (p > 0.05). Bashir et al. [91] discovered a significant
(p < 0.05) association between fish length, weight, and heavy metal levels.
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Figure 7. Relationships between Cu concentrations (mg/kg dry weight) and body lengths (g) (and
body wet weight (g) in the 36 species of commercial marine fish purchased from Malaysia.
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Using linear regression, Yi and Zhang [97] evaluated the relationships between fish
size (length and weight) and metal concentrations in seven Yangtze River fish species.
Metal levels were associated favorably with most fish sizes except catfish and yellow-head
catfish, which correlated negatively. Fish size (length and weight) and metal concentrations
in six northeast Mediterranean Sea fish species’ tissues were studied by Canli and Atli [98].
Only a few studies linked metal concentration to fish size.

3.5. Monitoring of Cu as an ESG Requirement to Safeguard Consumers’ Health

Heavy metals in seafood are becoming more concerning owing to their potential to
damage humans and the environment [99]. Preventing population contamination requires
precise heavy metal monitoring and management in fish and water. Toxic metals in the
food chain, especially in fish, pose a serious health risk. This entails using appropriate
fishing and farming techniques to reduce harmful Cu in fish products [100].

In addition, industrial academia can cooperate with regulatory bodies and industry
partners to develop protocols and benchmarks for the permissible concentrations of Cu in
fish. Industries are now dedicated to adhering to environmental, social, and governance
(ESG) principles, which motivates industries to actively address the concerns linked to
heavy metal pollution in fish. Through proactive measures and responsible research
innovation, the issue of Cu pollution in fish products can be addressed, guaranteeing our
consumers’ safety and welfare while safeguarding the aquatic ecosystem. It is essential to
implement efficient ESG strategies to tackle the issue of Cu pollution in fish to safeguard
human health and the environment.

Nevertheless, the implementation of ESG may encounter obstacles. The problems
encompass the absence of standardized norms and standards about Cu levels in fish,
the limited accessibility and high expenses associated with dependable testing methods,
and the necessity for ongoing staff education and training to guarantee the appropriate
execution of ESG practices. In order to surmount these obstacles, the industry is dedicated to
being informed about the most recent legislation and recommendations about the amounts
of Cu found in fish.

Research and development investments are necessary to enhance testing methodolo-
gies and guarantee their dependability. It is crucial to prioritize personnel training and
education to foster a comprehensive comprehension of ESG practices and their significance
in reducing Cu pollution. This approach can effectively address the obstacles and efficiently
execute ESG strategies to mitigate heavy metal pollution in our fish products (Figure 8).

By implementing these measures, the firm may showcase its dedication to environ-
mental sustainability and the ethical treatment of our customers. ESG practices are closely
linked to the United Nations Sustainable Development Goals (UNSDGs). Using ESG (en-
vironmental, social, and governance) practices to mitigate heavy metal contamination in
fish, we can significantly contribute to achieving several United Nations Sustainable Devel-
opment Goals. These objectives encompass Goal 3: Ensuring good health and well-being,
Goal 14: Preserving life below water, and Goal 17: Establishing partnerships for achieving
the goals, among others. Incorporating ESG practices to tackle the Cu contamination in fish
is consistent with the industry’s dedication to environmental sustainability and the welfare
of our customers.

Through the surveillance and mitigation of elevated concentrations of Cu in fish,
the well-being and security of the customers are put at the forefront. This showcases
the industries’ commitment to ethical business practices. Hence, using ESG measures to
mitigate heavy metal pollution in fish is imperative, as it is vital for safeguarding human
well-being and ecological integrity. Ultimately, adopting ESG practices to tackle the issue
of heavy metal pollution in fish is crucial for safeguarding human well-being and the
environment and guaranteeing consumer safety and health.
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4. Conclusions

Overall, Malaysian commercial marine fish Cu concentrations were below MPLs and
THQs for all species were below 1. It showed no non-carcinogenic dangers of Cu for con-
sumers. EWI values were similarly lower than Cu PTWI. Even though the population’s EWI
was lower than PTWI, excessive fish eating might harm health. More physiological and
ecological study is needed to understand how fish species accumulate Cu. A continuous
monitoring programme should be conducted to determine local fish species consumption
rates using a validated questionnaire. This information is vital for predicting the likeli-
hood of non-carcinogenic/chronic systemic Cu effects after ingesting each species. To
guarantee safe fish eating, Cu contamination of commercial marine fish species should be
evaluated routinely.
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Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/pollutants4010008/s1, Figure S1: The purchase sites for 40 species of fish.
Some sites were not shown due to similar purchase locations and distance settings. The sites were
plotted via QGIS software, Table S1: Purchased commercial fish from different purchase sites and
dates, Table S2: Description of the purchased commercial fish, biometric features, water content and
conversion factors of dorsal parts of the fish samples, Table S3: Values of estimated daily intake (EDI)
(mg/kg bw), target hazard quotient (THQ), and estimated weekly intake (EWI; mg/kg bw) to the
provisional tolerable weekly intake (PTWI; mg/kg bw) of Cu in fish (n = 40) from the present study,
Table S4: Values of estimated daily intake (EDI) (mg/kg bw), target hazard quotient (THQ), and
estimated weekly intake (EWI; mg/kg bw) to the provisional tolerable weekly intake (PTWI; mg/kg
bw) of Cu in fish (N = 99), based on Cu cited data in the literature, Table S5: Values of high estimated
daily intake (EDI) (mg/kg bw), high target hazard quotient (THQ), and high estimated weekly intake
(EWI) (mg/kg bw) to provisional tolerable weekly intake (PTWI) and high PTWI of Cu in selected
fish species from the present study.
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