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Abstract: Urban communities are complex systems. According to the holistic perspective of the
systems thinking theory, the “whole is not the sum of its parts, but rather is a product of the parts’
interactions”. This systems-thinking approach is commonly applied to analyse urban systems and
developments. This study introduces the Risk-informed Digital Building Twin (RDBT) based on the
Risk-informed Digital Twin (RDT), a novel digitalization technology incorporating an integrated
multi-dimensional multi-stakeholders decision-making system under uncertainty. In the RDBT,
energy-efficient, resilient, and sustainable systems/subsystems of civil engineering can be considered
at the scale of the single building to assess different needs. Monitored data are critical to performing
comprehensive near real-time lifecycle holistic analyses through the framework of Sustainable and
Resilient Based Engineering. An apartment building located in Sydney, Australia, has been selected
for future deployment of the RDBT.

Keywords: risk analysis; energy consumption; sustainability; apartment buildings; residential build-
ings; continuous monitoring; urban development; holistic approach; OpenAIUQ

1. Introduction

Globally, buildings are responsible for 39% of all energy and processes related to the
total greenhouse gas (GHG) emissions [1]. The reduction of these emissions is challenged
by the increasing population growth, urbanization, and demand for new buildings. The
latter could double by 2050, so the process of decarbonization of new building stocks is
urgent. Although energy efficiency is improving the building performance, this is not
enough for the decarbonization of the built environment.

To address the goals of the Paris Agreement, the World Green Building Council sets
as a target: (i) by 2030, the 40% reduction of embodied emissions of new buildings, infras-
tructures, and renovations, (ii) by 2050, the achievement of net-zero embodied emissions
of the built environment [2,3]. The suggested strategies cover operational, indirect, and
embodied emissions. For example, Amiri et al. [4] suggests that if 80% of buildings are
constructed with timber by 2040, the CO2 emissions in Europe could be cut up to 0.42 Gt.

In [5], it is suggested that the examination of the decarbonization of the whole lifecycle
of the built environment needs a holistic approach that is able to: (i) encompass the
boundaries of the national economies across a set of time windows, and (ii) include broad
environmental and socio-economic factors in order to target the United Nations Sustainable
Development Goals (SDGs) by 2030. Taking timber buildings as an example, once again, it
was found in [5] that timber used to construct new buildings stores the carbon and if the
number of new buildings is greater than the number of demolished ones, this provides a
temporary carbon bank. Moreover, total embodied emissions in timber buildings decrease
over time, therefore they have lower lifecycle embodied emissions than concrete buildings.
From the other side, care should be devoted to (i) relevant end-of-life emissions of timber

Environ. Sci. Proc. 2021, 12, 10. https://doi.org/10.3390/environsciproc2021012010 https://www.mdpi.com/journal/environsciproc

https://doi.org/10.3390/environsciproc2021012010
https://doi.org/10.3390/environsciproc2021012010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/environsciproc
https://www.mdpi.com
https://orcid.org/0000-0003-3231-4568
https://doi.org/10.3390/environsciproc2021012010
https://www.mdpi.com/journal/environsciproc
https://www.mdpi.com/article/10.3390/environsciproc2021012010?type=check_update&version=2


Environ. Sci. Proc. 2021, 12, 10 2 of 5

buildings [6] and (ii) sustainable management of the forests, where low harvest rates have
to be kept in order to avoid detrimental climate impacts [7].

These recent findings show how achieving net zero operational and embodied GHG
emissions of the built environment requires a multi-disciplinary, multi-level holistic view
of urban communities. This task is challenging due to the several sources of uncertainty,
including but not limited to the changing urban climate, interdependencies between critical
infrastructures, and interactions between multiple stakeholders (e.g., occupants, developers,
consultants, builders, practitioners, social institutions, and relevant government agencies)
and evaluation of multi-dimensional (e.g., economy, society, health, and infrastructures)
societal impacts determined by the occurrence of extreme events (e.g., floods, haze, blast,
urban heat island, and heatwaves). Therefore, there is the need to: (i) develop novel
models for uncertainty quantification and risk assessment of the impacts of the urban
heat challenge, (ii) compare and rank the lifecycle holistic performances of new building
typologies and/or design concepts, innovative material, or construction processes, and
(iii) understand, predict, and control the interdependencies between different systems for
urban governance and policymaking concerning the urban grand challenges.

On the other side, we are living now in the fourth (digital) industrial revolution,
where Artificial Intelligence (AI) has risen as a highly disruptive technology given the big
data technologies and availability, high-performance computing, and the introduction of
novel learning algorithms (e.g., Machine Learning and Deep Learning). Much has been
claimed about the power of these techniques, however, there is little theoretical foundation
that could show how they work on real problems tailored to the built environment. In
fact, there is practical evidence that some techniques of Machine Learning are a good fit
for a certain category of problems but not for others. Moreover, especially concerning
extreme events, there is no clear evidence about the most suitable algorithms to be adopted.
To this aim, there is the need of integrating the domain expertise with the state-of-the-
art tools of data science, risk analysis and management, stochastic analysis, and multi-
criteria decision making under uncertainty. Having this in mind, the following research
questions are of main concern: (i) choice of the optimal algorithms of risk-informed machine
learning for any category of problems, (ii) validation/verification of the models, including
their parameters and model uncertainty, (iii) probabilistic sensitivity analysis of the most
important parameters, and (iv) development of suitable risk-informed decision-making
systems able to describe behaviour and preferences of different stakeholders.

2. Risk-Informed Digital Twin

To address the research questions stated above, a very attractive tool is represented by
Digital Twin (DT) technologies. Following [8], the DT is defined as a living digital model of
real-world buildings, processes, structures, people, and systems created and maintained
in order to answer questions about its physical part, the Physical Twin (PT). In the case of
the built environment, the PT is represented by the smart buildings and infrastructures.
Through networks of sensors and the Internet of Things (IoT) full synchronization, perpet-
ual learning process and updating between the two twins is targeted. Usually, predictions
are pursued through data-driven algorithms and tools in the DT. To take into account
all the sources of uncertainty during the whole lifecycle, the concept of Risk-informed
Digital Twin (RDT) was introduced in [8] which integrates methods and tools of Statistics,
Uncertainty Quantification, Risk Analysis with Machine Learning.

The core of the RDT is the framework of Sustainable and Resilient Based Engineering
(SRBE), introduced in [8], and thought of as the natural extension of the Performance-Based
Engineering approach to Socio-Ecological-Technical (SET) systems under uncertainty. SRBE
is formulated using the Bayesian Network (BN) [9] which is a probabilistic model that
facilitates the efficient graphical representation of the dependence among random variables.
The main features of BN are: (i) their capacity in predicting probabilistic updating when
new information is acquired, e.g., through a network of sensors or from observations
after inspection, (ii) their transparent modelling, which allows their adoption by users
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with limited background in probabilistic or reliability analysis, (iii) their ability to model
time-dependent uncertain parameters easily [10]. In the RDT, the Dynamic Bayesian
Networks are used to model stochastic processes of all the quantities of interest. This allows
a transparent lifecycle modelling of the involved space- and time-dependent uncertainties
and a clear description of the dynamic spatial evolution of the optimal decision.

The RDT has the following submodules: (i) module of data-driven Uncertainty Quan-
tification (UQ) and Machine Learning (ML), (ii) module of data-driven Structural Reliability
and Risk Analysis, (iii) module of data-driven Predictive Health Monitoring, (iv) module
of Decision-Making Tool under uncertainty, including social aspects, and (v) module of
Optimal Control. A preliminary version of the RDT, with standard tools of Uncertainty
Quantification and Machine Learning, has been already deployed in the SinBerBEST office
in Singapore. Figure 1 shows that the data of the smart building are monitored in real-time,
the module of UQ evaluates the probability distribution of the daily energy consumption,
while the module of Risk Analysis predicts annual lifecycle energy consumption. Lifecy-
cle sustainability analyses in terms of near real-time predictions of lifecycle cost, energy
expenditure, and operational emissions through the RDT are described in [8].

Figure 1. Risk-informed Digital Twin (RDT) [8]: (a) OpenAIUQ modules; (b) deployment of the RDT
to the SinBerBEST office.

The module of data-driven Uncertainty Quantification and Risk Analysis, called AIUQ,
is grounded on a novel framework based on the information theory [8,11–13]. AIUQ is
capable to describe, inside the same framework, algorithms, methods, and tools typically
used by different communities of researchers. This implies that a new generation of
algorithms of risk-informed machine learning for the built environment can be generated.
The basic tools of UQ are collected in the open-source software OpenAIUQ [14].

In [8,15] lifecycle holistic performances of a realistic building in California are eval-
uated. They include lifecycle probabilistic performances of cost, structural safety and
injuries/fatalities, embodied, and operational emissions. The findings show that due to
post-hazard repair and maintenance, buildings need to be resilient in order to be eco-
efficient. The adoption of probabilistic metrics (instead of their expected values) is relevant
for risk-informed decision making. It is well recognized that decision-makers are typically
risk-averse, and they prefer being aware of the confidence level of predictions.

3. Conclusions

This study presents the RDT that incorporates the five levels of DT, including simula-
tion, intelligent and semi-autonomous DT. It is composed of several modules (e.g., Uncer-
tainty Quantification and Machine Learning, Health Monitoring, Risk Analysis, Decision
Making under uncertainty, and Optimal Control). Following the conclusions drawn in [8],
the following competitive outcomes from the deployment of the RDT are expected. RDT
implements the framework of SRBE, formulated in [8]. SRBE is capable of describing
the time-dependent dynamic response of the systems under uncertainty. In the absence
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of information and available data, the consequences may be determined through the ex-
isting databases, repositories, and tools. If available, these could be enriched with BIM,
using different levels of detail. Although the importance of novel design concepts and
technologies and materials for sustainable and resilient design (e.g., timber design [5])
are recognised, currently the design codes and guidelines are not updated in this regard.
Probabilistic sensitivity analyses can detect the most relevant parameters affecting holistic
performances. The model uncertainties of the adopted solutions can be reduced, together
with the introduction of new accurate computational models. Another gap of knowledge is
the lack of suitable databases to be shared with stakeholders. RDT may help in developing
these databases and in laying the basis for green transition and circular economy.

As a further development, it is planned to deploy the RDT in a smart building located
in Australia. The developed open-source software OpenAIUQ inside RDT technologies will
be applied to the Australian residential context and validated, using monitored data from a
7-storey apartment building located in Sydney and completed in 2018. Four representative
pilot studies will be considered in this investigation: (i) human occupancy prediction and
modelling, (ii) energy modelling and calibration, (iii) anthropogenic heat generated by
air-conditioning, and lifecycle performances in terms of heat emission, CO2 emissions, and
cost, and (iv) energy saving through human-centric designs, driven by the behaviour and
preferences of the occupants. This will be the first example of RDT deployment to a whole
instrumented building, in particular with reference to Australia. Technological innovations
tailored to Australia can be detected as a result of this application.
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