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Abstract: This research identifies patterns of conflicting interorganisational information exchange
requirements in precinct modelling and simulation (M&S) depending on the interaction and expertise
of the collaborating actors. Internationally surveying leading experts, it extends multicriteria decision
analysis with partitioning matrices of superposed orders from the eigenvectors of comparative
datasets. The results are applied to real-world industry tasks and exchanges established for building
M&S to combine and reuse them as models for precinct assets including energy infrastructure and
also for supporting modular information exchanges between digital precinct models.

Keywords: process modelling; matrix superposition; business process choreography; BPMN; MCDA;
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1. Introduction

Model-driven individually designed energy-smart buildings can save energy and
energy related-cost and reduce carbon emissions. Connecting a group of those in an energy
sharing system can contribute to anthropogenic heat reduction and Urban Heat Island
mitigation [1]. While buildings share locally generated energy, the precinct they are part of
is evolving, often with no fixed system boundaries. Even when administratively bound,
energy-related simulations such as solar, wind and traffic studies can lead beyond its
borders. Thus, current information exchanges between design consultants and their clients
using the one site, one project system often fail to provide the most sustainable precinct.
Moreover, disparate models with competing stakeholders may need to interact even when
interests conflict and priorities clash. For example, owners wanting to increase their energy
efficiency with improved heating insulation of the buildings could render district energy
generation running below capacity or even obsolete [2]. For the many different actors of
such a deliberative process, it is hard to track down the cause of requirement conflicts in
order to resolve them. This is particularly the case when their common point of interest
is as complex as a sociotechnical precinct energy system. This makes it harder to collect
and compare requirements early, in addition to being difficult to define completely. Hence,
designing and reusing M&S collaboration processes remain a challenge compounded by a
lack of knowledge with respect to messy decision making amongst stakeholders.

The usual method to treat conflicting requirements is to sort them according to different
types, criteria and conflicts [3] in order to analyse and resolve them, while also keeping them
divorced from the processes they entail. Another method is to only resolve certain types of
requirements by using a chain of domains by way of eliminating coupled requirements
to make them fully independent of each other [4]. The latter approach yields a process
that can be automated by resolving conflicts in data of the input/output kind. The two
important questions to pose, therefore, are as follows:

Q1. How do we make use of previous approaches developed for buildings but beyond
the building scale and which of those can be reused?
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Q2. What needs to be changed in previous approaches?

In order to answer these questions, this paper uses modular priority loops. They
capture otherwise hidden decision contexts behind stakeholder preferences relating to their
business goals and their various criteria with respect to those goals. Once those contexts
are captured in characteristic patterns, they will show what to change in processes already
established in the industry. They can also help to combine old and complex processes in
a simpler manner. Then, the structures and abstractions proposed, when combined with
the power of computation, can support planning and designing more sustainable precincts
with more buildings and complex facilities such as electricity and heating networks.

2. Materials and Methods

The methodological process steps applied in this study are shown in Figure 1a.
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Figure 1. (a) Methodological framework. (b) Multi-domain matrix form with priority matrices in
superposition to analyse order reversals (criteria codes for the reversed priority are as follows: C1:
record geometric operation history in the model; C3: model the state of connections; A1: model
connecting objects with different levels of Detail; A2: model local and enveloping systems together;
A3: model system components at different levels of detail. The rest of the criteria codes stand for the
following: C2: model the state of connecting objects; B1: exchange function as part of the model; B2:
request function from service provider (SP); B3: work with another SP to complete simulation).

Here, we consider requirements as they relate to some objectives or intents. They have
various criteria to be fulfilled and then realised in specific process tasks. Objectives are
aimed at activities and are worded as such. We posit that there exists a certain class of
requirements, where one can make a more direct connection between objectives or intents
and the ensuing activities. In that case, priorities of tasks directly relate to their prece-
dence order [5]. Moreover, based on conditional and inconsistent judgments by human
actors, their multi-objective requirements conflict when trying to refine modular exchanges
between digital information models. For such judgments, by many accounts, the most
applied multi-objective criteria analysis technique (MCDA) is the analytical hierarchy
process (AHP) [6] developed by considering decision and utility theory and psychological
attributes [7]. Conventional AHP does not eliminate reversals between priorities. People
can change them depending on their interest, experience and the information at hand.
Requirement priorities between many actors can also be intransitive due to Arrow’s Impos-
sibility Theorem [4]. Such requirements are in a coupled priority order. This means for any
criteria A, B and C, when A > B and B > C, implying A > C, it is still possible that C > A,
where ‘>’ means higher priority. When priorities reverse, there can be a conflict in their
order between different actors. Thus, one needs to model rank order changes with respect
to process tasks, and the specific conditions for the related human judgements.
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In order to represent a rank order reversal, one can model two orders together by
re-sequencing the matrix form of a graph and taking different snapshots. For juxtaposing
different orders, some also apply matrix superposition as a visual aid either to model
different layers of dependencies [8] or to analyse an evolving system [9]. Furthermore, a
partial order can be modelled either as a Hasse diagram, graph or adjacency matrix [10].
Different aspects of such orders can be modelled in a multidomain matrix (MDM) [11]. Thus,
decision conditions, their criteria order and related process tasks all can be represented in
an MDM.

Using the AHP model, we have internationally surveyed a non-probabilistic sample
of twelve experts similar to comparable research [12,13]. We posed decision criteria in
limited sets, each consisting of no more than three elements. Participants were ranked to
weigh and order their priorities with respect to various M&S criteria according to different
expertise. To model partial order variants, we used matrix superposition. Figure 1b shows
such a matrix in an MDM. It integrates information from the following processes: (i) the
ordered and ranked criteria priority, calculated using the eigenvector method of the AHP
model; and (ii) the lower right matrix shows predominant interactions between the related
actor roles. Parametric criteria codes are also relevant for further processing.

We then superposed pairs of the analysed priority orders and partitioned them using a
modularization algorithm to capture priority reversals and identify their patterns. We then
validated the approach using two real-world industry process models for collaborative
digital information exchanges. One has been devised for schematic design and energy
analysis [14], the other to manage design variants throughout the M&S lifecycle [15,16]. We
dubbed these the GSA and the M-K-E models, respectively.

3. Results

Our results show that a relatively small sample can yield a transitive order for criteria
priorities calculated for specific expertise. Using our modularization algorithm, we have
also identified persistent reversal patterns across various orders. They pair participants
with different relevant expertise modelled as collaborating actor roles. Figure 2a shows one
such pattern and its matrix form partitioned using the modularization algorithm. In order
to apply the pattern to real-world process models, we abstracted them as process chore-
ographies [17]. For comparing them to the priority orders found, we also expressed the task
intent chain mapped from those orders as a choreography. Message exchange types were
added, as were bars for optional participants and/or participant types. Interpreting the
found priority loop pattern in such a manner proved instrumental in reusing and logically
combining established industry processes. Figure 2b shows such a logical combination.
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submatrices. Set operators such as union (as in C
⋃

B) and Cartesian product (as in C X B) are
indicative for the textual composition of the module label). (b) Logical combination of choreographies
for M-K-E and GSA models.

4. Conclusions

We have addressed the two research questions posed in Section 1 as follows. With
the help of a priority reversal, found and captured in a (parametric) loop pattern with
respect to specific collaborative expert roles, we have identified a higher-level abstraction
(choreography) that is currently applied in the industry as process models. Based on our
findings, we have also selected established and relevant process models with respect to
M&S and formed choreographies from those. Then, taking a specific instance of the pattern
and applying the task that related decision criteria would directly entail, we colour tagged
the choreographies to find similarities and linkage points. This prompted a useful logical
combination of the existing process models through their articulated choreographies. It
was proposed that through such a process, a further elaboration as to what else needs to be
changed and reused can be made in the future.
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