Climatic Variability of Precipitation Simulated by a Regional Dynamic Model in Tropical South America †
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.B.; Bi, X.; Elguindi, N.; Diro, G.T.; Nair, V.; Giuliani, G.; et al. RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim. Res. 2012, 52, 7–29. [Google Scholar] [CrossRef]
- Ambrizzi, T.; Reboita, M.; da Rocha, R.; Llopart, M. The state–of–the–art and fundamental aspects of regional climate modeling in South America. Ann. N. Y. Acad. Sci. 2019, 1436, 98–120. [Google Scholar] [CrossRef] [PubMed]
- Alvares, C.; Stape, J.; Sentelhas, P.; Gonçalves, J.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Santos, E.B.; Lucio, P.S.; Santos e Silva, C.M. Precipitation regionalization of the Brazilian Amazon. Atmos. Sci. Lett. 2015, 16, 185–192. [Google Scholar] [CrossRef]
- Oliveira, P.T.; e Silva, S.; Lima, K.C. Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil. Theor. Appl. Climatol. 2017, 130, 77–90. [Google Scholar] [CrossRef]
- Skansi, M.M.; Brunet, M.; Sigró, J.; Aguilar, E.; Groening, J.A.A.; Bentancur, O.J.; Geier, Y.R.C.; Amaya, R.L.C.; Jacome, H.; Ramos, A.M.; et al. Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob. Planet Chang. 2013, 100, 295–307. [Google Scholar] [CrossRef]
- Da Silva, P.E.; Santos e Silva, C.M.; Spyrides, M.H.C.; Andrade, L.M.B. Precipitation and air temperature extremes in the Amazon and northeast Brazil. Int. J. Climatol. 2019, 39, 579–595. [Google Scholar] [CrossRef]
- Costa, R.; Baptista, G.; Gomes, H.; Silva, F.; Rocha Júnior, R.; Salvador, M.; Herdies, D. Analyis of climate extreme indices over northeast Brazil from 1961 to 2014. Weather Clim. Extr. 2020, 28, 100254. [Google Scholar] [CrossRef]
- Xavier, A.C.; King, C.W.; Scanlon, B.R. Daily gridded meteorological variables in Brazil (1980–2013). Int. J. Climatol. 2016, 36, 2644–2659. [Google Scholar] [CrossRef]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
- Da Rocha, R.; Morales, C.; Cuadra, S.; Ambrizzi, T. Precipitation diurnal cycle and summer climatology assessment over South America: An evaluation of Regional Climate Model version 3 simulations. J. Geophys. Res. (Atmos.) 2009, 114, D10108. [Google Scholar] [CrossRef]
- Solman, S.A.; Sanchez, E.; Samuelsson, P.; da Rocha, R.P.; Li, L.; Marengo, J.; Pessacg, N.L.; Remedio, A.R.C.; Chou, S.C.; Berbery, H.; et al. Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: Models’ performance and uncertainties. Clim. Dyn. 2013, 41, 1139–1157. [Google Scholar] [CrossRef]
- Coutinho, M.D.L.; Lima, K.C.; Santos e Silva, C.M. Improvements in precipitation simulation over South America for past and future climates via multi-model combination. Clim. Dyn. 2017, 49, 343–361. [Google Scholar] [CrossRef]
- Kouadio, Y.K.; Servain, J.; Machado, L.A.T.; Lentini, C.A.D. Heavy rainfall episodes in the Eastern Northeast Brazil Linked to Large-Scale Ocean–atmosphere Conditions in the Tropical Atlantic. Adv. Meteorol. 2012, 2021, 369567. [Google Scholar] [CrossRef]
- Gomes, H.; Ambrizzi, T.; Pontes, B. Climatology of easterly wave disturbances over the tropical South Atlantic. Clim. Dyn. 2019, 53, 1393–1411. [Google Scholar] [CrossRef]
Area | Wet Period | Dry Period | ||||
---|---|---|---|---|---|---|
OBS | EXP_GR | EXP_EM | OBS | EXP_GR | EXP_EM | |
N1 | 4.69 (±1.38) | 1.53 (±0.30) | 7.70 (±4.07) | 0.86 (±0.40) | 1.29 (±0.14) | 1.47 (±0.88) |
N2 | 4.95 (±1.61) | 2.13 (±0.57) | 5.94 (±2.14) | 0.33 (±0.15) | 0.16 (±0.08) | 0.41 (±0.40) |
N3 | 7.91 (±1.58) | 2.81 (±0.94) | 6.07 (±1.74) | 0.77 (±0.30) | 0.20 (±0.12) | 0.57 (±0.54) |
N4 | 3.84 (±1.21) | 1.75 (±0.59) | 3.58 (±1.35) | 0.69 (±0.17) | 0.25 (±0.06) | 0.35 (±0.21) |
N5 | 3.39 (±1.51) | 1.60 (±0.68) | 3.30 (±1.49) | 1.13 (±0.29) | 0.61 (±0.12) | 0.79 (±0.34) |
A1 | 10.09 (±0.88) | 2.93 (±0.17) | 3.97 (±0.79) | 6.39 (±0.80) | 2.11 (±0.46) | 4.27 (±0.52) |
A2 | 9.35 (±1.39) | 2.51 (±1.04) | 5.75 (±1.19) | 3.60 (±1.06) | 1.13 (±0.38) | 3.57 (±0.71) |
A3 | 11.05 (±1.58) | 1.82 (±0.96) | 6.65 (±2.18) | 2.10 (±0.60) | 0.31 (±0.26) | 2.39 (±1.29) |
A4 | 9.48 (±0.94) | 3.09 (±0.91) | 3.87 (±0.53) | 2.59 (±0.52) | 0.55 (±0.21) | 1.24 (±0.29) |
A5 | 9.61 (±1.34) | 2.80 (±1.10) | 5.84 (±1.04) | 1.24 (±0.34) | 0.10 (±0.08) | 0.77 (±0.27) |
A6 | 8.57 (±1.24) | 3.56 (±0.79) | 4.63 (±0.69) | 0.77 (±0.35) | 0.25 (±0.12) | 0.64 (±0.17) |
Area | Wet Period | Dry Period | ||||||
---|---|---|---|---|---|---|---|---|
EXP_GR | EXP_EM | EXP_GR | EXP_EM | |||||
Bias | d | Bias | d | Bias | d | Bias | d | |
N1 | −3.06 | 0.16 | 3.05 | 0.51 | 0.47 | 0.23 | 0.64 | 0.51 |
N2 | −2.78 | 0.28 | 0.98 | 0.67 | −0.17 | 0.32 | 0.09 | 0.50 |
N3 | −5.08 | 0.29 | −1.81 | 0.62 | −0.56 | 0.26 | −0.18 | 0.47 |
N4 | −2.09 | 0.53 | −0.25 | 0.72 | −0.44 | 0.20 | −0.34 | 0.41 |
N5 | −1.96 | 0.59 | −0.23 | 0.83 | −0.51 | 0.39 | −0.32 | 0.68 |
A1 | −6.75 | 0.23 | −5.21 | 0.30 | −4.26 | 0.25 | −2.42 | 0.34 |
A2 | −6.76 | 0.18 | −3.41 | 0.36 | −2.43 | 0.32 | −0.36 | 0.47 |
A3 | −8.67 | 0.21 | −4.12 | 0.42 | −1.81 | 0.20 | 0.13 | 0.50 |
A4 | −6.53 | 0.22 | −5.62 | 0.19 | −2.00 | 0.17 | −1.33 | 0.57 |
A5 | −7.03 | 0.25 | −3.55 | 0.36 | −1.15 | 0.20 | −0.47 | 0.36 |
A6 | −5.17 | 0.32 | −3.87 | 0.35 | −0.52 | 0.30 | −0.15 | 0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos e Silva, C.M.; Bezerra, B.G.; Mutti, P.R.; Lucio, P.S.; Mendes, K.R.; Rodrigues, D.; Oliveira, C.P.; Medeiros, F.; Silva, M.L.; dos Reis, L.C.; et al. Climatic Variability of Precipitation Simulated by a Regional Dynamic Model in Tropical South America. Environ. Sci. Proc. 2022, 19, 61. https://doi.org/10.3390/ecas2022-12821
Santos e Silva CM, Bezerra BG, Mutti PR, Lucio PS, Mendes KR, Rodrigues D, Oliveira CP, Medeiros F, Silva ML, dos Reis LC, et al. Climatic Variability of Precipitation Simulated by a Regional Dynamic Model in Tropical South America. Environmental Sciences Proceedings. 2022; 19(1):61. https://doi.org/10.3390/ecas2022-12821
Chicago/Turabian StyleSantos e Silva, Cláudio M., Bergson Guedes Bezerra, Pedro Rodrigues Mutti, Paulo Sergio Lucio, Keila Rêgo Mendes, Daniele Rodrigues, Cristiano Prestrelo Oliveira, Felipe Medeiros, Maria Leidinice Silva, Layara Campelo dos Reis, and et al. 2022. "Climatic Variability of Precipitation Simulated by a Regional Dynamic Model in Tropical South America" Environmental Sciences Proceedings 19, no. 1: 61. https://doi.org/10.3390/ecas2022-12821
APA StyleSantos e Silva, C. M., Bezerra, B. G., Mutti, P. R., Lucio, P. S., Mendes, K. R., Rodrigues, D., Oliveira, C. P., Medeiros, F., Silva, M. L., dos Reis, L. C., das Chagas, G. F. B., Gonçalves, W. A., & Andrade, L. d. M. B. (2022). Climatic Variability of Precipitation Simulated by a Regional Dynamic Model in Tropical South America. Environmental Sciences Proceedings, 19(1), 61. https://doi.org/10.3390/ecas2022-12821