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Abstract: The goal of the present research is to monitor the forest vegetation’s condition and detect
the changes that occurred in the territorial disturbance of the forest cover in the area of Natural Park
“Blue Stones”, located in Bulgaria, by the use of a combinative approach of Remote Sensing’s methods.
Tasseled Cap Orthogonal Transformation is applied to the selected satellite images, resulting in three
segmented TCT components: “brightness”, “greenness” and “wetness”. On the basis of the “greenness”
component from different temporal points (satellite scenes), the Normalized Differential Greenness
Index has been calculated, which gives accurate and precise data on the dynamics of forest vegetation
for short-term and long-term time periods.
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1. Introduction

The Natural Park “Blue Stones” is situated in the Balkans, in the southeastern part
of Bulgaria, above the town of Sliven, over an area of 11,380 ha (Figure 1). The specific
climate and lay conditions of the park determine the great diversity of flora and fauna.
The territory of the park is covered with mono-dominant and mixed broadleaf forests
(9000 ha), and 600 ha are covered with conifers [1]. It was created in 1980 as a national park
to preserve and protect the forest formations of the species Fagus sylvatica ssp. moesiaca and
Fagus orientalis. Other forest formations in the park are presented by species of: Qvercus
sessiliflora, Carpinus betulus, Qvercus cerris, Qvercus conferta, Acer pseudoplatanus, Carpinus
orientalis and Tilia tomentosa [1].

The aim of the following study is to identify the advantages of the proposed TCT
model for segmenting Sentinel-2 imagery [2], which is used to identify the needs of forest
vegetation monitoring and to detect the changes in the spatial disturbance of forest cover.
Short-term and long-term temporal periods, when the forest vegetation’s phenophase is
most active (from April to August), were chosen as a different time frame suitable for the
application of NDGI and to analyze its quantitative values.

The Tasseled Cap Transformation (TCT), first developed by Kauth and Thomas, was
initially applied as a data compression and visualization tool from the Landsat-1 Mul-
tispectral Scanner (MSS) to extract information about the features and characteristics of
agricultural lands [3]. Kauth and Thomas envisioned the creation of TCT by comparing the
phenological characteristics of vegetation from a given image with the overall structure
and shape of the reflectance data represented in a multidimensional spectral space [3]. The
main advantage of TCT is its ability to visualize multi- and hyperspectral data from satellite
imagery in a condensed and meaningfully defined feature space [4]. TCT can also be used
as a vegetative index, which is an indicator for evaluating the “healthy” state of vegetation
and for evaluating changes that have occurred on the Earth’s surface [5,6].
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Figure 1. Study area map.

2. Materials and Methods

In the following research, imagery data from mission Sentinel 2-MSI of the European
Space Agency (ESA) are used [7], including Multi Spectral Instrument (MSI) register data
on the optical bands with variable spatial and spectral resolutions. For the MSI, the 13
spectral bands span from the visible (VIS) and the near-infrared (NIR) electromagnetic
spectrum regions to the short-wave infrared (SWIR) one (Table 1).

Table 1. Satellite imagery used.

Satellite, Sensor Date of Aquisition Spectral Band GSD (m)

Sentinel 2-MSI

10 June 2017
24 August 2017

31 May 2018
19 August 2018

All spectral channels
[7]

10 × 10
20 × 20
60 × 60

25 April 2020
15 May 2020

28 August 2020
25 May 2021

08 August 2021

The proposed Tasseled Cap Transformation model for the orthogonalization of satellite
images from Sentinel-2 has been proven as a highly effective method for the interpretation,
classification, and analysis of phenomena and processes related to the dynamic changes
of the main Earth surface‘s components: soil, vegetation and water [2,5]. The matrix of
TCT for Sentinel 2 was developed and created by Roumen Nedkov [2]; it extracts the
information contained in all 13 spectral channels of the MSI sensor, resulting in three
clusters: “brightness”, “greenness” and “wetness”.

Normalized Differential Greenness Index (NDGI) (Equation (1)) was created on the
basis of the greenness component, derived through decomposing optical satellite images by
the applied orthogonal TCT matrix [8]. NDGI reflects the vegetation’s change in dynamics,
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depending on the temporal period. The index has ranging values from −1 to +1, which
correspond to the vegetation’s negative and positive changes that have occurred [8].

NDGI =
GRn(t2)− GRn(t1)

|GRn(t2)|+ |GRn(t1)|
, (1)

where GRn (t1) and GRn (t2) represent the normalized values of the greenness component at
time points t1 and t2, and |GRn (t1)| and |GRn (t2)| represent the absolute values of the
same components [8].

The most commonly used vegetation indices (e.g., NDVI) are not sufficiently sensitive
to the minimal changes in the state of the vegetation that have occurred, which is most
noticed in the studies on the restoration processes of forest ecosystems after a fire [9]. The
three differentiated classes obtained as a result of the applied orthogonalization are highly
sensitive to the minimal changes that occur in the requirements of the vegetation. When
NDGI values are less than 0, it indicates that negative changes in vegetation condition have
occurred. When they are above 0, there are positive changes, and the degree of changes
corresponds to the obtained index values. Extreme values—NDGI =−1 reflect the complete
degradation of vegetation, while NDGI = +1 indicates an intensive increase in leaf biomass
or growth of vegetation. This indicates that the positive and negative values of the index
represent a quantitative scale that can be used to assess the changes in vegetation that have
occurred [8].

Based on the greenness component, of each selected time point, NDGI values were
generated for short-term periods: between the “spring” and “summer” images for each
of the years 2017, 2018, 2020 and 2021, including one super short-term period of 20 days
(25.04.20–15.05.20) as a showcase “capturing” the leaf growth of forest vegetation in areas
around 600–700 m a.s.l.; for long-term periods: between the “spring” and “summer” images
for each of the years.

3. Results and Discussion

On Figure 2, maps with the greenness component of spring and summer temporal points,
serving as input data for generating NDGI, are shown as a showcase for the years 2020
and 2021.
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Figure 2. Maps of the TCT–greenness component values from: (a) 25 April 2020; (b) 15 May 2020; (c) 
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On Figure 3, maps with the NDVI values of the same temporal points from Figure 2 
are shown, which serve as reference data for interpretation and as a base for comparative 
analysis between the values of the TCT–greenness component and those of NDVI. The 
TCT–greenness values show slightly more detailed information about the territorial dis-
tribution of vegetation compared to that of the NDVI values. 
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Figure 2. Maps of the TCT–greenness component values from: (a) 25 April 2020; (b) 15 May 2020;
(c) 25 May 2021; (d) 08 August 2021.

On Figure 3, maps with the NDVI values of the same temporal points from Figure 2
are shown, which serve as reference data for interpretation and as a base for comparative
analysis between the values of the TCT–greenness component and those of NDVI. The TCT–
greenness values show slightly more detailed information about the territorial distribution
of vegetation compared to that of the NDVI values.
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Figure 3. Maps of NDVI values from: (a) 25 April 2020; (b)15 May 2020; (c) 25 May 2021; (d) 08
August 2021.

3.1. Short-Term Temporal Periods of NDGI

On Figure 4, maps with the spatial distribution of the NDGI values for short-term
temporal periods are shown. The values of NDGI represent the spectral reflectance char-
acteristics (SRC) of the vegetation recorded by the sensor, indicating the maximum and
minimum changes that occurred. After a long comparative and visual analysis of the
histograms (including those in the visible spectrum) and using the borderline between
grassland and forests as a benchmark, an optimal threshold of 0.5 was set in order with
pixels with values above it to correspond with the areas covered by forest vegetation.
This was also carried out for values of the TCT–greenness component. All pixels in green
(NDGI > 0.5) represent areas of the Earth’s surface where positive changes in forest vege-
tation status occurred during the period, and the new vegetation that developed during
the given period (including vegetation on streams and river valleys, low bushes, etc.).
Pixels in yellow (NDGI ≥ 0 ≤ 0.5) represent areas where minimal or no positive changes
in vegetation status occurred during the period. Pixels in red (NDGI < 0) represent areas of
the Earth’s surface where negative changes in the state of vegetation have occurred (due
to drought, logging, dried grass formations, etc.) or correspond to terrains occupied by
rock formations, where vegetation is absent. Regarding the 20-day period case (Figure 4c),
saturation of the green color is due to the defoliation of the forests in the high-altitude areas
that occurred during the period.

Environ. Sci. Proc. 2022, 22, x 4 of 6 
 

 

Figure 3. Maps of NDVI values from: (a) 25 April 2020; (b)15 May 2020; (c) 25 May 2021; (d) 08 
August 2021. 

3.1. Short-Term Temporal Periods of NDGI 
On Figure 4, maps with the spatial distribution of the NDGI values for short-term 

temporal periods are shown. The values of NDGI represent the spectral reflectance 
characteristics (SRC) of the vegetation recorded by the sensor, indicating the maximum 
and minimum changes that occurred. After a long comparative and visual analysis of the 
histograms (including those in the visible spectrum) and using the borderline between 
grassland and forests as a benchmark, an optimal threshold of 0.5 was set in order with 
pixels with values above it to correspond with the areas covered by forest vegetation. 
This was also carried out for values of the TCT–greenness component. All pixels in green 
(NDGI > 0.5) represent areas of the Earth’s surface where positive changes in forest veg-
etation status occurred during the period, and the new vegetation that developed during 
the given period (including vegetation on streams and river valleys, low bushes, etc.). 
Pixels in yellow (NDGI ≥ 0 ≤ 0.5) represent areas where minimal or no positive changes in 
vegetation status occurred during the period. Pixels in red (NDGI < 0) represent areas of 
the Earth’s surface where negative changes in the state of vegetation have occurred (due 
to drought, logging, dried grass formations, etc.) or correspond to terrains occupied by 
rock formations, where vegetation is absent. Regarding the 20-day period case (Figure 
4c), saturation of the green color is due to the defoliation of the forests in the high-altitude 
areas that occurred during the period. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4. Maps with NDGI values for short-term periods: (a) 10 June 2017–24 August 2017; (b) 31 
May 2018–19 August 2018; (c) 20-day period 25 April 2020–15 May 2020; (d) 15 May 20–28 August 
20; (e) 25 May 21–8 August 21; (f) RGB composite in band combination 8a/4/3 from 25.04.20. 

3.2. Long-Term Temporal Periods of NDGI 
The used approach for monitoring vegetation is more suitable for studies whose 

time periods are short-term because it allows for the tracking of vegetation dynamics in 
very short time intervals. This approach can also be used to monitor the development of 
agricultural crops (with a shorter growing season), fires, droughts, soil moisture calcula-
tion, etc. [10–12]. However, the presented results in Figure 5, including the one-year pe-
riods, show what changes occurred in the current state of vegetation in comparison with 
that of the previous year. 

Figure 4. Maps with NDGI values for short-term periods: (a) 10 June 2017–24 August 2017; (b) 31 May
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3.2. Long-Term Temporal Periods of NDGI

The used approach for monitoring vegetation is more suitable for studies whose
time periods are short-term because it allows for the tracking of vegetation dynamics in
very short time intervals. This approach can also be used to monitor the development of
agricultural crops (with a shorter growing season), fires, droughts, soil moisture calculation,
etc. [10–12]. However, the presented results in Figure 5, including the one-year periods,
show what changes occurred in the current state of vegetation in comparison with that of
the previous year.
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In Figure 6, the change detection map is shown—the green pixels show the restoration
in the forest vegetation and in the forest road after legal logging occurred in 2014 for the
period 2015–2021; the denser red lines are new forest roads, the red spot below the peak of
Karaborun is a new logging site developed in 2020.
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4. Conclusions

The applied methodology for forest monitoring can be used for accurately and pre-
cisely determining the spatial distribution and quantitative assessment of the forest cover
on the territory of the Natural Park “Blue Stones” for the selected temporal periods. The
use of matrix for orthogonal transformation is another way of extracting and processing
satellite imagery for the purpose of monitoring the Earth surface’s main components: soil,
vegetation and water. Setting the threshold of the NDGI values for masking-out the forest
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vegetation, and interpreting and validating the results, are still in the experimenting level,
and in the future, they will still undergo development. The proposed forest-monitoring
method can be integrated into forest management, forestry and forest resource inventory.
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