Challenges in Amplicon-Based DNA NGS Identification of MET Exon 14 Skipping Events in Non-Small Cell Lung Cancers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Specimen Types and Cytomorphological Assessment
2.3. DNA NGS
2.4. RNA NGS
2.5. Sanger Sequencing
- forward 5′-CGATGCAAGAGTACACACTCCT-3′;
- reverse 5′-ACAACCCACTGAGGTATATGTATAGGTATT-3′;
- forward 5′-TCGATTCTTGTGTGCTGTCTTATATGTAG-3′;
- reverse 5′-TGCATCGTAGCGAACTAATTCACT-3′;
- forward 5′-ATGTAGTCCATAAAACCCATGAGTTCTG-3′;
- reverse 5′-GGGCACTTACAAGCCTATCCAA-3′;
- forward 5′-GCTTGTAAGTGCCCGAAGTGTAA-3′;
- reverse 5′-TGCAAAACCAAAAATAAACAACAATGTCAC-3′.
3. Results
3.1. Clinical Characteristics
3.2. Clinical Implications
3.3. Histological Characteristics
3.4. Confirmatory Sequencing
4. Discussion
4.1. DNA NGS vs. RNA NGS
4.2. Clinical and Cytomorphological Assessment
4.3. Clinical Implications
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paik, P.K.; Felip, E.; Veillon, R.; Sakai, H.; Cortot, A.B.; Garassino, M.C.; Mazieres, J.; Viteri, S.; Senellart, H.; Van Meerbeeck, J.; et al. Tepotinib in Non-Small-Cell Lung Cancer with MET Exon 14 Skipping Mutations. N. Engl. J. Med. 2020, 383, 931–943. [Google Scholar] [CrossRef]
- Awad, M.M.; Oxnard, G.R.; Jackman, D.M.; Savukoski, D.O.; Hall, D.; Shivdasani, P.; Heng, J.C.; Dahlberg, S.E.; Jänne, P.A.; Verma, S.; et al. MET Exon 14 Mutations in Non–Small-Cell Lung Cancer Are Associated With Advanced Age and Stage-Dependent MET Genomic Amplification and c-Met Overexpression. J. Clin. Oncol. 2016, 34, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Socinski, M.A.; Pennell, N.; Davies, K.D. MET Exon 14 Skipping Mutations in Non–Small-Cell Lung Cancer: An Overview of Biology, Clinical Outcomes, and Testing Considerations. JCO Precis. Oncol. 2021, 5, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Pruis, M.A.; Geurts-Giele, W.R.; von der, T.J.H.; Meijssen, I.C.; Dinjens, W.N.M.; Aerts, J.G.J.V.; Dingemans, A.M.C.; Lolkema, M.P.; Paats, M.S.; Dubbink, H.J. Highly accurate DNA-based detection and treatment results of MET exon 14 skipping mutations in lung cancer. Lung Cancer 2020, 140, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Santarpia, M.; Massafra, M.; Gebbia, V.; D’aquino, A.; Garipoli, C.; Altavilla, G.; Rosell, R. A narrative review of MET inhibitors in non-small cell lung cancer with MET exon 14 skipping mutations. Transl. Lung Cancer Res. 2021, 10, 1536–1556. [Google Scholar] [CrossRef] [PubMed]
- Cortot, A.B.; Kherrouche, Z.; Descarpentries, C.; Wislez, M.; Baldacci, S.; Furlan, A.; Tulasne, D. Exon 14 Deleted MET Receptor as a New Biomarker and Target in Cancers. JNCI J. Natl. Cancer Inst. 2017, 109, djw262. [Google Scholar] [CrossRef] [PubMed]
- Frampton, G.M.; Ali, S.M.; Rosenzweig, M.; Chmielecki, J.; Lu, X.; Bauer, T.M.; Akimov, M.; Bufill, J.A.; Lee, C.; Jentz, D.; et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015, 5, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Salgia, R.; Sattler, M.; Scheele, J.; Stroh, C.; Felip, E. The promise of selective MET inhibitors in non-small cell lung cancer with MET exon 14 skipping. Cancer Treat. Rev. 2020, 87, 102022. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.; Seto, T.; Han, J.Y.; Reguart, N.; Garon, E.B.; Groen, H.J.M.; Tan, D.S.W.; Hida, T.; de Jonge, M.; Orlov, S.V.; et al. Capmatinib in MET Exon 14-Mutated or MET-Amplified Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 944–957. [Google Scholar] [CrossRef] [PubMed]
- Benayed, R.; Offin, M.; Mullaney, K.; Sukhadia, P.; Rios, K.; Desmeules, P.; Ptashkin, R.; Won, H.; Chang, J.; Halpenny, D.; et al. High Yield of RNA Sequencing for Targetable Kinase Fusions in Lung Adenocarcinomas with No Mitogenic Driver Alteration Detected by DNA Sequencing and Low Tumor Mutation Burden. Clin. Cancer Res. 2019, 25, 4712–4722. [Google Scholar] [CrossRef] [PubMed]
- Aguado, C.; Teixido, C.; Román, R.; Reyes, R.; Giménez-Capitán, A.; Marin, E.; Cabrera, C.; Viñolas, N.; Castillo, S.; Muñoz, S.; et al. Multiplex RNA-based detection of clinically relevant MET alterations in advanced non-small cell lung cancer. Mol. Oncol. 2021, 15, 350–363. [Google Scholar] [CrossRef]
- Davies, K.D.; Lomboy, A.; Lawrence, C.A.; Yourshaw, M.; Bocsi, G.T.; Camidge, D.R.; Aisner, D.L. DNA-Based versus RNA-Based Detection of MET Exon 14 Skipping Events in Lung Cancer. J. Thorac. Oncol. 2019, 14, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, L.; Ma, D.; Qiu, T.; Li, W.; Li, W.; Guo, L.; Xing, P.; Liu, B.; Deng, L.; et al. Identification of MET exon14 skipping by targeted DNA- and RNA-based next-generation sequencing in pulmonary sarcomatoid carcinomas. Lung Cancer 2018, 122, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Barua, S.; Wang, G.; Mansukhani, M.; Hsiao, S.; Fernandes, H. Key considerations for comprehensive validation of an RNA fusion NGS panel. Pract. Lab. Med. 2020, 21, e00173. [Google Scholar] [CrossRef] [PubMed]
- Schenk, D.; Song, G.; Ke, Y.; Wang, Z. Amplification of overlapping DNA amplicons in a single-tube multiplex PCR for targeted next-generation sequencing of BRCA1 and BRCA2. PLoS ONE 2017, 12, e0181062. [Google Scholar] [CrossRef]
- Barua, S.; Hsiao, S.; Clancy, E.; Freeman, C.; Mansukhani, M.; Fernandes, H. Quality metrics for enhanced performance of an NGS panel using single-vial amplification technology. J. Clin. Pathol. 2022, 77, 46–53. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, R.; Zhao, J.; Yi, X.; Lu, S. Analysis of canonical and noncanonical splicing site mutation of MET that causes exon 14 skipping. J. Clin. Oncol. 2020, 38, e21513. [Google Scholar] [CrossRef]
- Poirot, B.; Doucet, L.; Benhenda, S.; Champ, J.; Meignin, V.; Lehmann-Che, J. MET exon 14 alterations and new resistance mutations to tyrosine kinase inhibitors: Risk of inadequate detection with current amplicon-based NGS panels. J. Thorac. Oncol. 2017, 12, 1582–1587. [Google Scholar] [CrossRef] [PubMed]
- Manthei, D.M.; Weigelin, H.C.; Kleyman-Smith, Y.; Brown, N.A.; Betz, B.L. Improved detection of MET exon 14 skipping mutations in lung adenocarcinoma with combined DNA/RNA testing and refined analysis methods (ST009). Presented at the Association for Molecular Pathology Annual Meeting and Expo, Baltimore, MD, USA, 5–9 November 2019. [Google Scholar]
- National Comprehensive Cancer Network. Non-Small Cell Lung Cancer. (Version 1.2023). Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1450 (accessed on 16 January 2024).
- Bruno, R.; Lupi, C.; Landi, L.; Alì, G.; Sensi, E.; Proietti, A.; Giannini, R.; Condello, V.; Denaro, M.; Giordano, M.; et al. MET exon 14 mutations in advanced lung adenocarcinoma: Frequency and coexisting alterations. J. Clin. Oncol. 2017, 35, e20656. [Google Scholar] [CrossRef]
- Lee, S.E.; Lee, B.; Hong, M.; Song, J.-Y.; Jung, K.; E Lira, M.; Mao, M.; Han, J.; Kim, J.; Choi, Y.-L. Comprehensive analysis of RET and ROS1 rearrangement in lung adenocarcinoma. Mod. Pathol. 2015, 28, 468–479. [Google Scholar] [CrossRef]
- Kim, J.-O.; Lee, J.; Shin, J.-Y.; Oh, J.-E.; Jung, C.-K.; Kil Park, J.; Sung, S.-W.; Bae, S.-J.; Min, H.-J.; Kim, D.; et al. KIF5B-RET Fusion gene may coincide oncogenic mutations of EGFR or KRAS gene in lung adenocarcinomas. Diagn. Pathol. 2015, 10, 143. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A. MET Exon 14 Alterations in Lung Cancer: Exon Skipping Extends Half-Life. Clin. Cancer Res. 2016, 22, 2832–2834. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.; Koh, J.; Kim, S.; Go, H.; Kim, Y.A.; Keam, B.; Kim, T.M.; Kim, D.-W.; Jeon, Y.K.; Chung, D.H. MET exon 14 skipping mutation in triple-negative pulmonary adenocarcinomas and pleomorphic carcinomas: An analysis of intratumoral MET status heterogeneity and clinicopathological characteristics. Lung Cancer 2017, 106, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Champagnac, A.; Bringuier, P.-P.; Barritault, M.; Isaac, S.; Watkin, E.; Forest, F.; Maury, J.-M.; Girard, N.; Brevet, M. Frequency of MET exon 14 skipping mutations in non-small cell lung cancer according to technical approach in routine diagnosis: Results from a real-life cohort of 2,369 patients. J. Thorac. Dis. 2020, 12, 2172–2178. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.D.; Lee, S.E.; Oh, D.-Y.; Yu, D.-B.; Jeong, H.M.; Kim, J.; Hong, S.; Jung, H.S.; Oh, E.; Song, J.-Y.; et al. MET Exon 14 Skipping Mutations in Lung Adenocarcinoma: Clinicopathologic Implications and Prognostic Values. J. Thorac. Oncol. 2017, 12, 1233–1246. [Google Scholar] [CrossRef]
- Wong, S.K.; Alex, D.; Bosdet, I.; Hughesman, C.; Karsan, A.; Yip, S.; Ho, C. MET exon 14 skipping mutation positive non-small cell lung cancer: Response to systemic therapy. Lung Cancer 2021, 154, 142–145. [Google Scholar] [CrossRef]
Clinical Characteristics | MET Exon 14 Skipping (N = 28) |
---|---|
Median age at diagnosis Years (range) | 78 (57–89) |
Gender (n = 28) | |
Female | 14 (50%) |
Male | 14 (50%) |
Smoking (n = 28) | |
Never smoker | 13 (46%) |
Ever smoker | 15 (54%) |
Stage at diagnosis (n = 24) * | |
I | 11 (46%) |
II | 5 (21%) |
III | 1 (4%) |
IV | 7 (29%) |
Targeted Therapy Stage IV Patients (N = 6) | Time on Therapy (Years) | Clinical Response | Detected by DNA or RNA NGS |
---|---|---|---|
Crizotinib (n = 3) | 3.45 | Yes | DNA |
2.01 | Yes | DNA | |
1.98 | Yes | RNA | |
Capmatinib (n = 2) | 1.50 | Yes | RNA |
Expired after 7 months | NA | DNA | |
No Therapy (n = 1) | NA | RNA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurkiewicz, M.; Yeh, R.; Shu, C.A.; Hsiao, S.J.; Mansukhani, M.M.; Saqi, A.; Fernandes, H. Challenges in Amplicon-Based DNA NGS Identification of MET Exon 14 Skipping Events in Non-Small Cell Lung Cancers. J. Mol. Pathol. 2025, 6, 5. https://doi.org/10.3390/jmp6010005
Jurkiewicz M, Yeh R, Shu CA, Hsiao SJ, Mansukhani MM, Saqi A, Fernandes H. Challenges in Amplicon-Based DNA NGS Identification of MET Exon 14 Skipping Events in Non-Small Cell Lung Cancers. Journal of Molecular Pathology. 2025; 6(1):5. https://doi.org/10.3390/jmp6010005
Chicago/Turabian StyleJurkiewicz, Magdalena, Raymond Yeh, Catherine A. Shu, Susan J. Hsiao, Mahesh M. Mansukhani, Anjali Saqi, and Helen Fernandes. 2025. "Challenges in Amplicon-Based DNA NGS Identification of MET Exon 14 Skipping Events in Non-Small Cell Lung Cancers" Journal of Molecular Pathology 6, no. 1: 5. https://doi.org/10.3390/jmp6010005
APA StyleJurkiewicz, M., Yeh, R., Shu, C. A., Hsiao, S. J., Mansukhani, M. M., Saqi, A., & Fernandes, H. (2025). Challenges in Amplicon-Based DNA NGS Identification of MET Exon 14 Skipping Events in Non-Small Cell Lung Cancers. Journal of Molecular Pathology, 6(1), 5. https://doi.org/10.3390/jmp6010005