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Abstract: Polymer blending has attracted considerable attention because of its ability to overcome
the permeability–selectivity trade-off in gas separation applications. In this study, polysulfone (PSU)-
modified cellulose acetate (CA) membranes were prepared using N-methyl-2-pyrrolidone (NMP)
and tetrahydrofuran (THF) using a dry–wet phase inversion technique. The membranes were charac-
terized using scanning electron microscopy (SEM) for morphological analysis, thermogravimetric
analysis (TGA) for thermal stability, and Fourier transform infrared spectroscopy (FTIR) to identify
the chemical changes on the surface of the membranes. Our analyses confirmed that the mixing
method (the route chosen for preparing the casting solution for the blended membranes) significantly
influences the morphological and thermal properties of the resultant membranes. The blended
membranes exhibited a transition from a finger-like pore structure to a dense substructure in the
presence of macrovoids. Similarly, thermal analysis confirmed the improved residual weight (up to
7%) and higher onset degradation temperature (up to 10 ◦C) of the synthesized membranes. Finally,
spectral analysis confirmed that the blending of both polymers was physical only.
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1. Introduction

Membrane processes are currently regarded as a promising technology for gas separa-
tion because of their simplicity, which eliminates the need for additional steps required for
other conventional processes such as absorbent regeneration or chemical waste [1,2]. Gas
separation membranes have found their application in various industrial processes, for
instance hydrogen separation from refinery streams, nitrogen separation from air and CO2
separation from natural gas and oxygen enrichment. Among these, CO2 removal using
polymeric membranes is particularly appealing because of their high energy efficiency,
operational flexibility and environmental sustainability [1,3].

Cellulose acetate (CA) has been employed as a synthesis material for a variety of
membrane applications since the inception of membrane technology. For CO2 removal
from natural gas and hydrogen purification, CA membranes have always been a preferable
choice for their superior features. The success of CAs is due to their characteristics, such as
accessibility, affordability, and stability (mechanical and chemical stability) [4]. Similarly,
Polysulfone (PSU) has also been extensively studied for gas (particularly CO2 removal)
and liquid separation owing to its structural rigidity and excellent selectivity. Additionally,
PSU exhibits economic viability, excellent compact durability, tensile stability, outstanding
chemical stability, and barrier properties, all of which are crucial for the resilience of
membranes in use [5]. Cellulose acetate (CA) and polyimides (PI) are commonly utilized
in addition to polysulfone (PSU) for gas separation, as they tend to demonstrate higher
selectivity for the gas pair CO2/CH4, as well as for their greater CO2 permeabilities when
compared to PSU. However, PSU has a higher plasticization pressure for CO2, which
refers to the pressure at which a specific gas induces significant swelling of the membrane.
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It is believed that swelling results in substantially increased permeabilities for all the
gases in the mixture, leading to decreased selectivity. Researchers have found that CA
has a plasticization pressure, of 10 bar, while for PI it is 12 bar. In contrast, PSU has a
higher plasticization pressure of 34 bar under identical conditions. Hence, for practical gas
separation applications, a higher plasticization pressure of PSU is especially advantageous,
making it a reasonable candidate as an additive [6,7]. Moreover, for all practical purposes,
cellulose acetate, which is a thermally and chemically sensitive material, should be modified
through any modification technique (such as blending, grafting, crosslinking, etc.) prior
to its intended use in any gas separation configuration [2]. Hence, blending cellulose
acetate and polysulfone could be advantageous for gas separation membranes, particularly
CO2/CH4 separation membranes.

Jami’an et al. reported the synthesis of a cellulose-acetate-based gas separation mem-
brane for CO2/CH4 separation using NMP as a solvent. Their study revealed that by
manipulating the evaporation time, selectivity and permeability could be controlled as
they showed that the change in evaporation time from 10 s to 30 s doubled the selectiv-
ity for the respective gas pair [8]. Moghadassi et al. synthesized cellulose-acetate-based
blended membranes using THF as a solvent and employed multiwalled carbon nanotubes
for gas separation applications. They reported that using carboxylic modified MWCNTs
in conjunction with polyethylene glycol resulted in increased membrane performance
for CO2/CH4 separation. They claimed that at a lower pressure of 2 bar, the resultant
membranes achieved a selectivity of 53.98 along with improved mechanical properties [9].
A similar trend of improved membrane performance has been reported in the literature by
many researchers [10–13], where polymer blending was used as a successful modification
technique to enhance the overall performance of cellulose-acetate-based gas separation
membranes.

A look Into the literature reveals that for phase inversion membranes, the choice of
an appropriate solvent is an important step in achieving the complete dissolution of the
polymer which controls the features of these membranes [14]. The introduction of an
additional solvent can alter the polymer’s solubility and the casting solution’s viscosity,
irrespective of other parameters such as the polymer concentration constant. The inclusion
of another solvent can either inhibit or facilitate the emergence of voids in the membrane’s
support structure, owing to dissimilar rates of solvent exchange during precipitation or
diverse viscosities of the casting solution. Therefore, the solvent ratio employed in the
casting solution plays a crucial role in determining the membrane morphology [15]. NMP as
a solvent has been reported by many researchers to possess the ability to alter the polymer
structure by enhancing its free fractional volume, resulting in improved permeabilities. In
addition, NMP has been found to influence the selectivity of gas separation membranes by
reducing the nonselective voids through increased hydrogen bonding [16]. On the other
hand, tetrahydrofuran (THF) is a hazardous solvent; however, it offers delayed mixing
of the polymer/THF/water system, resulting in a denser membrane structure which is
contrary to the NMP/water-based system [17]. Therefore, in this study, a mixed solvent of
NMP and THF was chosen at a fixed composition to synthesize the membrane and study
the effect of the mixing method on the membranes’ resultant features.

Many authors have reported the use of mixed solvents to tune the features of the mem-
branes. However, no studies have addressed the key idea of mixing polymers into solvents
under various mixing sequences and their effects on the physico-chemical characteristics of
membranes. Therefore, this study aimed to investigate the effects of the mixing sequence
of polymers on the said features of cellulose acetate/polysulfone blended membranes,
which could open a new avenue for researchers to explore the possibility of tuning blended
membranes through mixing.
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2. Materials and Methods
2.1. Materials

Cellulose acetate with an average weight of 30,000 g/mol (Sigma Aldrich, Dorset,
England) was used as the base polymer for the preparation of the blended membranes.
Polysulfone (pellets, M.W. 60 k) was purchased from Sigma Aldrich and used as an additive
for the synthesis of blended membranes. For this study, solvents such as N-methyl-2-
pyrrolidone (NMP) and tetrahydrofuran (99% stabilized with 250–350 ppm BHT) were
purchased from Fisher Scientific (Loughborough, England), and they were of analytical
grade purity. Deionized water was used as the non-solvent during the synthesis process.

2.2. Methods
2.2.1. Synthesis of Membranes

Flat sheet CA/PSU blended membranes were synthesized using a dry–wet phase
inversion technique. The polymers were dried at 80 ◦C for 12 h to remove moisture prior to
any further use. For the synthesis of blended membranes, three different types of solutions
were prepared based on their mixing sequence, as shown in Table 1. All the prepared
membranes had a fixed composition of base polymer, i.e., CA (10%), blending polymer,
that is, PSU (10% of base polymer) and NMP/THF (50/50%). Doping solutions for each
membrane type were prepared by stirring the solution at 200 rpm for 12 h, and then, for the
removal of gas bubbles, dope solutions were left overnight before casting. Casting of the
blended membranes was carried out using an automatic casting machine on an immaculate
glass plate at 200 µm casting thickness. This plate was then left at room temperature (15 ◦C)
for 12 h for solvent evaporation. Finally, the glass plates were dipped in a non-solvent bath
(water) overnight to completely remove the solvent. The membranes were then rinsed and
dried at room temperature for further analysis.

Table 1. Mixing sequence of CA/PSU-based blended membranes.

Membrane Code Polymer Solvent Mixing Method

M1
CA (2.25 g) NMP (11.25 mL) MIX
PSU (0.25 g) THF (11.25 mL) MIX

CA + PSU blend solutions together

M2
CA (2.25 g) THF (11.25 mL) MIX
PSU (0.25 g) NMP (11.25 mL) MIX

CA + PSU blend solutions together

M3 By adding CA (2.25 g) + PSU (0.25 g) in a mixed solvent of NMP
(11.25 mL) + THF (11.25 mL)

2.2.2. Characterization of Membranes
Scanning Electron Microscopy

Morphological analysis of all the synthesized membranes was completed using HI-
TACHI Model S-3400N (HITACHI, Maidenhead, UK). Membrane samples were snapped
in liquid nitrogen and then gold sputtered before cross-sectional and top surface analysis
at various magnifications.

Thermal Analysis

Thermal degradation analysis of the prepared membranes was performed using a
STA-1600 PerkinElmer analyser (PerkinElmer, Buckinghamshire, UK). Membrane samples
(20 g) were loaded into a pan and preheated above 120 ◦C to remove the moisture. After
cooling, the samples were reheated at 10 ◦C/min from 25 ◦C to 500 ◦C in a nitrogenous
environment.

FTIR Analysis

A PerkinElmer spectrometer (Spectrum 100) was used in transmission mode for the
analysis of blended membranes by scanning the samples for wavenumbers ranging from
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400 cm−1 to 4000 cm−1. Spectral analysis was employed to identify the changes in chemical
bonds and functional groups in all synthesized membranes.

3. Results and Discussion
3.1. Morphological Analysis of Blended Membranes

Figure 1 illustrates the cross-sectional images of the blended membranes prepared
using different mixing methods. From Figure 1, it can be clearly seen that all prepared
membranes had distinct cross-sectional features. It can be clearly observed that during the
air drying of the membranes, THF played its role and evaporated, resulting in a dense-like
structure, and the subsequent exchange of NMP with non-solvent (water) controlled the
voids and finger-like pores. Figure 1a shows that a dense but collapsed finger-like structure
was prominent across the M1 membrane’s cross-sectional area. However, it can be deduced
that the morphology of the membrane was mainly controlled by THF evaporation during
the drying phase of phase inversion, which was later overcome by the solvent–nonsolvent
exchange mechanism in the coagulation bath. A similar structure can also be observed
for the M2 membrane in Figure 1b; however, a clear dense and finger-like structure can
be observed, probably due to the dissolution of the base polymer (i.e., CA) into THF first,
which resulted in the development of a denser structure during the drying phase. Finally, a
more compact and discrete structure was observed for the M3 membrane (Figure 1c), for
which the dope solution was prepared by dissolving the polymers in a mixed solvent. Here,
M3 showed a significantly dense top layer and notable macrovoids in its cross-section,
which could be the result of delayed de-mixing during the solvent–nonsolvent exchange
in a coagulation bath, as reported by [7,18]. This formation of macrovoids under dense
skin could be attributed to the intrusion of non-solvent into the initial dense film because
THF has a slower exchange rate with non-solvent than NMP [18]. The presence of these
macrovoids in the substructure of the M3-type membrane reveals that the viscosity of the
casting solution plays an important role during the phase inversion process. It could be
speculated that the improved chain entanglement of polymers in mixed solvents resulted
in a higher viscosity and promoted the formation of macrovoids in the substructure of the
M3 membrane, as reported by many researchers [15,18,19].
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Figure 1. Micrographs (cross-section) of blended membranes: (a) M1, (b) M2 and (c) M3. 
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3.2. FTIR Analysis of Blended Membranes

Figure 2 represents a spectral analysis of the synthesized blending membranes. Com-
mon CA peaks have been reported at 3500–3100, 2944, 2889, 1744, 1433, 1375–1288, 1044,
1161 and 902 cm−1, which represent –OH, –CH, C=O stretching, CH deformation, –C–O
stretching mode, C–O–C backbone and –CH stretching mode [20–22]. Similarly, for pure
PSU, peaks have been identified at 688, 715, 832, 852 and 871 cm−1 for aromatic C–H
vibrations, 1101 and 1148 cm−1 for O=S=O stretching, 1292 and 1321 cm−1 for asymmetric
O=S=O stretching, 1011 and 1235 cm−1 for asymmetric C–O–C stretching vibrations, 1484
and 1582 cm−1 for C=C stretching and 1385 and 1504 cm−1 for CH3–C–CH3 stretching,
and 1168 cm−1 showed etheric stretching vibration from the aromatic rings and oxy-
gen atoms [5,23,24]. The analysis showed characteristics peaks at 904 cm−1, 1036 cm−1,
1227 cm−1, 1369 cm−1, 1644 cm−1, 1734 cm−1, 2935 cm−1 and 3400 cm−1. These peaks
were consistent across all three types of membranes prepared using the different mixing
sequences. However, a significant change was noted, particularly at 3400 cm−1. From
this spectral analysis, it can be concluded that the peak at 904 cm−1 was due to the β link.
Meanwhile, the peaks at 1036 cm−1, 1227 cm−1 and 1369 cm−1, 1644 cm−1, 1734 cm−1

and 2935 cm−1 corresponded to the skeletal movement of the C–O bond, C–C–O bonds,
C=O stretching, CH3 symmetric vibration and the presence of–OH bonds in the blended
membranes, respectively. Interestingly, the disappearance of hydroxyl ions (–OH) was
prominent for M3-blended membranes which were synthesized by mixing the polymers
into a mixed solvent. Nevertheless, in the M1-blended membrane where NMP and cellulose
acetate polymer were mixed first, the presence of higher –OH ions was distinct because
NMP as a solvent tends to promote hydrogen bonding between the –OH groups of the
polymers [15]. Interestingly, the spectra of all the blended membranes confirmed the fact
that interaction between these two polymers was of a physical nature only, and no apparent
chemical interaction was found, which affirms the influence of the solvent’s role on the
chemical nature of the prepared membranes. Similar results have been reported by I. Douna
et al. for CA/PSU blended membranes, where it was concluded that the nature of blended
polymers was purely physical [7].
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3.3. Thermogravimetric Analysis of Blended Membranes

Figure 3 highlights the thermal degradation and stability of the three blended mem-
branes prepared with varying mixing sequences. The absence of moisture content was
confirmed because there was no weight loss at or around 100 ◦C among all membranes.
Similarly, the presence of residual solvent was investigated by observing the weight loss
around 66 ◦C (boiling point of THF) and 202 ◦C (boiling point of NMP) for THF and NMP,
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respectively. These observations confirmed that no significant amounts of moisture or
residual solvents were present in the synthesized membranes, except for the M1 membrane,
for which a slight dip (up to 3%) in weight percentage around 200 ◦C could be attributed to
the presence of the solvent (NMP). Moreover, it can be observed that the M3 membrane
showed higher thermal stability than M1 and M2. It was found that for M3, M2 and
M1 residual weights were 25%, 18% and 19%, respectively, proving that M3 was more
thermally stable among all of them. This fact could also be confirmed by the analysis of the
thermal degradation behaviour of these membranes, where M3 again showed an increased
degradation temperature of up to 10 ◦C in comparison to M1 and M2. Finally, thermogravi-
metric analysis confirmed the complete removal of the solvent from these membranes, the
presence of which could inflict adverse effects on the mechanical stability of the membranes.
In addition, the presence of residual solvent in the membranes hampered their permeability
by occupying or blocking the sorption sites and reducing the free volume of the respective
polymers [25,26].
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4. Conclusions

Polysulfone-modified cellulose-acetate-blended membranes were prepared through
a dry–wet phase inversion technique using varying mixing sequences to investigate the
effect of the mixing sequence on the characteristics of the resultant membranes. The mor-
phological analysis of these membranes confirmed that the mixing sequence/method used
to prepare the casting solution eventually influenced the substructure of the membranes
because the membrane structure transitioned from finger-like pores (for M1 and M2) to a
dense substructure in the presence of macrovoids (M3). Similar observations were made
upon thermal analysis of these membranes, which demonstrated that M3-type membranes
showed not only a higher thermal stability, but also an onset degradation temperature
10 ◦C higher than that of their counterparts (M1 and M2). Finally, it can be concluded from
the spectral analysis that the blending of cellulose acetate and polysulfone was physical
in nature and the only noticeable difference was the presence of hydroxyl ions in the sub-
sequent membranes. Hence, it can be asserted that the characteristics of the membranes
can be tuned and manipulated to achieve certain desirable features by modifying the
mixing/blending methods for the preparation of casting/doping solutions. The prospec-
tive application of this modification technique can certainly improve the performance of
membranes for wider targeted applications.
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