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Abstract: This study explores the effectiveness and efficiency of the popular OpenAI model ChatGPT,
powered by GPT-3.5 and GPT-4, in programming tasks to understand its impact on programming
and potentially software development. To measure the performance of these models, a quantitative
approach was employed using the Mostly Basic Python Problems (MBPP) dataset. In addition to
the direct assessment of GPT-3.5 and GPT-4, a comparative analysis involving other popular large
language models in the AI landscape, notably Google’s Bard and Anthropic’s Claude, was conducted
to measure and compare their proficiency in the same tasks. The results highlight the strengths of
ChatGPT models in programming tasks, offering valuable insights for the AI community, specifically
for developers and researchers. As the popularity of artificial intelligence increases, this study serves
as an early look into the field of AI-assisted programming.

Keywords: artificial intelligence; ChatGPT; GPT-3.5; GPT-4; Python programming; OpenAI; Google’s
Bard; Anthropic’s Claude

1. Introduction

In recent years, artificial intelligence (AI) has experienced exponential growth, marked
by significant advancements in natural language processing and machine learning. This
surge has brought about a transformation in various industries and applications. One spe-
cific area that has garnered considerable attention is AI-assisted programming. Advanced
language models have the potential to revolutionize the way developers create, maintain,
optimize, and test code. The primary objective of this study is to evaluate the effectiveness
of the most popular large language model publicly available, ChatGPT, encompassing
both the GPT-4 and GPT-3.5 models. These two models undergo testing across a variety
of code generation tasks in this study, with the aim of understanding their potential and
overall performance.

OpenAI’s release of the GPT models and the widely available ChatGPT represents a
substantial breakthrough in the advancement of AI capabilities [1,2]. With each iteration,
the models have demonstrated improved performance and versatility, generating increased
interest in their potential uses and applications across multiple fields. In programming
alone, these models have shown significant promise, particularly in automating tasks,
improving code, and providing insights to developers.

The impact of AI in programming cannot be underestimated. AI has been proven
to have the potential to enhance productivity, reduce human error, and automate tasks.
Examples of such tasks include code generation, documentation, and bug detection, effec-
tively streamlining the programming process. This, in turn, allows programmers to focus
on more complex and creative aspects of their work.

To further analyze the subject, this study will employ quantitative testing. The primary
objectives of this study are as follows:

• To evaluate the efficiency of ChatGPT in various code generation tasks;
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• To compare the performance of GPT-4 and GPT-3.5 to that of other popular LLMs in
said tasks;

• To identify challenges and limitations of using large language models in programming.

The breakthrough in automated code generation has been significantly propelled [3]
and greatly boosted by recent advancements in large language models like GPT-3 [4],
surpassing the capabilities of earlier state-of-the-art deep learning methods [5].

As an illustration, OpenAI Codex [6], a refined iteration of GPT-3, can produce entirely
accurate code for 29% of unfamiliar programming tasks using just one sample of generated
programs. It was found that when testing 100 samples, 72% of them are correct. In [7],
the authors evaluate the GPT Python code-writing capabilities and the correctness of the
code generated. The results in this paper are based on only a small number of samples,
which shows that the model can solve only 28% of the problems. Hammond et al. [8]
investigated the possibility of using OpenAI Codex and other large language models
(LLMs) to fix software security bugs. The results show that 67% of vulnerabilities in a
selection of historical bugs in real-world open source projects can be fixed and discovered
by LLMs. Meanwhile, Refs. [9,10] tested the usability of the code generated by LLMs and
not the accuracy of the codes.

Xu and colleagues [11] compared the performance of code generated by GPT-Neo,
GPT-J, and GPT-NeoX—all large language models (LLMs)—when trained with a substantial
number of parameters derived from ready codes in 12 different languages. Zan et al. [12]
investigated the existing large language models for NL2Code and summarized them from
diverse perspectives. However, neither of these research studies investigated the accuracy
and the quality of the code generated by LLMs.

This study serves as an early look into the field of AI-assisted programming, at a
time when artificial intelligence is experiencing exponential growth. The goal is to provide
useful insights for developers, researchers, and the broader technology community to help
shape the future of AI-assisted programming.

In Section 2 of this paper, a short concept about the history of ChatGPT will be
introduced, followed by an explanation of how generative AI works. Section 4 of this paper
will present the experimental results, and the conclusion will be summarized in Section 5.

2. Generative AI History

Modern generative AI development began in the 1940s after the conception of the first
artificial neural networks (ANNs). However, due to constraints such as limited computa-
tional capabilities and insufficient knowledge of the brain’s biological workings, ANNs
failed to draw significant interest until the 1980s. During this period, parallel advances in
hardware and neuroscience, along with the emergence of the backpropagation algorithm,
eased the training process of ANNs. Previously, training NNs was a demanding task, as
there was no effective method to compute the error’s gradient relating to each neuron’s
parameters or weights. However, backpropagation automated the training procedure,
unlocking the potential usage of ANNs [13].

In 2013, Kingma and Welling presented a novel model structure named variational
autoencoders (VAEs) in their papers entitled “Auto-Encoding Variational Bayes”. VAEs
are generative models grounded in the principle of variational inference. They offer
a mechanism for learning via a condensed representation of data, where the data are
transformed into a lower-dimensional area called the latent space through an encoding
process. Then, the decoder component reconstructs the data back into their original data
space [14].

In 2017, Google researchers introduced a pivotal development in their research titled
“Attention Is All You Need”. This new architecture, called Transformer, was a revolution
in language generation [15]. Unlike previous language models based on long short-term
memory (LSTM) [16] or recurrent neural networks (RNN) frameworks [17], Transformer
allowed for parallel processing while retaining context memory, leading to superior perfor-
mance [17].
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In 2021, OpenAI released a fine-tuned version of GPT, Codex, which was trained on
code publicly available on GitHub. Early results showed that the fine-tuned model was
able to solve around 30% of the Python problems used, compared to the 0% that the current
GPT version (GPT-3) was able to achieve. This served as an early look into how large
language models (LLMs) [10] can learn and generate code. Codex then served as the basis
for GitHub Copilot [10].

GitHub Copilot is an AI programming tool that can be installed in the most popular
code editors and is powered by GPT-4. It reads the code and can generate suggestions
and even write code instantly. In a controlled test environment, researchers found that
programmers who used Copilot finished tasks approximately 55.8% quicker than those
who did not, speaking to the potential of AI tools in programming [18,19].

In another research work, GPT’s Python code generation is deemed remarkable,
showing that it can help novice programmers to solve complex coding problems using only
a few prompts. However, both studies have shown that human input is almost always
required to steer ChatGPT in the correct direction [20].

3. What Is Generative AI

Generative AI models harness the capabilities of neural networks to discern patterns
and structures within existing datasets and create original content [21]. These AI models
draw inspiration from human neuronal processes, learning from data inputs to create
new output that matches learned patterns. This involves advanced techniques that range
from generative adversarial networks (GANs) [21], large language models (LLMs), varia-
tional autoencoders (VAEs), and transformers to create content across a dynamic range of
domains [22].

Numerous methodologies, such as unsupervised or semi-supervised learning, have
empowered organizations to utilize abundant unlabeled data for training and laying
foundations for more complex AI systems. Referred to as foundation models, these systems,
which comprise models like GPT-3 and Stable Diffusion, serve as a base that can be
proficient in multiple tasks. They enable users to maximize the potency of language, such
as constructing essays from brief text prompts using applications like ChatGPT or creating
remarkably realistic images from text inputs with Stable Diffusion [23].

Generative AI models can refine their outputs through repeated training processes by
studying the relationships within the data. They can adapt parameters and diminish the gap
between the intended and created outputs, continually enhancing their capacity to produce
high-quality and contextually appropriate content. The utilization of this technology is
often initiated with a prompt, followed by iterative exploration and refining of variations
to guide content generation [24].

4. Testing Methodology

In this section, the methodological approach used to evaluate ChatGPT will be pre-
sented, along with the subsequent comparison with other reputable large language models
(LLMs). Next, the description of the dataset used for this study will be explained. Finally,
the evaluation strategy, detailing how the tests were performed and how the language
model scores were calculated, will be provided.

4.1. Selection of LLMs

After the massive popularity of ChatGPT emerged in the market, it was only natural
that other companies would release their own large language models (LLMs) to compete
with OpenAI. In order to paint a more complete picture, it was decided to choose three
other popular and easily accessible LLMs and compare their performance. These models
were selected based on the company’s popularity as well as potential impact.

The initial LLM chosen for testing was Google’s Bard. Bard was introduced in February
2023 as Google’s next significant step into the AI space [25]. Powered by Google’s PaLM2



Digital 2024, 4 117

model [26], Bard is said to excel at advanced reasoning tasks, including math and coding.
Bard is currently available for free on the Bard website [27].

The second LLM to be tested was Microsoft’s Bing (technically known as Bing Chat,
but in this paper, it will be referred to as Bing only). Released in February 2023, Bing is the
“copilot for the web” and is an AI chatbot powered by GPT-4, considering that Microsoft
is one of the top investors in OpenAI. Bing Chat is also generally available on the Bing
website and should have similar performance to ChatGPT [27,28].

The third LLM to be tested was Anthropic’s Claude. While not as popular as Google
and Microsoft, Anthropic’s Claude was founded by a research company established in
2021 by former OpenAI employees. Claude was initially released as the next-generation AI
assistant in March 2023. The new version, Claude v2, was quickly released in July 2023.
According to Anthropic, Claude has similar use cases to ChatGPT and Bard, including
coding capabilities [29,30].

4.2. Dataset

This research mostly used basic Python problems based on a well-known and tested
dataset called Basic Python Programming (MPPP) [7]. This dataset was employed to mea-
sure the code generation capabilities of the AI models. It was created by Google researchers
and consists of approximately 1000 crowd-sourced Python programming problems. These
problems cover various programming fundamentals, functionalities, etc., and are designed
to be solved by entry-level programmers [7].

From the main dataset, a subset of around 460 problems has been hand-verified by
Google, and this was the dataset used in this research. Each problem consists of:

• Task_id: a number from 1–1000.
• Prompt: the instructions for the LLM, explaining what the code should do.
• Code: a proposed solution for the code.
• Test_imports: libraries that should be imported.
• Test_list: usually 3 test cases to verify if the code works as expected.

Figure 1 shows an example of coding problem number 162 from the dataset [7], along
with the test code used.
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Figure 1. Example of the used Python problems [7]. (a) The code problem number 162. (b) The
testing code.

4.3. Evaluation Strategy

Even though OpenAI offers paid API access to its GPT-3.5 and GPT-4 models per token
used, it was decided to use the ChatGPT web interface for all of the tests. The reasoning
behind this is that it is the most accessible way to access these models and is probably what
most people are going to use due to its ease of use. All models are free to use via their
web interfaces, except GPT-4, which is locked behind a paid subscription, “ChatGPT Plus”.
Bing and Bard do not have API access, while Claude does. However, there is currently a
waitlist for Claude’s API access. This was also another reason behind not using the APIs in
the tests, so as to test all models based on their web interfaces.

This study used a purely quantitative approach. Each model was provided with the
programming prompts from the MBPP dataset. For these tests, only the “prompt” was
provided, as well as the name of the function, in order to match the function name that
was used in the test cases. Figure 2 shows the prompt that served as the input to the
LLM systems.
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The resulting generated code by the LLM systems was pasted and tested using the
code shown in Figure 2, which includes the assertion tests and the test lists to check if the
AI-generated code passes or fails the assertion tests. The assertion test was designed to
generate the total results of the tests with a score of between 3 and 6 points, where one
point was given if the test succeeded and 0 if it failed. The final score for all 100 of the
tested programs was 305 points if a 100% pass rate for the tests was recorded.

This process was repeated for all five LLMs with the same prompt. Every test passed
was scored one point for each test in the list for the 100 prompts, and then the final score
was calculated and compared.

At the second stage of the evaluation process, the lowest scoring LLMs were retested
on an equal number of tasks that they did not complete successfully or did not complete
100% of the tests correctly. The goal here was to confirm whether the system was capable
of generating the correct code when provided enough feedback from the human user.

At the third stage, the same prompt was provided to the models in a new conversation
to remove any history. Some of the tasks were completed on the first retry, as LLMs tend to
be creative and generate different code, while others needed extra feedback. After every
response, the code was tested, and feedback was provided to the model, including the
results of the test. The number of messages input into the models was also counted until the
correct code was provided by the AI system. The maximum number of attempts used was
set to 10 attempts; after that, testing would stop, and the task would be marked as failed.

5. Experimental Results

The test was performed using 460 Python problems that were certified by Google [7],
employing all five of the above-mentioned LLMs, which added up to a total possible score
of 1225. It can be considered that a small number of tests would be enough to provide a
clear trend in performance.

The obtained results are shown in Figure 3; the Claude model displayed the worst
performance, scoring 875 points, equivalent to 71.43%. Google’s Bard model performed
similarly to Claude, scoring 933 points, or 76.16%. While these models are generally good
at understanding the tasks, they have a lot of room for improvement.
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Figure 3. Performance comparison between the different LLMs.

As for the GPT-based models, the GPT-3.5 model scored an impressive 1019 points,
equivalent to 83.18%. Similarly, Bing only scored 15 points lower, with 1004, which is
equivalent to 81.96%. Bing scoring similarly to GPT-3.5 was definitely not expected, as Bing
is based on the GPT-4 model. GPT-4, however, scored an impressive 1072, or 87.51%.
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These results show that while each model has impressive code generation capabilities,
GPT-4 particularly stands out with its highest success rate, closely followed by Bing and
GPT-3.5.

5.1. Code Quality

One thing that stood out during testing was that the non GPT-based models typically
generate longer code, while GPT-based models tend to generate much shorter, more concise
code. There were instances of Bard outputting code that when run, entered an infinite loop
and the process had to be aborted, while GPT-based models were much more efficient.

One example is task−id 45. The prompt was “Write a python function to find the
maximum difference between any two elements in a given array”. Bard’s generated output
was more complicated and less efficient, as it used the basic programming skills which
were used by nonprofessional basic programming skills; the results are shown in Figure 4a.
Meanwhile, ChatGPT-4 generated correct compact code using readily available methods in
Python, as shown in Figure 4b.
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Another example is task−id 101. The prompt was “Write a function to find the kth
element in the given array using based indexing”. Bard’s output was relatively long and
resulted in a complex loop. On the other hand, GPT-4′s responses are much more concise
and made better use of built-in functions, as shown in Figure 5.

In order to compare the quality of the generated code for the five LLMs, the average
number of lines of code (LOC) was calculated for the whole of the tested dataset, and the
results are shown in Figure 6. As noticed from the results, across all of the LLMs, Bard
returned the highest average number of LOC, which indicates lower code quality, while
Bing produced a higher quality of code compared to Chat GPT-4 and Claude.



Digital 2024, 4 121
Digital 2024, 4, FOR PEER REVIEW 8 
 

 

 
(a) 

 
(b) 

Figure 5. Task−id 101 code generated by LLM. (a) Bard; (b) ChaGPT 4. 

In order to compare the quality of the generated code for the five LLMs, the average 
number of lines of code (LOC) was calculated for the whole of the tested dataset, and the 
results are shown in Figure 6. As noticed from the results, across all of the LLMs, Bard 
returned the highest average number of LOC, which indicates lower code quality, while 
Bing produced a higher quality of code compared to Chat GPT-4 and Claude. 

 
Figure 6. Average number of lines of code for each model, excluding blank lines, tested for the 
whole dataset. 

  

0
5
10
15
20
25
30
35

Bard Bing Claude GPT-3.5 GPT-4

Figure 5. Task−id 101 code generated by LLM. (a) Bard; (b) ChaGPT 4.

Digital 2024, 4, FOR PEER REVIEW 8 
 

 

 
(a) 

 
(b) 

Figure 5. Task−id 101 code generated by LLM. (a) Bard; (b) ChaGPT 4. 

In order to compare the quality of the generated code for the five LLMs, the average 
number of lines of code (LOC) was calculated for the whole of the tested dataset, and the 
results are shown in Figure 6. As noticed from the results, across all of the LLMs, Bard 
returned the highest average number of LOC, which indicates lower code quality, while 
Bing produced a higher quality of code compared to Chat GPT-4 and Claude. 

 
Figure 6. Average number of lines of code for each model, excluding blank lines, tested for the 
whole dataset. 

  

0
5
10
15
20
25
30
35

Bard Bing Claude GPT-3.5 GPT-4
Figure 6. Average number of lines of code for each model, excluding blank lines, tested for the
whole dataset.



Digital 2024, 4 122

5.2. Providing Feedback to the Model

In the second phase of the tests, the highest-scoring model, GPT-4, and the lowest-
scoring model, Bard, were tested again on previously failed tasks. This time, feedback was
provided to the LLM models to comprehend how well they could understand the errors
and try to correct them. It was found that out of the 16 tasks that GPT-4 did not complete
on the first try in the previous phase, GPT-4 was able to complete 14, while Bard was only
able to complete 5 tasks after feedback was provided. Figure 7 compares the results of both
GPT-4 and Bard.
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These tests showed that there is a significant difference in the way both models
processed and applied feedback to the generated code. GPT-4 demonstrated an impressive
understanding of the provided feedback and effectively incorporated fixes into the code,
meaning that with each output, the code improved until it performed the desired task with
no errors.

On the other hand, Google’s Bard, while sometimes able to generate code effectively,
did not exhibit the same level of comprehension of the provided feedback as GPT-4. Bard’s
responses typically acknowledged the error; however, when generating a “fixed” version
of the code, it generally just rewrote the exact same code again.

Overall, the results indicate that the AI language models, especially GPT-4, demon-
strate proficient abilities for code generation. Additionally, it showed adaptability and the
capability of self-improvement when faced with real-world coding scenarios, including
bug fixing. In the case of GPT-4, when properly used, it could solve almost 100% of all
tasks, showcasing its outstanding ability and potential to be a coding assistant. On the
other hand, the second phase of the testing shows that LLMs are best as coding assistants
and not as replacements for programmers. These models benefit greatly from feedback
from humans and significantly improve when proper feedback is provided.

These results also suggest that LLMs have transformative potential in programming
and software development, offering researchers and developers insights into the ever-
growing field of AI-assisted programming.

5.3. Limitations

While LLMs have demonstrated overall effectiveness at writing code, they also have
their limitations. Firstly, LLMs sometimes tend to output inconsistent answers [31]. For
example, for task_id 11, “Write a Python function to remove the first and last occurrence of
a given character from the string”, GPT-4 generated two different outputs when the test
was repeated with small changes in the prompt. The resulting generated codes are shown
in Figure 8.
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In this example, both functions work as expected and pass the tests. However, this
will not always be the case. This introduces an element of randomness, not knowing if the
code will be correct or not. This can mean that the user has to spend valuable time testing
and correcting the code if it is not correct.

This brings us to another limitation: in order to use ChatGPT and LLMs efficiently, it
is very likely that human feedback will play a key role. Users have to be able to effectively
communicate feedback to the model in a way that the model will understand and learn
from, which might also be time- and resource-consuming.

Third, the programming style of the models can differ from that of the users. Every
programmer has their own preferences when writing code, and the model may not always
follow the same format. This impacts the readability of the code, as well as potentially
introducing bugs into the software and affecting future maintainability.

Fourth, the provided code by the models may have compatibility issues with the rest
of the code that will be used. The models generate code based on what they were trained
on and do not know the entire context in which it will be implemented later on; therefore,
the code may lead to bugs and compatibility issues, which in turn will consume resources
in order to refactor the provided code.

6. Conclusions and Future Work

This research work, evaluating the GPT (GPT-3.5 and GPT-4) models, as well as
other large language Models (LLMs) from competitors (Bard, Bing, and Claude) using the
Mostly Basic Python Problems dataset for code generation tasks, has provided interesting
results. These results show some insights into the strengths of these models, as well
as areas in which they could improve. Hopefully, this research serves as an empirical
demonstration of the current state-of-the-art (SOTA) models in software development. Of
all the models tested, GPT-4 exhibited the highest proficiency in code generation tasks,
achieving a success rate of 86.23% on the small subset that was tested. GPT-based models
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performed the best compared to the other two models, Bard and Claude. These two models
performed the worst, indicating a need for improvement in terms of coding and code
generation, considering they are the two most recently released models. It was also found
that LLMs had some difficulties concerning code generation, which led to bugs and errors
and multiple solutions when a slight change or wrong query was provided. This can lead
to the inefficient use of time by programmers. Overall, it was found that ChatGPT and
other LLMs, most of the time, are able to generate code effectively and can be used as
programming assistant tools, but they are not replacements for human software developers
since they require constant feedback and monitoring by a human.

While the results were promising, there is room for future research. More studies can
focus on evaluating the generated code itself. New metrics can be considered, such as the
cleanliness of the code, execution time, resource usage, and more. Besides the MBPP, more
complex tasks can be used to test the LLMs and see how they handle more complicated
tasks and code. In addition, future research can also focus on real-world applications. They
can examine the use of these LLMs in professional software development processes besides
coding, to identify any other practical uses that can essentially enhance productivity in the
industry and potentially revolutionize it.
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