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Abstract: Efficient triaging and referral assessments are critical in ensuring prompt medical inter-
vention in the community healthcare (CHC) system. However, the existing triaging systems in
many community health services are an intensive, time-consuming process and often lack accuracy,
particularly for various symptoms which might represent heart failure or other health-threatening
conditions. There is a noticeable limit of research papers describing AI technologies for triaging
patients. This paper proposes a novel quantitative data-driven approach using machine learning
(ML) modelling to improve the community clinical triaging process. Furthermore, this study aims to
employ the feature selection process and machine learning power to reduce the triaging process’s
waiting time and increase accuracy in clinical decision making. The model was trained on medical
records from a dataset of patients with “Heart Failure”, which included demographics, past medical
history, vital signs, medications, and clinical symptoms. A comparative study was conducted using a
variety of machine learning algorithms, where XGBoost demonstrated the best performance among
the other ML models. The triage levels of 2,35,982 patients achieved an accuracy of 99.94%, a preci-
sion of 0.9986, a recall of 0.9958, and an F1-score of 0.9972. The proposed diagnostic model can be
implemented for the CHC decision system and be developed further for other medical conditions.

Keywords: clinical triaging; machine learning; community healthcare triaging; prediction; classifica-
tion; artificial intelligence

1. Introduction

The healthcare framework in the UK, the National Health Service (NHS), is structured
into two overarching components. The first component is responsible for formulating
strategies, setting policies, and managing the system, whereas the second primarily focuses
on providing medical services [1]. This latter component is further subdivided into three
distinct tiers. Primary care encompasses general practitioners (GPs), community health
services, pharmacists, etc. Secondary care involves hospital-based healthcare accessible
through primary care providers. Specialised hospitals provide tertiary care. Primary care
professionals have the discretion to refer a patient to another healthcare provider within
the primary care setting (community health services) or to secondary care (hospitals) if the
patient’s medical condition demands more specialised treatment or further investigation.

Community health services aim to provide a wide range of services to improve
the health and wellness of people from birth to the end of life and allow them to live
independently in their own homes by bringing those forms of care closer to one’s home [2].
Therefore, community services work closely with all the primary, secondary, and tertiary
care system providers, such as GPs, pharmacies, and hospitals. For instance, the hospital
determines when it is safe to discharge a person and implements a discharge plan. During
this decision-making process, the hospital staff is required to determine whether the person
needs to be referred for ongoing care in the community setting after discharge. The
community care teams accept referrals from 111 (24 h National Health Service advice), the
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ambulance service (AS), the rapid-access therapy team (RATT), fall pickup, GPs, and acute
hospitals after discharging patients [2,3]. While ambulance services focus on emergency
transportation, rapid-access therapy teams aim to provide timely care at home, helping
individuals avoid hospitalisation whenever possible. Similar to the RATT, fall pickup
services provide appropriate care for falls and related injuries among elderly people to
prevent hospital admissions. Ambulance services in the UK are under the control of various
bodies, such as local authorities, commissioning bodies, and NHS trusts. Ambulance
services differ from tertiary care, which is responsible for highly specialised medical care
provided to patients with severe, complex, or life-threatening conditions. However, ASs
play a crucial role in connecting patients to appropriate levels of healthcare, including
tertiary services when required.

Variations in the delivery of services seems to be proportional to an imbalance between
the available capacity and the demand in healthcare systems such as community health
services, resulting in extended waiting periods [4]. Efficient triage and referral assessments
play a crucial role in ensuring prompt medical intervention to prevent fatalities and disabil-
ities [5]. Nevertheless, the existing manual referral assessment method is time-consuming,
and referrals from general practitioners for specific disease conditions, such as heart failure,
often lack accuracy due to ambiguous initial symptoms.

According to Kim et al. [6], heart failure (HF) impacts over 900,000 individuals in the
United Kingdom, leading to substantial morbidity and mortality, frequent hospital admis-
sions, and a diminished quality of life. Machine learning for the triaging of patients with
heart failure can provide clinical benefits by improving decision making in individual care,
assessing disease severity [7], and minimising the waiting times. The American College
of Cardiology suggests crucial in-hospital data components for determining the care and
results of patients with heart failure [8]. These include demographic information, medical
history, current home medications, clinical presentation details, hospitalisation course,
laboratory test results, imaging studies, cardiac catheterisation information, administered
treatments, and any complications arising during the hospital stay. Primary care profes-
sionals record this information in electronic health records using various formats, such as
digital notes, handwritten notes, images, videos, emails, and other media [9]. The patient
records mentioned above can be optimally utilised for training machine learning models
to perform the triaging for patients with heart failure in community settings through a
streamlined feature-engineering process, enhancing the data’s quality and relevance for a
comprehensive analysis.

This study aimed to develop a quantitative data-driven machine learning approach to
analyse, sort, and categorise patients according to their medical condition using streamlined
feature-engineering methods. Also, this research employed three distinct classification
algorithms to forecast the triaging outcomes, and a retrospective examination was con-
ducted to analyse the predictive performance of these algorithms. The research stages
included data preprocessing and feature-engineering techniques such as data imputation
and normalisation, correlation analysis, and feature encoding and ranking. The predictive
modelling employed several machine learning algorithms for triaging patients with heart
failure in community healthcare services.

This paper is conscientiously structured in a way that allows the readers to logically
progress through the research. Section 2 presents the related works discussing human-
based, online-platform-based, and machine learning-based triaging approaches. Section 3
provides a detailed description of the dataset, data preprocessing techniques, and the
feature-engineering methods used to perform the research. Section 4 is a comprehensive
analysis of the outcomes of various classification algorithms, where XGBoost demonstrated
the highest efficiency in triaging patients with heart failure. Section 5 completes the paper
with a discussion and a direction for future works.
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2. Related Works

Research on the systematic methods used for triaging patients from prior studies
helped us to categorise those methods into traditional human-based, telephone- or online
platform-based, and machine learning-based methods. After differentiating these systems,
a retrospective survey supported us in identifying the current gap within each system. The
study presented below addresses the identified gaps and contributes valuable insights to
the field.

2.1. Human-Based Triage

Health professionals, especially triage nurses across the globe, use numerous methods
to prioritise patients at various levels of the treatment process. For example, the Emergency
Severity Index is used in the United States of America, the Canadian Triage Acuity Scale
is followed in Canada, the Australasian Triage Scale in Australia, and the Manchester
Triage Scale is used by many European countries, especially the United Kingdom and
Germany [10].

Moxham and McMahon-Parkes [11] conducted a study to estimate the effect of triag-
ing patients referred to an acute National Health Service hospital by an advanced nurse
practitioner. Their study aimed to identify whether waiting time and hospital admissions
would be reduced as a result. Also, their study examined whether critical investigation
and treatments were accelerated through a triaging process performed by an advanced
nurse practitioner. The research undertaken by Jennings [12] and Woo, Lee, and Tam [13]
discussed the efficacy of employing advanced nurse practitioners to fulfil service require-
ments. The triage role of advanced nurse practitioners was directed and structured in
accordance with the Revised Standards for Quality Improvement Reporting Excellence
guidelines [14]. The introduction of advanced nurse practitioners in patient triage roles
resulted in a statistically notable decrease in the waiting time for patient evaluation. The
limitations included the generalisability of the results as the study was based on retrospec-
tive data collected from medical records, which also contained heterogeneous samples.
Furthermore, the variations in the skills and experience of the advanced nurse practitioners
who participated in the study were also a limitation. According to Göransson, Persson, and
Abelsson [15], experience and knowledge in primary care can vary among nurses, depend-
ing on their experience in the field. Their research sought to delineate the background of
nurses involved in triaging patients at walk-in clinics within primary healthcare centres
in Sweden. Most medical professionals can gain expertise through long-term work. In
contrast, machine learning models can identify patterns and gain understanding quickly,
significantly speeding up the decision-making process.

The human-based triage method does have some crucial drawbacks, which include the
increase in triage workload when a patient needs to be referred to speciality care. Usually,
in a community setting, a specially trained triage nurse is assigned to read and analyse
a patient’s past medical history, current medications, test/lab results, together with the
current symptoms of the patient, to refer them to special services. The lack of experienced
triage nurses and the exponential growth in the time needed to assess a patient’s past
medical history for decision making underline the necessity for the implementation of
automated AI-supported triaging systems.

2.2. Telephone- or Online Platform-Based Triage

The NHS introduced various methods, such as phone, email, and online triage systems,
as an alternative to face-to-face consultations, which indeed increase the workload. Patients
can describe their problems through online triage systems, emails, or a phone. Afterwards,
a general practitioner contacts the patient for a telephone consultation or to schedule an
in-person appointment if required.

The study conducted by Eccles [16] aimed to investigate usage patterns and gather
insights into patients’ encounters with an online triage system. In the abovementioned
retrospective study, data routinely collected from all practices utilising the ‘askmyGP’ plat-
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form throughout the study period were analysed using a combination of quantitative and
qualitative methods. Patients commonly use the platform for inquiries about medications,
reporting specific symptoms, and administrative requests. The number of users registered
to the platform is broad. The highest proportion of users is made up of young patients,
which points to the difficulty of elderly people in using online platforms.

2.3. Machine Learning-Based Triage

In the study conducted by Raita [17], various machine learning models, including
lasso regression, random forest, gradient-boosted decision tree, and deep neural network,
were employed to predict clinical outcomes. They assessed the outcomes by comparing
them qualitatively with the performance of a conventional human-based triaging system,
called Emergency Severity Index (ESI), in the USA. The ESI is a tool used in emergency
department (ED) triage within the healthcare system. It has five levels, from 1, which is the
“most urgent,” to 5, the “least urgent.” For example, level 3 or “urgent” includes patients
with serious symptoms but stable vital signs. The research concludes that machine learning
models displayed excellent predictive performance for hospitalisations and critical care
outcomes compared to the conventional reference model.

Levin [18] introduced e-triaging, employing a machine learning model for triaging
data to predict critical care necessity, emergency procedures, and hospitalisation. The study
affirmed the model’s accuracy in categorising level 3 patients based on the ESI. Machine
learning’s utility in clinical settings allows the classification of patients’ subgroups accord-
ing to the predicted outcomes [19]. The proposed approach ensured stable predictions [20]
and facilitated variable selection during model construction, especially for digital health
record applications. The model demonstrated superior accuracy in classifying ESI level 3
patients compared to conventional methods, underscoring the potential of predictive anal-
ysis in triage decision making. However, the limitations included potential retrospective
data entry errors and dependence on a robust and precise electronic health record system.

Few studies have used machine learning in emergency departments in a hospital
setting [17]. However, machine learning applications for triaging in community care
remain undiscovered. This study concentrates explicitly on triaging patients with heart
failure in community care. It gives an additional perspective to implementing AI-supported
triaging technologies for a wider range of diseases.

3. Computational Framework for Processing and Triaging Using Patient Data

The proposed framework with various stages of data processing is represented in Figure 1.
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In the initial stage, qualitative research data interpretation [21] was adopted to de-
termine the most necessary variables from the collected dataset, whereas quantitative
research, which involved computational and statistical methods [22] for data analysis,
was performed throughout our study. The following subsections provide a more detailed
description of the implementation stages.

3.1. Medical Dataset

The dataset used for the current study was primarily utilised by Hong [23] for the
prediction of hospital admissions to the emergency department. The data collected from
three EDs covered the period from March 2013 to July 2017 and included all the admissions
to and discharges from the hospitals. The dataset consisted of 560,486 patient records
collected during their hospital visits. The 972 variables in the dataset contained the patients’
past medical history, vitals, signs and symptoms, test results, and medications.

Variable selection was one of the most critical tasks in this study because the probability
of heart failure and other cardiological problems could be determined by multiple factors.
The choice of the most powerful variables could increase the heart failure prediction
rate and speed up the diagnostic process. This study incorporated several qualitative
research techniques to select the majority of informative features and utilise them for
predictive modelling.

The feature and model selection steps are explained below.

3.2. Variable Selection Using Qualitative Analysis

The variables from the raw data were grouped into five categories such as “Demo-
graphics”, “Past Medical History”, “Vitals”, “Medications”, and “Symptoms”. The demo-
graphics included age and gender variables. According to Edelmann [24], multiple chronic
conditions and death rates in the case of heart failure increase with age. The study pre-
sented by Coats [25] states that the typical pathophysiology leading to heart failure occurs
in older patients. A group of disease conditions that can affect both heart and blood vessels
are classified as cardiovascular disease (CVD), thereby including coronary heart disease
(CHD), coronary artery disease (CAD), acute coronary vascular disease (acute CVD), and
many other conditions [26]. As specified by Boateng and Sanborn [27], an acute myocardial
infarction (AcuteMI) is a subset of acute coronary syndrome that affects blood vessels and
the heart. Also, multiple myeloma [28], hypothyroidism [29], rheumatoid arthritis [30], and
hypertension [31] may contribute to heart failure. Vital signs such as heart rate [32], systolic
blood pressure [33], diastolic blood pressure [34], respiratory rate [35], oxygen saturation
levels [36], and temperature need to be taken into account, one by one, while diagnosing
and triaging a patient with heart failure. In compliance with NHS England [37], shortness
of breath, breathing difficulty, hypertension, and oedema are some of the main symptoms
of heart failure, whilst cough, wheezing, and palpitations are less-common symptoms.
Therefore, the variables related to all the abovementioned categories were selected to create
a “Heart Failure” dataset, which was used in the subsequent steps.

3.3. Variable Selection Using Quantitative Analysis

A quantitative analysis method was used to identify more correlated variables among
the selected variables. This step involved a correlation matrix to identify the columns that
were related to each other. In this study, Spearman’s correlation coefficient, which belongs
to a distribution-free rank statistic, was used to measure the strength of the monotonic
association between the two [38].

The correlation matrix helped us to identify the most correlated variables and create
the heart failure dataset from the raw data. It is important to note that the newly created
dataset did not include a particular column describing whether the patient had heart
failure or not or any other columns containing the triage values of a patient with heart
failure. Thus, only parameters highly correlated and contributing to the development of
cardiological problems were included in the dataset. For instance, the column of age had a
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positive correlation with hypertension, with a value of 0.53, which made it evident that
hypertension increased progressively with age [39].

After removing weakly correlated variables using qualitative and quantitative meth-
ods, the final heart failure dataset was represented by 25 columns. After the additional
feature-engineering procedure, these columns were used for the training and testing of the
machine learning models.

3.4. Feature Engineering

Nargesian [40] stated that feature engineering involves enhancing the performance
of predictive models on a dataset by modifying or transforming its set of features. In this
study, the dataset lacked a triage column, which would have given the values obtained after
triaging patients with heart failure. Therefore, we used feature-engineering techniques to
create the missing triage column from the existing data and then train the machine learning
models with the feature-enriched dataset. Prior to feature engineering, the null value
imputation technique was applied to the heart failure dataset. The missing values were
imputed using the K-Nearest Neighbour approach. The process of generation of a triage
column using the existing variables of different categories of features can be described in
the following steps.

3.4.1. Generating Triage Values from Different Categories

In this step, a column for each category was created using a scoring system in each
category variable such as “Past Medical History”, “Medication”, and “Symptoms”. Every
variable in these categories was based on the Boolean principle. If the patient records
showed past medical history and medication intake or indicated any symptom related to
cardiovascular problems, a value of 1 was imputed in the column. Alternatively, a value of
0 demonstrated the absence of these parameters in the medical records. This method of
assigning scores depended on the number of variables in the category.

Therefore, the score for each variable can be represented with the following equation:

sv = 1/n × np

where n is the total number of variables, and np is the number of variables with a value
of 1.

For instance, the “Past Medical History” category consisted of four columns with
Boolean values. Using the above formula, the triage column for past medical history
generated a value of 0.25 if the patient had one medical condition in their past medical
history records. If the patient had two medical conditions in their past medical history,
then the score calculated would be 0.5. Thus, the output of the feature generation process
showed three new columns with the triage scores for the categories of past medical history,
medications, and symptoms for every patient.

3.4.2. Generating Triage Values Using NEWS2 Score

The National Early Warning Score 2 (NEWS2) serves as the established track and
trigger system for evaluating the severity of illness and the potential risk of deterioration in
patients with acute health conditions. This system is adopted within the United Kingdom
and internationally [41]. It is used as an assessment tool for illness severity and deteri-
oration risk. According to the Royal College of Physicians [42], the NEWS2 is based on
a straightforward aggregating approach, which scores the physiological measurements
during a routine healthcare check when a patient visits a hospital. The scoring system
is grounded in six basic physiological parameters, including respiratory rate, oxygen
saturation, systolic blood pressure, pulse rate, level of consciousness, and temperature.

Each parameter is assigned a score based on its measured value, with the score
magnitude indicating the degree of deviation from the norm. For individuals who receive
supplemental oxygen to achieve a certain level of oxygen saturation, an additional 2 points
are added to the aggregated score. This pragmatic approach highlights a central focus on
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standardised practices across the entire healthcare system. It underscores the utilisation
of physiological parameters that are already routinely assessed in NHS hospitals and
prehospital care, documented on a standardised clinical chart known as the NEWS2 chart.

Figure 2 represents the chart of the NEWS2 scoring system consisting of the scores
and values of all six parameters. The scoring system is divided into four levels of severity,
scoring from 0 to 3. The “vitals” category of the heart failure dataset used in this study
contains respiratory rate values, SpO2 scale values, air or oxygen values, systolic blood
pressure values, pulse values, and temperature. The dataset does not have consciousness
values in the vitals category, which is considered one of the dataset’s limitations. However,
the dataset includes all six critical parameters used in the NEWS2 scoring system to obtain
better triage results.
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(Source: National Early Warnings Score (NEWS) 2, 2017; https://www.rcplondon.ac.uk/projects/
outputs/national-early-warning-score-news-2 (accessed on 4 November 2023)).

Figure 3 represents the clinical response and frequency of monitoring patients de-
pending on the NEWS2 score. If the patient’s NEWS2 score is 0, then the patient needs to
continue routine NEWS2 monitoring at a frequency of a minimum of 12 h and needs no
triaging at this stage. If the patient’s NEWS2 score is between 1 and 4, then the patient
needs attention within 4–6 h. If any single parameter in the NEWS2 has a score of 3, then the
patient needs to be attended to within 1 h. Also, a score of a total of 5 needs attention in less
than 1 h. If the NEWS2 score is 7 or more, then the patient needs immediate attention. In
such a situation, the registered nurse must report the case to the medical team immediately,
and the patient must be continuously monitored for vital signs.

This current research used the NEWS2 scoring system to generate a new column.
Subsequently, we compared this column with others created using the scoring system for
different categories, aiming to estimate the final triage column. As a result, the final triage
column contained three values: a value of 0, indicating the patient as a “low”-priority
case; a value of 1, showing a “moderate” priority; and a value of 2 points for “high”-
priority cases. The final triage value for each row was determined using the four conditions
represented below.

1. If the value is 1 in any of the three columns, then the patient would be considered a
“high”-priority case, and the triage_target value would be 1.

2. If the total value of the three columns is between 0 and 0.25, the patient would be
considered a “low”-priority case, and the triage_target would be 0.

https://www.rcplondon.ac.uk/projects/outputs/national-early-warning-score-news-2
https://www.rcplondon.ac.uk/projects/outputs/national-early-warning-score-news-2
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3. If the estimated value of the three columns is between 0.25 and 0.75, the patient would
be considered a “moderate”-priority case, and the triage_target value would be 1.

4. If the estimated value of the three columns is greater than 0.7, the patient would be
considered a “high”-priority case, and the triage_target value would be 2.
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3.4.3. Normalisation

Normalisation, the final step of feature engineering, transforms individual features to
a unit norm scale to improve a model’s performance and stability in training [43]. Using the
normalisation technique in feature engineering ensures that all features contribute equally
to the model’s training process and eliminates the dominance of features with larger values.

In this study, the dataset of 26 variables, including the triage column, created using
the feature-engineering process underwent normalisation. Normalisation scaled all the
numerical values in the column within the range between 0 and 1. It helped us avoid biased
model performances and difficulties in the learning process. Table 1 represents the variable
name, description, and the datatype of each variable in the derived heart failure dataset.

Furthermore, after normalisation, the dataset was divided into training and testing
parts. The training part included two categories of data: train_data, in 26 columns, and
target_data, in the final triage column. Some classification algorithms do not accept decimal
values as classes; therefore, the final triage column was labelled. After the label-encoding

https://www.rcplondon.ac.uk/projects/outputs/national-early-warning-score-news-2
https://www.rcplondon.ac.uk/projects/outputs/national-early-warning-score-news-2
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process, the train_data and target_data were split into two different datasets, where 80% of
the data was used for training and 20% was used for testing.

Table 1. Derived heart failure dataset.

Variable Name Description Data Type

age Age of the patient (Demographics) float64
gender Gender of the patient (Demographics) int64
acutecvd Acute coronary vascular diseases (PMH *) int64
acutemi Acute Myocardial infraction (PMH) int64
coronathero Coronary atherosclerosis (PMH) int64

htn Hypertension, high blood pressure in patient’s medical
history (PMH) int64

triage_vital_hr Heart rate, a vital sign for triaging (Vitals) int64
triage_vital_sbp Systolic blood pressure (Vitals) int64
triage_vital_dbp Diastolic blood pressure (Vitals) int64
triage_vital_rr Respiratory rate (Vitals) int64
triage_vital_o2 Oxygen levels in blood (Vitals) int64
triage_vital_o2_device Oxygen device needed for patient, Boolean field (Vitals) int64
triage_vital_temp Temperature value of patient (Vitals) float64
meds_cardiacdrugs Cardiac drugs used by patients (Medications) int64
meds_cardiovascular Cardiovascular drugs used by patients (Medications) int64
meds_diuretics Diuretics medicines used by patients (Medications) int64
cc_chesttightness Chest tightness, a symptom of heart failure (Symptoms) int64
cc_cough Cough, a symptom of heart failure (Symptoms) int64

cc_dyspnea Dyspnoea, a sensation of running out of air or shortness
of breath (Symptoms) int64

cc_edema Oedema, swelling caused by fluid inside body tissues
(Symptoms) int64

cc_hypertension Hypertension, high blood pressure as symptoms
(Symptoms) int64

cc_legswelling Leg swelling caused by fluid build-up (Symptoms) int64

cc_palpitations Heart palpitations, feelings of having a fast-beating or
pounding heart (Symptoms) int64

cc_tachycardia Tachycardia, increased heart rate (Symptoms) int64
cc_wheezing Wheezing is a sign of a breathing problem (Symptoms) int64

triage_target Target columns with triage values derived from the
above fields. int64

* PMH is past medical history.

3.5. Model Selection and Training

This study can be considered in the classification problem category because it aimed
to classify patients with three stages of triaging depending on the severity of the condition.
Therefore, the model learned how to separate new observations into three stages of triaging
with low, medium, and high priorities. The extreme gradient-boosting (XGBoost) machine
learning algorithm was chosen as the classification approach for the current cardiological
problem. XGBoost is a gradient-boosting technology that utilises an inclination-boosting
system based on a decision tree [44]. The choice of the algorithm was based on the state-
of-the-art literature applied to similar problems [45]. For the performance comparison,
additional tests were utilised with the K-Nearest Neighbour (KNN), Gaussian Naïve Bayes
(GNB), and decision tree (DTC) classification algorithms.

4. Results and Analysis

This chapter presents a comparative study of the results generated by XGBoost and
other algorithms for multi-class classification. The performance metrics such as accuracy,
precision, F1-score, and recall were calculated from the confusion matrix.

The predicated and test data had three classes that represented “low”, “medium”, and
“high” priorities in the triaging outputs. The “low” priority was represented by a value of
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0, the “medium” priority had a value of 1, and the “high” priority was denoted by a value
of 2, respectively.

4.1. Analysing the Results of XGBoost

As mentioned above, the XGBoost machine learning model was chosen to triage
patients with cardiological conditions.

Table 2 describes the evaluation measures, which help us identify the machine learning
model’s efficiency in predicting class 0, 1, and 2 patients.

Table 2. Evaluation metrics of classes 0, 1, and 2 of XGBoost.

Measure Class 0 Class 1 Class 2 Derivations

Sensitivity 1.0000 0.9966 0.9909 TPR = TP/(TP + FN)
Specificity 0.9970 0.9998 1.0000 SPC = TN/(FP + TN)
Precision 0.9996 0.9987 0.9977 PPV = TP/(TP + FP)
Negative Predictive Value 0.9998 0.9996 0.9998 NPV = TN/(TN + FN)
False-Positive Rate 0.0030 0.0002 0.0000 FPR = FP/(FP + TN)
False Discovery Rate 0.0004 0.0013 0.0023 FDR = FP/(FP + TP)
False-Negative Rate 0.0000 0.0034 0.0091 FNR = FN/(FN + TP)
Accuracy 0.9996 0.9995 0.9998 ACC = (TP + TN)/(P + N)
F1-score 0.9998 0.9976 0.9943 F1 = 2TP/(2TP + FP + FN)

For class 0, the sensitivity of the model was 1.000, and the specificity was 0.9970. The
precision, accuracy, and F1-score were 0.9996, 0.9996, and 0.9998, respectively. The other
values, such as the negative predictive value, the false-positive rate, the false discovery
rate, and the false-negative rate, were 0.9998, 0.0030, 0.0004, and 0.0000, respectively. The
false-positive rate, the false discovery rate, and the false-negative rate were close to zero,
which indicated a high model performance in predicting class 0.

The sensitivity and specificity for class 1 prediction were 0.9966 and 0.9998, respectively.
The precision, accuracy, and F1-score were 0.9987, 0.9995, and 0.9976. Finally, the negative
predictive value, the false-positive rate, the false discovery rate, and the false-negative rate
were 0.9996, 0.0002, 0.0013, and 0.0034, respectively. The values of the false discovery rate,
the false-negative rate, and the false-positive rate in predicting class 1 were close to zero
and indicated a very high precision for the detection of class 1.

The sensitivity and specificity metrics for class 2 prediction were 0.9909 and 1.0000.
The precision, accuracy, and F1-score calculated from the confusion matrix of class 2 were
0.9977, 0.9998, and 0.9943, respectively. Finally, the negative predictive value, the false-
positive rate, and the false discovery rate derived from the confusion matrix of class 2 were
0.9998, 0, 0.0023, and 0.0091. Here, the false-positive rate, the false discovery rate, and the
false-negative rate were close to zero or had a value of zero. It demonstrated the efficiency
of XGBoost classification in the detection of “high”-priority class 2.

The performance metrics obtained for the above three classes proved the efficiency of
the XGBoost classification model in triaging cardiological patients into “low”-, “medium”-,
and “high”-priority groups.

4.2. Comparison of XGBoost Results with other Classification Algorithms

In this chapter, a comparative analysis is discussed, contrasting the outcomes of
XGBoost with those of other classification algorithms such as KNN, GNB, and DTA.

The KNN is a non-parametric, supervised-learning classifier [46]. It relies on proximity
to categorise or forecast the grouping of a given data point. The KNN algorithm exhibited
an accuracy of 96.84%, indicating its effectiveness in correctly predicting outcomes. The
precision of 0.9068 indicated the model’s efficiency in identifying positive instances among
its predictions, and the recall of 0.7084 demonstrated its capability to capture a substantial
portion of actual positive instances. The F1-score of 0.7602, combining the precision and re-
call, further signified the overall balanced performance of the KNN algorithm in classifying
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the priority levels in the “Heart Failure” data. However, the XGBoost algorithm showcased
even higher accuracy, precision, recall, and F1-score values than the KNN algorithm.

The Naïve Bayes (NB) algorithm, a probabilistic machine learning technique rooted in
Bayes’ theorem, finds extensive use in various classification tasks. The GNB serves as an
extension of the original NB algorithm. The GNB predicted the results with an accuracy of
89.41%, which was lower than the accuracy of the XGBoost. Likewise, the precision, recall,
and F1-score metrics, which were 0.6122, 0.7675, and 0.6612, respectively, also fell below
the corresponding values achieved by XGBoost.

DTA is a non-parametric supervised-learning algorithm applicable to both classifica-
tion and regression tasks. It adopts a hierarchical structure resembling a tree, encompassing
a root node, branches, internal nodes, and leaf nodes. The output produced by the decision
tree obtained an accuracy of 99.68, closely approaching the accuracy achieved by XGBoost,
which was 99.94%. In addition, evaluation parameters such as precision (0.9756), recall
(0.9704), and F1-score (0.9730) fell behind the corresponding values attained by XGBoost.

Table 3 summarises the specificity, sensitivity, precision, negative prediction value,
false-positive rate, false discovery rate, false-negative rate, accuracy, and F1-score of indi-
vidual classes of the classification algorithms used for the comparative study.

Table 3. Class-wise measures of algorithms.

Measure
KNN GNB DTC

Class 0 Class 1 Class 2 Class 0 Class 1 Class 2 Class 0 Class 1 Class 2

Sensitivity 0.9973 0.8582 0.2699 0.9100 0.8245 0.5683 0.9995 0.9883 0.9237

Specificity 0.8278 0.9907 0.9989 0.8748 0.9388 0.9641 0.9951 0.9984 0.9989

Precision 0.9750 0.9197 0.8258 0.9800 0.6260 0.2308 0.9993 0.9870 0.9408

Negative Predictive Value 0.9787 0.9825 0.9863 0.5903 0.9773 0.9916 0.9966 0.9985 0.9986

False-Positive Rate 0.1722 0.0093 0.0011 0.1252 0.0612 0.0359 0.0049 0.0016 0.0011

False Discovery Rate 0.0250 0.0803 0.1742 0.0200 0.3740 0.7692 0.0007 0.0130 0.0592

False-Negative Rate 0.0027 0.1418 0.7301 0.0900 0.1755 0.4317 0.0005 0.0117 0.0763

Accuracy 0.9754 0.9760 0.9854 0.9054 0.9261 0.9567 0.9989 0.9973 0.9975

F1-score 0.9860 0.8879 0.4069 0.9437 0.7117 0.3283 0.9994 0.9876 0.9322

Figure 4 provides a graphical comparison of four classification models in terms of
accuracy, precision, recall, and F1-score.
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Consequently, based on our assessment, XGBoost’s predictions outperformed the
performance of all the other machine learning models used for comparison. This evaluation
indicated that the predictions generated by GNB and KNN exhibited a relatively poor per-
formance. In contrast, the DTA approach demonstrated a performance closely resembling
that of XGBoost.

5. Discussion and Conclusions

There is a significant need to implement AI-driven triaging systems in local healthcare
services. In the healthcare community, triaging is a routine event that health workers follow
at every level. It occurs when a new patient is discharged and transferred to a community
setting or when a nurse visits a patient.

This study aimed to classify cardiological patients into certain levels of triaging using
machine learning methods. The quantitative variable selection method involved utilising
the correlation matrix with the data preprocessing stage, including null value imputation
techniques and a data normalization approach.

Subsequently, the preprocessed dataset underwent feature-engineering stages to es-
tablish the triage column and was prepared for training using the XGBoost algorithm. The
trained model’s outcomes were evaluated against those of other classification algorithms
trained on the same dataset. Compared to Ref. [47], the achieved accuracy was significantly
higher, as we utilised a novel feature-engineering approach incorporating feature selection
and the NEWS2 scoring system.

The examination of the evaluation metrics led to the conclusion that the XGBoost ma-
chine learning algorithm yielded the most favourable outcomes when triaging cardiological
patients, including the “high”-priority class with symptoms of heart failure. Moreover,
the computed evaluation parameters for each class, specifically for “low”, “medium”, and
“high” levels of triaging, demonstrated the superior performance of XGBoost compared to
the other machine learning algorithms used in this study.

The approach used in this study can help healthcare professionals reduce triage time
and focus on the immediate treatment of patients. XGBoost’s processing time for triaging
2,35,982 patients was remarkably swift and took less than 0.01 s, in our case.

As discussed above, we used quantitative values and explainable ML algorithms for
the modelling. Within this particular situation, generative AI can be added to generate
textual responses in the output. At the same time, it seems there is no need to apply
large language models (LLMs) to solve the triaging problem. Contemporary LLMs have
significant limitations in this context, as they mostly deal with textual (qualitative) data
and lack explainability. Also, they do not comply with healthcare regulations regarding the
privacy and security of patient data.

This study’s findings can be adapted not only to emergency healthcare services but
also to be more widely implemented in healthcare communities. While several studies
described machine learning for triaging patients in emergency departments, there is a
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noticeable lack of research using machine learning for triaging patients in local community
healthcare providers. Limited studies represented a triaging approach joining primary and
secondary healthcare. For instance, Wang et al. [5] performed a study on unstructured data
to improve the triaging of patients with early inflammatory arthritis (EIA) from primary
care to secondary care using a heterogeneous machine learning model. The research team
used a data-driven hybrid approach to triage EIA patients using referral letters from GPs
and blood test results.

However, the primary limitation in this study pertained to the dataset, as the dataset
used in this study encompassed 970 variables of clinical data from patients, which were
not specifically tailored to patients with heart failure. Furthermore, the derived dataset
for patients with heart failure from the raw dataset, which had 970 variables, contained
a wide range of null values and impurities. Certain crucial variables, such as the test
results, could not be considered in this study due to a substantial number of null values
and impurities being associated with them. The second major limitation was the absence of
a triage column in the dataset. Thus, creating a triage column was one of the main stages in
the current study.

Thus, we can conclude that this study successfully accomplished its stated objective
by addressing the various challenges encountered. Depending on access to the appropriate
datasets, the proposed approach can be iterated to various medical conditions. Moreover,
the calculation of the NEWS2 score, along with the other approaches used in this study, can
be used together to classify and triage other medical conditions. The XGBoost algorithm
can be a method of choice for triaging purposes.
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