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Abstract: Many factors influence the fatigue state of human beings, and fatigue has a significant
adverse effect on the health and safety of the haulage operators in the mine. Among various fatigue
monitoring systems in mine operations, currently, the Percentage of Eye Closure (PERCLOS) is
common. However, work and other environmental factors influence the fatigue state of haul truck
drivers; PERCLOS systems do not consider these factors in their modeling of fatigue. Therefore,
modeling work and environmental factors’ impact on individual operations fatigue state could yield
interesting insights into managing fatigue. This study provides an approach of using operational
data sets to find the leading indicators of the operators’ fatigue. A machine learning algorithm is used
to model the fatigue of the individual. eXtreme Gradient Boosting (XGBoost) algorithm is chosen for
this model because of its efficiency, accuracy, and feasibility, which integrates multiple tree models
and has stronger interpretability. A significant number of negative and positive samples are created
from the available data to increase the number of datasets. Then, the results are compared with other
existing models. A selected algorithm, along with a big data set was able to create a comprehensive
model. The model was able to find the importance of the individual factors along with work and
environmental factors among operational data sets.
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1. Introduction

Fatigue is an occupational hazard and can be attributed to the health and safety of the
worker. It affects the health and safety of both the employees and their colleagues adversely.
Fatigue is a complex phenomenon that can be associated with many factors. Fatigue
can be defined as a state of feeling tired, weary, or sleepy that results from prolonged
physical or mental work, extended periods of anxiety, exposure to harsh environments,
or lack of sleep [1]. Fatigue varies from weakened function of alertness during tasks to
drowsiness, micro-sleep or completely falling asleep. It can affect worker performance
and impair their mental alertness, which can cause dangerous errors [1]. Fatigue presents
several challenges for the mining industry. Various accidents have been reported at mine
operations, which could be associated with the loss of control due to the fatigue and
sleepiness of mineworkers [2]. The mining industry is certainly not alone in facing the
challenge of addressing worker fatigue. In fact, many of the characteristics of fatigue
in the mining industry mirror the similarities of fatigue in other industries. Hence, any
fatigue management applications, training, or interventions from other industries can be
borrowed and applied to mining. However, some have argued that mining, in particular,
is especially susceptible to increases in the presence of fatigue due to the multifaceted
combination of factors in mining environments associated with fatigue: dim lighting;
limited visual acuity; hot temperatures; loud noise; highly repetitive, sustained, and
monotonous tasks; shiftwork; long work hours; long commute times due to mine site
remoteness; early morning awakenings; and generally poor sleep habits [3]. Although
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the full burden of fatigue on mineworkers has not yet been measured, some technologies
can monitor operator fatigue, such as the video-based technology, percentage of eyelid
closure over the pupil over time (PERCLOS) system, and Electroencephalography (EEG)
cap. While such technologies can detect the fatigue of the operator, they do not necessarily
prevent or mitigate fatigue from happening [3]. These technologies have their pros and
cons. Video-based technology (PERCLOS) uses eyelid closure as the main measure to detect
driver fatigue. However, it has some drawbacks that limit its success, such as darkness
limitations and practical hurdles like the distraction of the drivers [4]. On the other hand,
the EEG cap uses electrodes to get the signal from the brain and translate it to the status
of the driver fatigue. These electrodes and caps have been shown to cause discomfort
for drivers, limiting their widespread adoption [5]. Therefore, they are not suitable for
long-term monitoring. There is another technology called WOMBATT (Worldwide Online
Monitoring By Alerting Tired Travelers), can determine a person’s level of fatigue by
analyzing a recording voice [6]. PERCLOS, EEG, WOMBATT and other technologies can
detect fatigue, but they cannot recognize factors that affect fatigue such as work-demand
factors.

The Job Demand-Resources model (JDR) of worker stress and health shows that too
much job demand and not enough resources can result in injuries due to physiological and
physical costs [3]. The core part of the JDR model is related to risk factors associated with
job stress. These factors can be classified into two general categories, job demands and job
resources [7–9]. Job demands refer to the physical, psychological, social, or organizational
aspects of the job that require physical and psychological effort or skills. However, job
demands are not necessarily negative; they may turn into job stressors when those demands
require high effort from the employee, which is hard to recover [7]. Job resources refer to
the physical, psychological, social, or organizational aspects of the job that are functional in
achieving work goals, decreasing job demands, or stimulating personal growth, learning,
and development [7–9].

2. Previous Studies

Fitness for duty in mining is an important issue which is affected by individual’s
physical and psychological fitness. Fatigue is one of the driver of fitness for duty in mining,
which greatly is caused by excessive work hours and shiftwork [10,11]. Fatigue in the
workplace often results in a reduction in worker performance. Fatigue must be controlled
and managed since it causes significant short-term and long-term risks [12–15]. Other than
the health and safety consequences on workers, fatigue can result in damage or loss of
valuable mine equipment like haul trucks. So, the mining industry measures operational
risk losses to estimate capital allocation and manage operational risks [16,17].

Drews et al. (2020) studied fatigue in the mining industry and mentioned that fatigue
in the mining industry is different from other industries because of the specific environ-
mental factors in the mining industry [18]. They also provided some other factors that
drive fatigue like repetitive and monotonous tasks, long work hours, shiftwork, sleep
deprivation, dim lighting, limited visual acuity, hot temperatures, and loud noise [18].
Multiple psychological and physiological issues impacted the fatigue of the workers, which
makes fatigue management difficult. Some technologies can monitor drivers’ fatigue, such
as tracking eye movement and head orientation (PERCLOS) or hard hats with electroen-
cephalogram (EEG) activity tracking, with their pros and cons. However, considering these
technologies, other studies show that there is no obvious approach to control and mitigate
the fatigue of workers in mine operations [3].

Machine learning (ML) can be used to predict leading indicators and help manage-
ment make appropriate decisions [19,20]. ML is flexible to operate without any statistical
assumptions. It also is able to identify any relationships within the phenomena and is-
sues [19,21,22]. Previous study offers that finding leading indicators to predict fatigue in
the mining industry can be useful [18]. Due to the complexity of fatigue, using machine
learning (ML) algorithms on the real-time data captured from the existed technologies can
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be helpful to model fatigue. Such a model could identify predictive elements of workers’
fatigue. Some studies are done with the collected data to predict fatigue [18]. However,
a comprehensive study using a wider range of available data sets can find more possible
independent variables in the model to find top predictive factors. If these factors can be
used as fatigue predictive elements, they will enhance safety and health decisions in an
earlier time in the fatigue cycle.

In an earlier study done by E. Talebi et al. (2021), machine learning (ML) models
were created using aggregated operational data sets from a mine [23]. The findings of that
study confirm that fatigue is caused by a wide variety of factors, which are very difficult
to quantify. Fatigue prediction is a matter of predicting the complex interactions between
human behavior and the changing work environments at mine operations [23]. The model
outcome had a low R2 value that captures relationships that quantify a relatively high
amount of variance in a complex relationship. This high amount of variance is likely largely
due to the difficulty of generalizing a model that can predict fatigue due to the complex
psychological and physiological factors associated with fatigue at the group level. Only
operational data and weather data are utilized in these models aggregated at the mine
level [23].

The machine learning model selected for that analysis was a random forest (RF)
regression algorithm. This algorithm was chosen because it can be applied well to a
wide variety of problems with a rapid speed of training. This analytical tool shows what
features of the model have higher effects on the predictions of the model and estimates
how marginal changes in those features impact these predicted outcomes [23].

The model output identifies the variables that have the highest impact on all fatigue
events. The previous model results offer some interesting insights into the factors that
potentially cause fatigue. It shows that while it is not surprising that shift type (night
or day) causes fatigue, it is interesting that maintenance processes such as unscheduled
downtime and production rates, as well as other operational variables, can affect fatigue
among haul truck drivers. Having identified these additional predictors for fatigue, these
indicators can be used by managers to prioritize safety management efforts. However, this
model was aggregated and averaged out at the mine level. Would a model at a lower level
of granularity, say, at the individual level, rather than aggregated at the mine level yield
better results? This was the primary difference and guiding research question for the model
presented in this paper.

XGBoost algorithm is applied to data to model fatigue. This algorithm is used because
it has more power to handle complicated relations. XGBoost is a powerful machine
learning (ML) algorithm that has shown strong power to pick up patterns in the data
and automatically tune learnable parameters. What is novel in this study compared to the
previous study is a higher score of the model to predict fatigue.

3. Case Study
3.1. Data Description

This study used approximately four years of data from a single, large, operating
surface mine. Table 1 shows a brief overview of the data sets that were used for modeling
fatigue with details of the types of information and the range of dates. The site utilized a
PERCLOS monitoring system, which used cameras to track and monitor the eye movements
of haul truck drivers to model and detect fatigue. When the camera detected certain eye
movements, eye closure, or blinking, the PERCLOS system can determine fatigue based
on a preset model. In a situation when the eyes were closed for more than 3 s, the system
alerted operators, supervisors, and dispatchers for more action. Data captured from the
system was categorized based on the type of event. If the event was a micro-sleep, which
was an actual fatigue event, it would be categorized as a low or critical fatigue event.
Previous studies by the authors showed that fatigue events captured by fatigue monitoring
systems are important indicators of fatigue [10]. Therefore, micro-sleep data was used to
model fatigue for this study.
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Table 1. Data sets details.

Data Source Key Factors Date Range

Fatigue monitoring Micro-sleeps (low and critical
fatigue) 2016–2020

Time and attendance Hours worked, overtime, etc. 2016–2020

Fleet management system
(production and status)

Production cycles, down
equipment,
delayed equipment, etc.

2016–2020

More details of fatigue events are shown in Table 2. This table demonstrates the
number of events by type of fatigue events and the percentage of these fatigue events for
comparison. The data shows more low fatigue compared to critical fatigue, representing
69% of the fatigue events that were captured by the system. All fatigue events are reviewed
after recording from the fatigue monitoring system, and critical fatigue events are the ones
when operators have micro-sleep, while low fatigue events are the ones that just show
drowsiness.

Table 2. Count and percentage of fatigue event by type.

Fatigue Event Review Type Number of Fatigue Events Percentage of Fatigue
Low Fatigue 741 69%
Critical Fatigue 332 31%

Data from the fleet management system (FMS) tracked the production and status
of equipment. It offers a good perspective on the job demands of haul truck drivers
throughout the shift. Status event or status of the equipment can be used to determine if a
piece of equipment is down for maintenance, in production activity, in standby mode, or
ready for production. This information can be used to find the status of the haul truck at the
time of proceeding the fatigue events. Other information in the FMS database included the
load cycle data. A production cycle showed the load and dump cycles of a truck. Detailed
steps were also provided, such as loading, dumping, running empty, running loaded, etc.,
are shown. The most important data for this study was the production cycle state of the
truck when fatigue events happened.

Time and attendance data are provided to show hours worked by employees. The
mine used a swipe-in/swipe-out time keeping system to process and load into a time and
attendance database. A data set of attendance from this database was used to measure
worked hours and overtime of the employees.

3.2. Data Pre-Processing

For the application of machine learning algorithms, data must be pre-processed in
a mathematically feasible format. Therefore, data needs to be pre-processed to make it
appropriate for the application of the modeling. Data pre-processing techniques included
data reduction, data projection, and missing-data treatment. In data reduction, the size of
the datasets decreases by means of feature selection. Data projection intends to transform
all features into a conformed format and range. Missing-data treatments include deleting
missing values and replacing them with the estimates if needed. Therefore, data needs to
be pre-processed to make it appropriate for the application of the modeling.

3.2.1. Data Integration

Each data set was linked to the fatigue monitoring data set based on a unique key. The
FMS system separates equipment status and states. These tables also had to be integrated
into a complex join. Data from FMS system, including status events of the equipment, were
joined to the fatigue data by using a unique key. In order to have a categorized model,
positive and negative samples are created from the fatigue monitoring data set, which
are from the time operators were fatigued or not. After creating samples, other data from
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the attendance database such as overtime, worked hours and number of cycles from the
Load-Dump cycles, were attached to them. In addition, the state of the haul truck at the
time of the fatigue is integrated into the samples from the Load-Dump cycles data set.
Finally, positive and negative samples are integrated together for the purpose of the model.

3.2.2. Data Cleaning

All of the datasets were cleaned, and missing data removed prior to input to the model.
The process of cleaning data included correcting data types, removing incorrect, duplicate,
incomplete, and corrupted data. The next step is handling missing values, like replacing
them with anticipated data or dropping out the whole row from the data. In some cases,
unwanted data has to be dropped from the data. In addition, the type of the data sets may
need to be updated. Finally, multiple datasets should be merged.

In this study, missing data either was filled out with the estimated value, or the whole
rows of them were dropped. Missing values can be handled by deleting the rows having
null values. The rows which are having one or more column values as null can be dropped.
In the case that we want to keep the row, Random Forest algorithm is used to fill out the
missing values. It looks at the same data and predicts the missing value. Data are trained
by the rows that have all values and predict values for the rows we have missing values. In
order to join dump and load data, load IDs were created, which were comprised of shift
index, shovel ID, Truck ID and arrive time. Some of these arrive times were missing; in
which case an estimate was used based on the load-cycle data at the closest date and time.
In the loads-dumps data set, almost 500,000 records were missing. Moreover, some of the
data types and formats were changed for modeling purposes. Additionally, unwanted,
duplicated, corrupted, and incorrect data were omitted from the data source.

3.2.3. Negative and Positive Samples

In this section, the process of how samples are created is explained. In this study, the
categorical machine learning (ML) model is used. It means that data includes different
data categories, which are positive and negative samples. The model predicts if the data
is related to the positive sample, which means fatigue happened, or negative samples,
which are related to the time without fatigue. Positive samples are derived from the fatigue
monitoring data sets when a fatigue event is flagged by the system.

Negative samples were made from time frame when fatigue events did not happen.
This sampling was done for each employee and equipment. In the process of data engi-
neering, fatigue data is merged with status event data. Two factors are used for making
negative samples. First, in order to find the number of samples, we looked at the ratio of
the time frame that fatigue did not happen during a shift time for each employee. Second,
we looked at each status event in a shift in a way that we have at least one sample for each
status event. Therefore, these negative samples are created in an acceptable proportion
ratio for the time frame that fatigue did not happen in a shift time and for each status event.

After these samples are created, other variables like time and attendance data, number
of cycles, and overtime are merged with these samples. Moreover, other feature engineering
is done for these samples. Finally, negative and positive samples are combined to have a
big data set for the purpose of making the model. More details of what is done on the data
in this process are explained in the feature engineering section.

3.2.4. Feature Engineering

Features are the numerical or categorical variables from the data sets that can de-
termine the model prediction. They are independent, and ideally, there is little to no
correlation between the features. Feature engineering has a vital role in data analysis and
machine learning. Feature engineering meets a need for the generation and selection of
useful features. It includes different steps of engineering as will be explained. Feature
transformation, feature generation, and feature extraction are about making a feature from
existing features [24]. Feature selection is about selecting a small set of features from the



Mining 2022, 2 547

datasets to make it computationally feasible to use in a certain algorithm. Feature analysis
and evaluation are the processes of evaluating the usefulness of the features, which is
usually a part of feature selection [24].

In this study, all datasets are engineered in an appropriate way to be used in an
XGBoost algorithm [25]. Fatigue data provided from the fatigue monitoring system were
reviewed and divided into different categories. Among them, micro-sleeps and drowsiness
were identified as the fatigue events of workers with low and critical fatigue levels. They
were dependent variables of the model. All other available data like fleet management data,
production cycles, and time and attendance were modeled as predictors and independent
variables of the model. All features and variables used in different iterations of the modeling
are shown in Table 3.

Table 3. List of the variables based on the data source.

Data Source Variables Data Type and Example Data

Time and attendance

Employee ID Integer (5 to 89,021)
Common Equipment ID Integer (205 to 841)
Year Integer (2014 to 2020)
Month Integer (1 to 12)
Week Integer (1 to 54)
Day Integer (1 to 31)
Day of week Integer (1 to 7)
Day of year Integer (1 to 366)
Shift is end of month Categorical Integer (0 and 1)
Shift is start of month Categorical Integer (0 and 1)
Shift is end of quarter Categorical Integer (0 and 1)
Shift is start of quarter Categorical Integer (0 and 1)
Shift is end of year Categorical Integer (0 and 1)
Shift is start of year Categorical Integer (0 and 1)
Worked hour Integer (0 to 13)
Overtime Integer (0 to 1)
Overtime of previous shift Integer (0 to 1)

Fleet management system
(production and status)

Status—Delay
Status—Down
Status—Ready
Status—Standby
Number of cycles
Number of cycles of previous
shift
Work Type Scheduled
Work type Unscheduled
Fleet_HTE—KOM960
Fleet_HTE—LEB282
Fleet_HTM—CAT793
Reason Description (Included
of 70 different variables)
State of Truck—Empty
Driving
State of Truck—Full Driving
State of Truck—Loading
State of Truck—None
State of Truck—In Queue
Waiting for Loading
State of Truck—Spotting for
Load
Status Event Duration

Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Integer (1 to 121)
Integer (1 to 121)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Integer (2 to 167,932)

Fatigue
monitoring

system
Is Fatigue Categorical Integer (0 to 1)
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3.2.5. Features

This model was aggregated at the individual level (haul truck operators), with positive
and negative samples as it is explained before. Since this model is a categorical model, a
dependent variable is added to the data to show if a row of data is related to the fatigue
event or not (True or False). Therefore, data are categorized into positive and negative
samples. Positive samples are the rows of input data of the model that show actual fatigue
events. Negative samples are the rows of data that are not fatigue events.

All the features were created for both positive and negative samples. Two different
features were provided from the time and attendance data sets, overtime of current or
previous shift and worked hours of the same shift for each sample. Moreover, some
variables like day, week, month, and year were built from the attendance datasets. Loads
and dumps data were part of the fleet management data represented by the load-dump
cycle of the haul truck. They were used to create a feature of the number of cycles for the
current shift and previous shift. Another feature that was provided from the cycle data is
the states of the haul truck for each positive and negative sample. They were categorized
into Queue Waiting for Load, Spotting for Load, Loading, Full Driving, Dumping, and
Empty Driving. Status events datasets are used to find the status of the haul truck for the
samples, such as Unscheduled work, Scheduled work, Ready, Delay, Down, Standby, and
Event duration.

3.3. Data Visualization

Before creating any machine learning model and after data cleaning, it is necessary
to do exploratory analysis. First, data should be examined before training the model. The
Pandas library in Python was used to load data into a DataFrame structure for further
manipulation. Then, some basic statistical analyses were generated, for example, the distri-
bution of each countable variable (Figure 1). Other analyses produced linear correlations to
observe the relationship between independent variables. Figure 2 displays the significant
correlation of the variables.

As Figure 1 shows, 75% of the employees have 0.5 to 1.5 h of overtime, which can
be seen from the worked hour data as well. On the other hand, the average number of
cycles from the previous shift is almost 20 for most of the data. It also shows the right-
skewed distribution, which identifies that most of the data have more than 50 cycles of the
previous shift. Same data as overtime data from the worked hour graph shows that more
than 75% of employees worked more than 12 h a shift. Other graphs display which day,
month, and year have the higher rate of fatigue. The last graph shows which equipment
ID has a higher rate of fatigue compared to others. Figure 2 demonstrates that some of
the independent variables have a positive or negative correlation with more than R2 = 0.7,
which has darker red or blue color. Therefore, one of them is removed from the model to
reduce the possibility of overfitting.
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4. Methodology

Over the past several years, the UMODEL lab at University of Utah’s mining engineer-
ing department has been studying and modeling mine workforce fatigue. The approach has
been examining fatigue through direct surveys of crews, developing tracking technology,
and modeling fatigue using operational technology. This study investigates a model of the
fatigue of individuals based on job demands and environmental factors. Therefore, it uses a
machine learning (ML) algorithm applied to data from a surface mine to identify indicators
of fatigue in operational datasets. The process and steps of this study are provided in
Figure 3.
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Figure 3. Process of study.

4.1. Modeling Approach

In general, there are three types of Machine Learning (ML) algorithms: supervised
learning, unsupervised learning, and reinforcement learning. This study involves super-
vised learning, which includes a target variable (dependent variable) and a given set of
predictors (independent variables or features) [25]. Dependent variables are predicted by
the independent variables. An algorithm that maps inputs to desired outputs will be made
with these independent variables. After the model is created, the training process continues
until there is a satisfactory level of accuracy in the model [25]. Some of the examples of
supervised learning consist of regression, decision tree, Random Forest (RF), K-Nearest
Neighbour (KNN), logistic regression, etc. The algorithm used in this study is called eX-
treme Gradient Boosting (XGBoost), which is an optimized distributed gradient boosting
library [25]. It is designed to be highly efficient, flexible, and portable. It accomplishes
machine learning algorithms under the Gradient Boosting framework. Gradient boosting
gives a prediction model in the form of an ensemble of weak prediction models, which are
typically decision trees. XGBoost algorithm provides a parallel tree boosting that can run
them at the same time and solve many data science problems fast and accurately.

The fundamental idea of boosting is to integrate hundreds of simple trees with low
accuracy to make a more accurate model. Every iteration will generate a new tree for the
model. There are thousands of methods to generate a new tree. A common method is
called the Gradient Boosting Machine [25]. It uses gradient descent to make the new tree
based on previous trees. For this purpose, the objective function should be derived toward
the minimum gradient direction.

XGBoost Algorithm

XGBoost model is a learning framework based on Boosting Tree models. XGBoost is
based on gradient boosted decision trees designed for speed and performance. It has a
strong expansion and flexibility and integrates multiple tree models to build a stronger ML
model. Additionally, XGBoost uses a variety of methods to avoid overfitting [26].
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In this study, the following parameters, known as hyperparameters, were adjusted to
make the XGBoost model perform at its best:

1. n_estimators: is the number of iterations in training. A very small n_estimators can
result in underfitting, which diminishes the learning ability of the model. However,
very large n_estimators will cause overfitting, which is not good either [26].

2. min_child_weight: identifies the summation of sample weight of the smallest leaf
nodes to prevent overfitting.

3. max_depth: is the maximum depth of the tree. The bigger depth of the tree makes the
tree model more complex and the fitting ability stronger. However, the model is more
likely to overfit.

4. subsample: is the sampling rate of all training samples.
5. colsample_bytree: is the feature sampling rate when constructing each tree. In this

task, this is equivalent to the sampling rate of the landmark gene.
6. learning_rate: is a tuning parameter in an algorithm that defines the weight at each

step while moving toward a minimum of a loss function. It is a very important
parameter that needs to be adjusted in every algorithm. It greatly affects the model
performance. To make the model more robust, we can decrease the weight of each
step.

4.2. Model

For this study, different iterations of the model were conducted using available data
subsets as dependent variables. The machine learning procedure diagram is displayed
in Figure 4. All of the features (independent variables) were created from the available
data sets for each individual. The dependent variable predicts true fatigue events from
non-fatigue events. True fatigue events are classified as positive and non-fatigue events are
considered negative. All independent variables in these models, also known as features,
are representations of some of the mine’s operation data sets. These features contain values
such as the status of the haul truck in the operation cycle, over time, and the working hours
of the operator (see Table 3).
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Data were divided into two sets: 80% constituted the training data set, and 20%
constituted the validation data set. The purpose of these models was to determine the
features that can predict fatigue to maximize model scores. In these models, only data
subsets with micro-sleeps were modeled. From 209,710 possible events, only 1073 contained
micro-sleep with critical and low fatigue reviews in the data sets to train and validate the
XGBoost algorithm. After initial data exploratory analysis, this study refined models
to predict operator fatigue. Then, possible iterations to choose the best features were
conducted to predict fatigue and the possibility of including all available feature sets that
drive fatigue. Data for these models were constrained to the number of days contained in
the fatigue data. Thus, the models were created using data from 7 November 2014 to 23
June 2020.

After engineering data, data should be numeric for applying the selected algorithm.
Therefore, every feature is checked, and its format is changed to be numeric. All of the
categorical features are used to make several features with 0 and 1 values as they can be
appropriate for this model. The status events and production datasets create over fifty
numerical variables, including status, reason description, work type, and the state of the
haul truck in the time of fatigue.

In order to get the best possible results out of the selected algorithm and leverage
the maximum power of the algorithm, hyperparameters should be tuned. This selected
algorithm provides an extensive range of hyperparameters. XGBoost is a powerful machine
learning (ML) algorithm that has shown strong performance at picking up patterns in the
data by automatically tuning thousands of learnable parameters. In tree-based models,
like XGBoost, the learnable parameters are the choice of decision variables at each node,
creating more design decisions and, as a result, a wider range of hyperparameters. These
parameters were specified by hand to the algorithm and fixed throughout a training phase.
As mentioned earlier, for this model, there are hyperparameters including maximum depth
of the tree, number of trees to grow, number of variables to consider when building each
tree, minimum number of samples on a leaf and fraction of observations used to build
a tree. These are some of the model parameters used in this study: learning rate: 0.05,
maximum depth of tree: 5, number of trees: 100, minimum child weight: 500, fraction of
observations used to build a tree (subsample): 1.

4.2.1. Model Iterations

For the first iteration of the modeling, all the available features were used to model
fatigue. Variables for the second, third and fourth iterations of modeling are determined
by results from the first iteration. Two top features from the first model iteration are the
number of cycles and overtime of the employees. In order to see the effect of other features,
they are removed for the second iteration of the modeling. Another top feature of the
first model was employee ID. It shows that some individuals have a higher rate of fatigue
compared to others. Therefore, two different models were created based on the employee
ID: employees with higher rates of fatigue and employees with lower rates of fatigue.
Results from both models demonstrate that different indicators affect fatigue of these two
groups.

4.2.2. Model Evaluation

After data training and model debugging, each model result was interpreted, and
if the result is accepted, the model is evaluated. Different approaches are available for
evaluating the model. One way of the model evaluation is the model score or R2. This score
is usually from the validation data set. The higher the model score, the better the model
performs. Next for each tree-based algorithm is Gini index. The Gini index calculates the
degree of probability of a specific variable that is wrongly being classified when chosen
randomly for each tree, which works on categorical variables. The degree of Gini index
varies from 0 to 1:

• Where 0 describes that all the elements be allied to a certain class.
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• The Gini index of value as 1 denotes that all the elements are randomly distributed
across various classes.

• A value of 0.5 shows the elements are uniformly distributed into some classes.

The next method of model evaluation, which is used here, is the confusion matrix.
Since this model used classification predictions, there are four types of outcomes that could
occur, which are often plotted on a confusion matrix as an outcome of the model.

• True positives: when the model predicts a fatigue event which is an actual fatigue
event in the data sets.

• True negatives: when the model predicts that an event is not fatigue and it is not an
actual fatigue event in the data sets.

• False positives: when the model predicts a fatigue event that is not an actual fatigue
event in the data sets.

• False negatives: when the model predicts that an event is not fatigue and it is an actual
fatigue event in the data sets.

5. Results
5.1. Model Results

Different iterations of the model were created, and five of them were selected as they
performed better. All of these model iterations work well as their scores are acceptable. The
first model with all of the features works great. It shows that employee ID, event duration,
worked hour, number of cycles from the previous shift, shift index, day, day of year, day of
week, and overtime of the previous shift have the biggest effect on the fatigue of the haul
truck operators. It shows that some individuals have a higher rate of fatigue compared
to others, as the top feature of the model shows. Crews seem to have outliers that are the
main drivers of fatigue events [6]. Another parameter from this model is overtime from
the previous shift, which denotes more fatigue happened for employees who have more
overtime from the previous shift. Moreover, it demonstrates that the state of the haul truck
categorized to such as empty-driving and full-driving can drive fatigue of the operator. All
the top features are displayed in Table 4.

For the second iteration of the model, the number of cycles and overtime of the
employee from the previous shift substitutes with the number of cycles and overtime of
the same shift. The same result as the previous model shows that employee ID has the
highest effect on fatigue. Some of the other top features of this model are shift index, event
duration, number of cycles, common equipment ID, worked hour, day of year, week, work
type unscheduled, and shovel machine.

After analyzing two first model outcomes, to see the effect of the top features on the
model prediction, some of them are removed from the data set to run the third step of the
modeling. Hence, the third model was created with all features except the number of cycles
and overtime of the previous shift and the same shift. The top feature of the third model is
employee ID, which shows the same information as the two first models. Other topmost
features are shift index, event duration, worked hours, and equipment ID. It shows that
some specific fleets have a higher rate of fatigue compared to others. Overall, it shows
other important features from the model like day, week, work type, and state of the haul
truck are more effective on fatigue.

A top feature of the first three models is employee ID. Therefore, to see the effect of
employee ID on the model prediction, we decided to create the fourth and fifth steps of
the modeling for two groups of employees with a higher and lower rate of fatigue. The
fourth model also performs well for employees with a higher rate of fatigue. It shows that
top features are included in the status shift index, followed by the equipment ID, event
duration, day, worked hour, day of year, shovel machine, day of week. It also demonstrates
that the state of haul truck of full driving has a higher effect compared to empty driving.

Another iteration of the model was conducted for the employees with a lower rate of
fatigue. Model outcome shows that shift index event duration, shovel machine, day of year,
and worked hours, followed by equipment ID, day, day of week, work type unscheduled,
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and week have effects on the fatigue. Other top features of this model are the state of haul
trucks and also shows that some fleets have higher fatigue compared to others. In Table 4,
the results of the best-performed model are displayed. Later, a comparison of the model
iterations is presented.

Table 4. Model performance results.

Model Independent Variables Score Top Features

First model

Employee ID
Common Equipment ID
Year
Month
Week
Day
Day of week
Day of year
Shift is end of month
Shift is start of month
Shift is end of quarter
Shift is start of quarter
Shift is end of year
Shift is start of year
Worked hour
Overtime of previous shift
Status—Down
Status—Standby
Number of cycles of previous shift
Work Type Scheduled
Work type Unscheduled
Fleet_HTE—KOM960
Fleet_HTE—LEB282
Fleet_HTM—CAT793
Reason Description (Included of
70 different variables)
State of Truck—Empty Driving
State of Truck—Full Driving
State of Truck—Loading
State of Truck—None
State of Truck—In Queue Waiting for
Loading
State of Truck—Spotting for Load
Status Event Duration

0.98

1. Employee ID
2. Event Duration
3. Worked Hour
4. Number of Cycle Previous Shift
5. Shift Index
6. Day
7. Day of year
8. Day of week
9. Overtime Previous Shift
10. Common Equipment ID
11. Is Quarter End
12. Shovel Machine
13. Month
14. Week
15. State Truck Full Driving
16. State Truck Empty Driving

Second model

Employee ID
Common Equipment ID
Year
Month
Week
Day
Day of week
Day of year
Shift is end of month
Shift is start of month
Shift is end of quarter
Shift is start of quarter
Shift is end of year
Shift is start of year
Worked hour
Overtime
Status—Down
Status—Standby
Number of cycles
Work Type Scheduled
Work type Unscheduled
Fleet_HTE—KOM960
Fleet_HTE—LEB282
Fleet_HTM—CAT793
Reason Description (Included of
70 different variables)
State of Truck—Empty Driving
State of Truck—Full Driving
State of Truck—Loading
State of Truck—None
State of Truck—In Queue Waiting for
Loading
State of Truck—Spotting for Load
Status Event Duration

0.83

1. Employee ID
2. Shift Index
3. Event Duration
4. Number of Cycle
5. Common Equipment ID
6. Worked Hour
7. Day of Year
8. Week
9. Work Type Unscheduled
10. Shovel Machine
11. Work Type Scheduled
12. Day of Week
13. Day
14. State Truck Full Driving
15. State Truck Empty Driving
16. Fleet HTE—KOM960
17. State Truck Queue Waiting for

Load
18. Fleet HTE—CAT793
19. Fleet HTE—LEB282
20. Year
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Table 4. Cont.

Model Independent Variables Score Top Features

Third model

Employee ID
Common Equipment ID
Year
Month
Week
Day
Day of week
Day of year
Shift is end of month
Shift is start of month
Shift is end of quarter
Shift is start of quarter
Shift is end of year
Shift is start of year
Worked hour
Status—Down
Status—Standby
Work Type Scheduled
Work type Unscheduled
Fleet_HTE—KOM960
Fleet_HTE—LEB282
Fleet_HTM—CAT793
Reason Description (Included of
70 different variables)
State of Truck—Empty Driving
State of Truck—Full Driving
State of Truck—Loading
State of Truck—None
State of Truck—In Queue Waiting for
Loading
State of Truck—Spotting for Load
Status Event Duration

0.82

1. Employee ID
2. Shift Index
3. Event Duration
4. Worked Hour
5. Common Equipment ID
6. Day of Year
7. Week
8. Shovel Machine
9. Day
10. Day of Week
11. Work Type Unscheduled
12. Work Type Scheduled
13. State Truck Full Driving
14. Fleet HTE—KOM960
15. State Truck Empty Driving
16. State Truck Queue Waiting for

Load
17. Year
18. Fleet HTE—LEB282
19. Fleet HTE—CAT793
20. Month

Fourth model
(With employees with a higher rate of fatigue)

Common Equipment ID
Year
Month
Week
Day
Day of week
Day of year
Shift is end of month
Shift is start of month
Shift is end of quarter
Shift is start of quarter
Shift is end of year
Shift is start of year
Worked hour
Status—Down
Status—Standby
Work Type Scheduled
Work type Unscheduled
Fleet_HTE—KOM960
Fleet_HTE—LEB282
Fleet_HTM—CAT793
Reason Description (Included of
70 different variables)
State of Truck—Empty Driving
State of Truck—Full Driving
State of Truck—Loading
State of Truck—None
State of Truck—In Queue Waiting for
Loading
State of Truck—Spotting for Load
Status Event Duration

0.83

1. Shift Index
2. Common Equipment ID
3. Event Duration
4. Day
5. Worked Hour
6. Day of year
7. Shovel Machine
8. Day of Week
9. State Truck Full Driving
10. Week
11. State Truck Empty Driving
12. Year
13. Month
14. State Truck Queue Waiting for

Load
15. Fleet HTE—KOM960
16. Work Type Unscheduled
17. Is Month End
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Table 4. Cont.

Model Independent Variables Score Top Features

Fifth model
(With employees with a lower rate of fatigue)

Common Equipment ID
Year
Month
Week
Day
Day of week
Day of year
Shift is end of month
Shift is start of month
Shift is end of quarter
Shift is start of quarter
Shift is end of year
Shift is start of year
Worked hour
Status—Down
Status—Standby
Work Type Scheduled
Work type Unscheduled
Fleet_HTE—KOM960
Fleet_HTE—LEB282
Fleet_HTM—CAT793
Reason Description (Included of
70 different variables)
State of Truck—Empty Driving
State of Truck—Full Driving
State of Truck—Loading
State of Truck—None
State of Truck—In Queue Waiting for
Loading
State of Truck—Spotting for Load
Status Event Duration

0.82

1. Shift Index
2. Event Duration
3. Shovel Machine
4. Day of year
5. Worked Hour
6. Common Equipment ID
7. Day
8. Day of Week
9. Work Type Unscheduled
10. Week
11. Work Type Scheduled
12. State Truck Full Driving
13. State Truck Empty Driving
14. Fleet HTE—KOM960
15. Fleet HTE—LEB282
16. State Truck Loading
17. State Truck Queue Waiting for

Load
18. Month
19. Fleet HTE—CAT793
20. Is Month End

All the model outputs illustrate that the state of the haul truck can increase the fatigue
of the operators. Among all the different states of the haul truck, empty driving has a
greater impact, which is not surprising since the truck needs to be moving for the system
to work. Another observation from the models is that, after empty driving, full driving
also has an effect on the fatigue of the operators. It may be because of the monotonous task
while driving to the destination of dumping of loading. It also may be due to long-distance
driving.

5.2. Gini Index

The Gini index or Gini coefficient computes the degree of probability of a specific
variable that is wrongly being classified when chosen randomly. The Gini index estimates
the amount of probability of a specific feature that is incorrectly classified when selected
randomly in the decision tree. If all the elements are linked with a single class, then it
can be called pure. The Gini index varies between values 0 and 1, where 0 identifies the
purity of classification, and all the elements belong to a specified class or only one class
exists there, and 1 expresses the random distribution of elements across different classes.
Additionally, the value of 0.5 shows an equal distribution of elements over some classes. In
every decision tree algorithm, Gini index can help to find the best-chosen samples for the
best-performed tree. The best-chosen samples for the decision tree for each iteration of the
models are shown in Table 5. Gini index is the evaluation method during the process of the
model training; however, a confusion matrix is calculated after the model is made.

Table 5. Gini index of the models.

Model Gini Index
First model 0
Second model 0.46
Third model 0.48
Fourth model 0.37
Fifth model 0.47
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5.3. Confusion Matrix

Confusion matrices demonstrate counts from predicted and actual values. It shows
the score of the model and how accurate the model predicted testing data. In the confusion
matrix, there are four different values. The output TN means True Negative, which shows
the number of negative samples classified by the model accurately. Likewise, TP stands for
True Positive, indicating the number of positive samples predicted by the model accurately.
FP shows False Positive values, the number of actual negative examples classified by the
model as positive. FN stands for False Negatives value, which is the number of actual
positive samples classified by the model as negative. Figures 5–9 represent the confusion
matrices of all four model iterations. One of the commonly used metrics for classification
models is accuracy. The accuracy of the model can be calculated by summation of accurate
prediction over a summation of all classified samples in the confusion matrix, as Equation
(1) shows. Table 6 represents the accuracy of the models.

(
TN + TP

TN + TP + FP + FN
), (1)
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Table 6. Model accuracy.

Model Accuracy
First model 0.99
Second model 0.63
Third model 0.60
Fourth model 0.74
Fifth model 0.60

5.4. SHAP Values of the Models

SHAP values are based on Shapley values, a concept coming from game theory. This
game theory requires a game and some players. Here, in the machine learning model,
the game reproduces the outcome of the model, and the players are the features included
in the model. Shapley quantifies the contribution of each player to the game, and the
contribution of each feature brings to the prediction of the model. In fact, SHAP is about
the local interpretability of a predictive model. Therefore, SHAP values of the five different
iterations of the models are provided in Figures 10–14.

They show the feature value on the model and the SHAP value of each value of the
features. Red presents the higher value of the feature, and blue presents the lower value
of the feature. For instance, the employee ID with the higher value positively impacts the
model output. Adversely, unscheduled work type negatively impacts the fatigue model
output, which means that a higher value of the unscheduled work type increases the fatigue
of the operator. Another interesting finding from the SHAP value plot is that in the case
of driving with a full haul truck, a higher value has a negative effect on the fatigue model
output. Therefore, these plots can be utilized to interpret the result of the model in detail
and in a more nuanced way.



Mining 2022, 2 559Mining 2022, 2, FOR PEER REVIEW  21 
 

 

 

Figure 10. SHAP value of the first model. 

 

Figure 11. SHAP value of the second model. 

Figure 10. SHAP value of the first model.

Mining 2022, 2, FOR PEER REVIEW  21 
 

 

 

Figure 10. SHAP value of the first model. 

 

Figure 11. SHAP value of the second model. Figure 11. SHAP value of the second model.



Mining 2022, 2 560
Mining 2022, 2, FOR PEER REVIEW  22 
 

 

 

Figure 12. SHAP value of the third model. 

 

Figure 13. SHAP value of the fourth model. 

Figure 12. SHAP value of the third model.

Mining 2022, 2, FOR PEER REVIEW  22 
 

 

 

Figure 12. SHAP value of the third model. 

 

Figure 13. SHAP value of the fourth model. Figure 13. SHAP value of the fourth model.



Mining 2022, 2 561
Mining 2022, 2, FOR PEER REVIEW  23 
 

 

 

Figure 14. SHAP value of the fifth model. 

5.5. Model Iterations Comparison 

As discussed previously, several different model iterations were created to explore 

which features have the higher effects on fatigue. Five different iterations are provided 

for comparison. Details of them are provided in Table 7 for comparison. For the first iter‐

ation, all of the available engineered features such as the number of cycles and overtime 

of the previous shift are used. This model has a score of 0.98. Figure 4 displays the confu‐

sion matrix of the models, which shows that the model works decently. As it illustrates, 

only 20 samples are not predicted correctly. It shows that employee ID has the highest 

effect on fatigue. Employee ID illustrates that each individual has a different rate of fatigue 

events. Moreover, it shows employee ID, event duration, worked hours, and shift index 

has effects on the fatigue of the individuals. It also shows that the number of cycles of the 

previous shift has an effect on fatigue. For the second iteration, the same features are used, 

except the number of cycles and overtime from the previous shift are dropped from the 

model, and instead, those features from the same shift are used. However, the score of the 

model  is  lower, and  it demonstrates the same top features as the first model, with em‐

ployee ID having the highest effect on the model. 

For the third model iteration, employee ID and for the fourth and fifth models, shift 

index is a top feature. The second, third, fourth, and fifth models are not performing well 

as the first model, but they demonstrate other important features of the model. For exam‐

ple, event duration, shovel machine, equipment ID, and day are the features that model 

outcome shows as  top  features. The confusion matrix  for  these models shows  that  the 

model has some errors in predicting fatigue in these models. The second model has a sig‐

nificant error in predicting samples, 13,306 and 37,098, respectively true and false samples 

are predicted wrong by the model. The third model could not predict 17,817 true samples 

and 36,526 false samples correctly. The fourth model also predicted 1055 and 5483 true 

and false samples wrong. In the last model, 26,657 and 17,242 true and false samples are 

predicted wrong. As the confusion matrix represents, fatigue is predicted by the second, 

third, and fourth models mostly when a sample is a fatigue event, which means they are 

positive samples. However, the fifth model predicts better when the sample is not a fa‐

tigue event, which means that samples are negative samples. 

   

Figure 14. SHAP value of the fifth model.

5.5. Model Iterations Comparison

As discussed previously, several different model iterations were created to explore
which features have the higher effects on fatigue. Five different iterations are provided for
comparison. Details of them are provided in Table 7 for comparison. For the first iteration,
all of the available engineered features such as the number of cycles and overtime of the
previous shift are used. This model has a score of 0.98. Figure 4 displays the confusion
matrix of the models, which shows that the model works decently. As it illustrates, only
20 samples are not predicted correctly. It shows that employee ID has the highest effect on
fatigue. Employee ID illustrates that each individual has a different rate of fatigue events.
Moreover, it shows employee ID, event duration, worked hours, and shift index has effects
on the fatigue of the individuals. It also shows that the number of cycles of the previous
shift has an effect on fatigue. For the second iteration, the same features are used, except
the number of cycles and overtime from the previous shift are dropped from the model,
and instead, those features from the same shift are used. However, the score of the model
is lower, and it demonstrates the same top features as the first model, with employee ID
having the highest effect on the model.

Table 7. Comparison of the models.

Model Top Feature Score
Percentage of
Samples That
Predicted Correctly

First model Employee ID 0.99 100%
Second model Employee ID 0.83 63%
Third model Employee ID 0.82 60%
Fourth model Shift Index 0.83 74%
Fifth model Shift Index 0.82 60%

For the third model iteration, employee ID and for the fourth and fifth models, shift
index is a top feature. The second, third, fourth, and fifth models are not performing
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well as the first model, but they demonstrate other important features of the model. For
example, event duration, shovel machine, equipment ID, and day are the features that
model outcome shows as top features. The confusion matrix for these models shows that
the model has some errors in predicting fatigue in these models. The second model has
a significant error in predicting samples, 13,306 and 37,098, respectively true and false
samples are predicted wrong by the model. The third model could not predict 17,817 true
samples and 36,526 false samples correctly. The fourth model also predicted 1055 and
5483 true and false samples wrong. In the last model, 26,657 and 17,242 true and false
samples are predicted wrong. As the confusion matrix represents, fatigue is predicted by
the second, third, and fourth models mostly when a sample is a fatigue event, which means
they are positive samples. However, the fifth model predicts better when the sample is not
a fatigue event, which means that samples are negative samples.

6. Discussion

The model output identifies the variables that have the greatest impact on all fatigue
events. Table 8 illustrates the most important features and their data sources from the best-
performed model (first model). The model results admit current understanding of fatigue, at
the same time providing some interesting new insights into work and environmental factors
that potentially cause fatigue for individuals. Fatigue events are clustered consistently
within a group of individuals. Since the model outcome represents employee ID as one
of the top factors, we can conclude that individual factors greatly affect fatigue. Based on
the study by Drews F. (2020), this can be because of different factors like individual sleep
efficiency, clinical conditions, life and event stressors, and personality factors [18]. From
the model outcome and as it is expected, each individual has a different rate of fatigue.

Table 8. Top features by data classification.

Data Category Feature Rank Feature

Time and attendance

1 Employee ID

3 Worked Hour

5 Shift index

6 Day

7 Day of year

8 Day of Week

9 Overtime Previous Shift

11 Is quarter end

13 Month

14 Week

Fleet management system
(production and status)

2 Event Duration

4 Number of Cycle Previous Shift

10 Common Equipment ID

12 Shovel Machine

15 State Truck Full Driving

16 State Truck Empty Driving

Drews F. (2020) conceptual fatigue model examines previous shift factors that have
effects on the sleep history and, finally, fatigue of the individual [18]. It also represents
work demand as a big factor of fatigue, which has physiological and psychological impacts
on the individual. A similar result from this study outcome shows that overtime work and
the number of cycles of the previous shift highly impact fatigue. The number of cycles and
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overtime show the burden of the work demand for the operators. Similarly, the state of
the haul truck driver is another factor that drives fatigue. They demonstrated the state
of the haul truck in the load-dump cycle when fatigue happened. Another finding from
these models shows that the shift index is a factor that drives fatigue, which shows fatigue
rate is higher in some specific shifts. Additionally, the outcome from the models shows
that full-driving and empty-driving have a higher fatigue rate than other states, which
full-driving affects fatigue more compared to empty-driving. It can be because of the
monotonous task for a long time compared to when they dumped, loaded, or waited in a
queue. Moreover, model results offer that some specific work types, like unscheduled ones,
increase the rate of fatigue. It implies that any unscheduled tasks like delays in the cycles
make the operator more vulnerable to fatigue due to waiting time. It also shows that cycles
after that will have a higher risk of fatigue. Other variables from the model are shovel
machine, equipment ID, day, week, month, and is the end of the month, which suggest a
pattern in the fatigue time for individuals. As the model shows, the higher duration of the
fatigue event, the more fatigue event happens for the operator, which shows a more serious
issue.

Results from the model with higher rates of fatigue and lower rates of fatigue demon-
strate that different indicators affect the fatigue of these two groups. In addition, they
display that some fleets have a higher rate of fatigue compared to other fleets. These models
also show that unscheduled work type has a higher impact on the fatigue of the employees
with a higher rate of fatigue.

These outcomes can help the health and safety managers understand the magnitude
of the mine site’s fatigue issues. Looking at the significant effect of the individual factors
on fatigue and work environment factors propose more attention to individuals by the
health and safety managers. The model can be used to justify targeted fatigue training for
each individual that has a higher fatigue risk to take care of their individual factors like
sleep quantity and quality. Another approach would be providing insight to managers
and supervisors to target more flexible interventions (shift schedule, breaks, etc.) for
individuals with a higher rate of fatigue or a greater fatigue duration. Supervisors can
have more targeted engagement with operators during monotonous tasks like empty haul
state. The number of cycles shows if they worked the whole shift or had some equipment
downtime. The high number of cycles shows high work-demand during the shift. Similarly,
overtime shows the burden of the work, which even asks for work after the shift ends.
From the health and safety perspective, they can manage to support and check individuals
with a lower rate of break. Another issue is the delay in production, which supervisors can
manage by being alert to check these operators more often.

These model outcomes proved that factors that drive fatigue for each individual are
different, and the mining industry needs to have individualized flexibility of health and
safety programs versus a common general program or a tool to detect fatigue. Current
fatigue monitoring systems are not able to consider these individual differences in a com-
prehensive way. A more comprehensive fatigue monitoring and prediction program can
likely prevent the consequences earlier than lagging systems. Looking at the individual’s
condition is very important and helpful in improving health and safety situations. More-
over, work demand is another factor that health and safety programs could look at to
control fatigue. Such as having specific controls and supervision in a time of higher work
demand.

7. Conclusions

Although this study tries to show the application of machine learning algorithms
in health and safety management mining operations, its finding helps to understand the
individual’s fatigue. This finding, along with a previous study from the authors, confirms
that fatigue is caused by a wide variety of individual and work environmental factors.
Some of them are easy to quantify, and some are difficult. Since fatigue is the complex
interaction between human behavior and the dynamic work mines environment, it is tough
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to make a comprehensive model that shows all of the variables driving the fatigue of each
individual. Previous models examined the issues at an aggregated level using operational
data sets; this study clearly shows individualized factors from the operational data sets
that have effects on the individual’s fatigue.

As it is mentioned before, JDR model is related to risk factors associated with job stress,
such as job demands and job resources [8]. Our model uses these job demands factors that
could contribute to physical or physiological stressors for the operators like the number of
cycles, overtime, worked hours, and other production variables, etc. However, this model
is limited by the available variables from the data sets, it would be helpful to add other
job-related factors for the next study, like off days and any break time for the operators.
In addition, other personal factors like sleep duration, efficiency, exercise, food and drink
consumption would also aid in developing a more comprehensive understanding of fatigue
risk for individuals.

All developed models have a high score greater than 0.8, but the first iteration has
the highest score by far. However, this model is used for guiding other iterations of the
additional models. These subsequent models did not achieve as high a score as the initial
model. Findings of the first model show that fatigue is clustered around certain Individual’s
and factors from the previous shift are very important. The important point is how to
find these factors from the available data. It is recommended for the next research to use
individual factors like fitness, sleep history, commute hours, diet, and other individual
factors to explore more possible indicators of fatigue. Another recommendation is to use
the Neural Network model to understand the combination of the parameters that have
effects on the individual’s fatigue.
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