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Abstract: In this study, the employment of the gene expression programming (GEP) technique in
forecasting models on sustainable construction materials including mineral admixtures and civil en-
gineering quantities (e.g., compressive strength), was investigated. Compared to the artificial neural
networks (ANN) based formulations, which are often too complicated to be used, GEP-based derived
models provide estimation equations that are reasonably simple and may be used for practical design
purposes and even for hand calculations. Many popular models, such as best-fitted curves based
on regression analyses, multi-linear regression (MLR), multinomial logistic regression (MNLR), and
multinomial variate regression (MNVR), can also be used for construction materials properties model-
ing. However, due to the nonlinearity and complexity of the target properties, the models established
using linear regression analyses may not reveal the precise behavior. Additionally, regression models
lack generality, and this comes from the fact that some functions are defined for regression in classical
regression techniques; while in the GEP approach, there is no predefined function to be considered,
and it reproduces or omits various combinations of parameters to provide the formulation that fits
the experimental outcomes. If the input parameters can be evaluated through simple laboratory
or rapid measurements, and also a comprehensive experimental database is made available, the
models can be constructed with optimal flexibility. Flexibility in choosing the complexity and fitness
functions, such as RMSE, MAE, and MSE, might lead to better performance of the approach and
well-capturing the governing pattern behind the material’s characteristics. There may be minor
inaccuracies with this technique; however, the explicit mathematical expressions, which can be easily
implemented in the design and analysis process, may cover the minor inaccuracies compared to
ANN, support vector machine (SVM), and other intelligent approaches. Based on the presented
study, sometimes it would be better to provide more than one GEP model and consider different
combinations of input contributing variables to afford the possible initial feed for a more settled and
comprehensive model. Mostly, GEP’s strengths as a superior machine learning technique in modeling
the behavior of construction materials including mineral admixtures, leading to innovative solutions
in civil engineering, have been presented.
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1. Introduction

With the increasing growth in the use of science and technology in solving everyday
life problems, the need for methods that understand complex and ambiguous problems
becomes greatly inevitable. Soft computing is an emerging collection of various method-
ologies aimed at finding a balance to poor precision, uncertainty, and unclear truth, by
applying a collection of statistical, probabilistic, and optimization tools, in analyzing sets of
data, classifying the data, identifying new patterns, and predicting next trends within the
shortest convenient time. Soft computing has three main branches, which are genetic algo-
rithms (GA), artificial neural networks (ANN), and fuzzy logic (FL); these branches tend
to build intelligent and wiser machines that behave like the human mind and can answer
questions explicitly and not just provide answers [1]. The application of soft computing in
branches of civil engineering, such as geotechnical engineering, has been a breakthrough of
the 21st century, with these techniques helping to solve different cumbersome mathematical
problems in the space of seconds. Geotechnical engineering, as one of the most relevant
branches of civil engineering, deals with the study of the engineering behavior of earth
materials using the principles of soil mechanics and material engineering in finding lasting
solutions to earth problems when it comes to the design of engineering works. The com-
plexity accompanying geotechnical engineering has further led to the need to apply these
soft computing techniques in solving earth problems such as swelling potentials of soils, as
recorded by Alaneme et al. [2] and Onyelowe et al. [3] in the modeling change in volume
properties of hydrated lime activated rice husk ash (RHA) modified soft soil using ANN.
This study X-ray’s the application of the ANN model in the estimation of the swelling and
shrinkage potential and consistency indices of the stabilized soil. The input parameters are
the soil-HARHA replacement ratio and Atterberg limit responses, while the shrinkage, clay
activity, and swelling characteristics, were utilized as the network output parameters using
Levernberg Marquardt (LM) training and feed-forward backpropagation (FFBP) algorithm
with 5-9-6 network architecture. He recorded that the application of the ANN model in his
research saved cost, made the best use of research materials, and was time efficient [4,5].
Kayadelen et al. [6] studied a model for the swelling potential of compacted soils, where
an adaptive neuro-fuzzy model was applied to compacted soils sourced within Nigde,
Turkey, with parameters such as the coarse grain fraction ratio, fine-grained fraction ratio,
plasticity index, and maximum dry density, were presented to the model as input. The
results obtained showed that the ANFIS model is a more reasonable model for calculating
the swelling potential of soils. Furthermore, the use of soft computing in geotechnical
engineering has been applied in the determination of mixture designs, predicting shallow
foundations, predicting and modeling soil behaviors, and the study of pile cap resistance,
etc. At the moment, soft computing-based techniques are becoming more popular in the
field of geotechnical engineering, with several works on the application of neural networks
and fuzzy logic, and little work done on the application of GA in this field.

In the present era of artificial intelligence and soft computing application to model
engineering problems for a more sustainable smart solution, GEP has made a serious mark
for its properties and usage. Gene Expression Programming (GEP) is an approach that
takes a population of solutions and models, selects, and reproduces them based on fitness,
and introduces genetic diversity using one or more genetic operators like recombination
or mutation. Though the GEP can be likened to the GA and GP as the two still operate
on the principle of population, the fundamental distinction among the three algorithms
is dependent on the type of the individuals or models or solutions, as the case may be;
individuals in GA are symbolic strings of fixed chromosomes, non-linear entities of various
shapes and sizes exist in GP, and individuals in GEP are encoded in symbolic strings of
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fixed chromosomes represented as GPs, this means that GEP is a combination of GA and
GP [6]. The evaluation of soil liquefaction using the GEP model approach was studied by
Goharzay et al. [7]. GEP was utilized to build several deterministic models to assess the
occurrence of soil liquefaction in terms of liquefaction field performance indicator (LI) and
factor of safety (Fs) using logistic regression and classification concepts. The results of their
research back up the application of GEP as a green decision-making tool in engineering
design for quantitatively examining liquefaction triggering thresholds. Armaghani et al. [8]
proposed a GEP model for the estimation of tunnel boring machine (TBM) penetration rate
in hard rock conditions. Several models were developed based on multiple inputs, and the
best model was selected; it was further recorded that the GEP model is superior to linear
multiple regression (LMR) in terms of applied performance indices. Mohammadzadeh
et al. [9] utilized a GEP model to predict the compression index of fine-grained soils;
GEP was employed to develop a model for predicting the coefficient of curvature (Cc)
using the plastic limit (PL), liquid limit (LL), and coefficient of friction (Φ). The study
analyzed 108 datasets containing Cc, PL, LL, and Φ, and also used the same to train and
validate the model; contrary to other models used in the estimation of Cc, the GEP model
exposed highly nonlinear behavior and included a complex combination of influential
input parameters furthermore revealing its good performance. Johari et al. [10] trained a
GEP approach to the prediction of the maximum lateral displacement of a retaining wall in
granular soil. The model’s input parameters are the adjacent structure’s effective period,
the foundation’s horizontal and rocking stiffness, the density, Young’s modulus, and the
friction angle of granular soil, as well as the thickness and height of the retaining wall. The
model’s predictions were compared to the actual data, and it showed good performance
for predicting lateral displacements of structures in granular soils. Johari and Hooshmand
Nejad [11] predicated soil-water characteristics using GEP, and the model was developed
in two phases for control and validation. Both the data used in the first phase and the
results used in the validation phase showed that the model was predicted with fair accuracy.
Although there were some differences between the model estimation and the actual test
data, a comparison of the proposed model’s findings with traditional approaches revealed
that it performed better in terms of soil water features prediction. Uysal [12] compared the
GEP model to actual experimental values and the regression model in the estimation of
the collapse potential of soils, and it was observed that GEP-based models are detected
to be simpler methods to estimate the collapse potential. Jahed Armaghani et al. [13]
studied the settlement of the rock socketed piles through a technique based on GEP. The
findings showed that the GEP-based predictive model might be used to anticipate the
settlement. The predominance of this model in forecasting pile settling is demonstrated by
the coefficients of determination values of training and testing datasets, which were 0.872
and 0.861 for the GEP equation, respectively. This soft computing approach has proven
to be very useful within the field of geotechnical engineering because it generally fits in
and thrives, where other models have failed or have restricted abilities; hence, this study
aims to effectively explore GEP around all corners of geotechnical engineering, how the
language of genotypes is translated to that of the phenotypes with reference to geotechnical
engineering and, therefore, the evaluation of sensitivity analysis and parametric study
using the developed model. GEP is a type of evolutionary algorithms inspired by biological
systems, the system is a complete genotype system, with expression trees of various sizes
and forms recorded in fixed-length linear chromosomes. GEP chromosomes are multi-genic,
storing many expression trees that will be arranged into a considerably more complex
program, similar to GAs and GPs. So, just like life on earth’s DNA/protein system, GEP’s
genes/trees system can not only explore all routes in the solution space, but it can also
absolve to study higher levels of organization. GEP has two main players; the expression
tree (ET) and also the chromosomes, and these can further be classified as phenotype and
genotype, respectively. The genotypes are chromosomes that are simple entities; linear,
relatively small, compact, and easy to manipulate genetically, while the phenotypes are
exclusively the expression of their respective chromosomes. They are the objects on which
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the selection occurs, and they are chosen to reproduce with change based on their fitness.
In GEP, the interaction of chromosomes (genotype) and expression trees (phenotype)
implies an unmistakable translation mechanism for translating chromosomal language into
expression tree language (ETs) [14].

The application of GEP permits the chromosome can have more than one gene. These
genes contain two types of information; the first type is stored in the head of the gene
containing the data, which is employed in producing the overall GEP model, and the
second is stored in the tail of the gene and used to generate future GEP models. The length
of the tail can be calculated using the following expression:

t = h (n − 1) + 1 (1)

where h, t, and n, are the length of the head, length of the tail, and the number of arguments
of the function with more arguments, respectively.

The process, as shown in Figure 1, starts with randomly generating chromosomes of
a certain number of individuals (initial population). The procedure is continued until a
good solution is found, or until a specific number of generations have passed [15–17]. The
independent variables that are used as input variables in the model make up the terminal
set. To utilize the GEP approach, the first step is to specify the terminal set.
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Figure 1. Flowchart of GEP model.

The GEP technique uses an evolutionary process to choose the best program and
individual. In each cycle, the chromosomes are updated and optimized using the genetic
operators and fitness function, such as the GA. This procedure is repeated until all of
the convergence requirements have been met. The major advantage of GEP over neural
networks is that it proposes model equations, which are used to design and monitor the
performance of civil engineering problems for sustainable utilization of construction mate-
rials. The aim of this research paper is to present an extensive review on the utilization of
gene expression programming (GEP) and its algorithms in modeling construction materi-
als including mineral admixtures, for sustainable and novel infrastructure development.
Figure 2 shows the process of utilizing mining waste as building materials.
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2. Concrete

This section includes 17 different subsections, which are reported in Figure 3, and will
be described in the following.
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2.1. High Strength Concrete (HSC)

The basic ingredients of high strength concrete (HSC) mixtures are similar to conven-
tional concrete, besides minerals and chemicals being adding to increase the compressive
strength. Compressive strength is a critical property defining the HSC quality and depends
on various parameters, including concrete mix design, type of materials and classifications,
and the laboratory technicians’ skills in testing and preparation [18]. Many unknown fac-
tors are underlying the compressive strength prediction, making it challenging to achieve
an accurate or analytical equation for concrete strength. The traditional concrete properties
models may not be comprehensive and suitable for HSC strength due to their different
responses [19]. Chou and Tsai [20] explained that the relationship between ingredients
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and concrete properties is nonlinear, from which it can be concluded that the particular
properties of HSC are not entirely found. Regression analysis can be used for the empir-
ical estimation of concrete experimental results, including HSC strength. In addition to
classical regression techniques, machine learning approaches such as ANN and GEP [21]
can be implemented for predictions. GEP worked as a powerful method for the explicit
formulations of concrete properties [22].

Abdollahzadeh et al. [18] presented two GEP models to predict the compressive
strength of HSC. Assuming simplified composition for HSC preparations, cement, silica
fume (SF), super plasticizer, fine aggregate, water, and coarse aggregate, were consid-
ered contributing predictors, and the 28-day compressive strength was considered the
prediction target based on a dataset comprised of 159 mixes. Training and testing data
portioned 80% and 20%, respectively, were randomly chosen from the dataset. GEP was
indicated as a powerful technique for HSC compressive strength prediction concerning
the training results and testing data partitions compared to experimental values and error
indicators. Farooq et al. [23,24] used GEP and random forest (RF) for the compressive
strength prediction of HSC. Input parameters were cement content, water, fine and coarse,
and admixture. Model performance evaluation was through statistical analyses using error
indicators and benchmarks such as root mean squared error (RMSE), relative root mean
squared error (RRMSE), mean absolute error (MAE), relative mean square error (RSE), and
coefficient of determination (R2). The GEP approach resulted in a good match between
actual experimental values and predictions, along with an empirical equation.

The cost of materials and CO2 emissions are two critical and environmental challenges
affecting HSC’s long-term viability [25,26]. Wang [27] provided a calculating approach
for SF-blended HSC mix design with an optimal overall cost based on different carbon
prices. The concrete mixture and unit pricing were used to calculate the material cost and
CO2 emission value. GEP was used to assess the mechanical and workability qualities
of concrete. GA was implemented for the optimal mixture search, considering different
constraints, such as design compressive strength constraint, workability constraint, ratio
constraints, and concrete volume constraint. The total cost of materials with the cost of
CO2 emissions was believed to be the GA optimization goal. Their technique may be used
to build sustainable HSC materials with reduced material costs and CO2 emissions. GEP
was implemented as a practical approach for HSC properties reproduction.

2.2. Concrete Admixed with GGBFS

The sustainability characteristics of concrete depend on the performance and service
life of the used binders. Traditional binders based on ordinary Portland cement (OPC)
have performed well under a variety of situations; nevertheless, OPC manufacture, like
that of other building materials, necessitates a large amount of energy consumption as
a result of greenhouse gas emissions. Adopting cementitious materials as alternatives
and reducing OPC use, such as using SF, fly ash (FA), ground granulated blast furnace
slag (GGBFS), and natural pozzolans such as meta-kaolin, sustainability improvements
might be attained [28–30]. The utilization of the supplemental cementitious materials must
be done without jeopardizing the performance and serviceability characteristics of the
structure [31]. GGBFS, also referred to as slag cement [32], undergoes hydration in the
existence of water and alkali activators and can work similarly to Portland cement [33–35].
Akin and Abejide [32] adopted the GEP approach to predict the compressive strength of
concrete admixed with GGBFS. It was indicated that GEP outperforms step-wise regression
analysis and results in higher accuracy. Based on the acquired determination coefficient (R2)
value and MSE of 0.94 and 5.15, respectively, it was stated that GEP is more accurate in the
modeling of compressive strength for concrete admixed with GGBFS [32]. Shahmansouri
et al. [36] implemented GEP to develop numerical models for predicting the compres-
sive strength of geopolymer concrete (GPC), which is the concrete GGBFS. The database
contains 351 specimens from 117 distinct mixes, with the five most effective factors eval-
uated as inputs: specimen age, natural zeolite (NZ), sodium hydroxide (NaOH) solution
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concentration, GGBFS content, and SF. The compressive strength of GGBFS-based GPC
was predicted using GEP simplified and realistic mathematical equations. The suggested
equations’ performance, high accuracy, and predictability, were evaluated by sensitivity
and parametric analyses. GEP-based equations may encourage the reuse of GGBFS for
GPC development, resulting in environmental and economic benefits.

2.3. Concrete Admixed with Meta-Kaolin

Meta-kaolin is created when kaolin clay is calcined at temperatures above 650◦C.
Kaolin or China clay refers to kaolinite-rich stones that have traditionally been used in the
creation of porcelain. Kaolinite is crystalline in its raw state, and meta-kaolin is disordered
mainly in its structure and, due to its fine particle nature, provides good characteristics as a
mineral additive [37]. Meta-kaolin is not a binder material, but it is an extremely reactive
pozzolan that combines effectively with lime in the presence of water to generate hydrated
calcium and aluminum silicate compounds; therefore, it is an excellent synthetic pozzolan
and can be potentially used for concrete production [38]. Akin et al. [31] proposed the
compressive strength model of concrete admixed with meta-kaolin using GEP datasets,
including laboratory results from different mix designs made of three different water binder
ratios. The concrete’s compressive strength was determined after 28 days of curing, and
input variables were assumed to include meta-kaolin content, cement, water, and fine and
coarse aggregate. R2-value from the GEP results was compared with that of conventional
stepwise regression analysis. GEP R2-value was reported to be 0.95, which indicated a
strong correlation between predicted and actual values, and the model could be a good
alternative for the compressive strength of concrete admixed with Meta-kaolin.

2.4. Bagasse Ash (BA) Based Concrete

Bagasse is the fibrous waste from the sugarcane juicing process that can be burned
as a fuel source to feed a boiler. As a result, sugarcane bagasse ash (SCBA) is a residue
and is classified as a solid waste item that is typically disposed of in landfills [39,40].
Javed et al. [41] and Shah et al. [42] employed GEP for compressive strength prediction
of sugarcane bagasse ash concrete (SCBAC). The complied data encompassed different
percentages of bagasse ash. GEP, MLR, and MNLR [40] approaches were used for SCBAC
compressive strength modeling. The water-to-cement ratio, bagasse ash (BA) percent
substitution, the quantity of coarse and fine aggregate, and cement content, were considered
for the model input variables. Based on the various error and statistical criteria, i.e.,
Nash–Sutcliffe model efficiency coefficient (NSE), R2, and RMSE, the models’ performance
demonstrated a strong correlation between estimated and experimental values. With
NSE and R2 values greater than 0.8, GEP outclassed other MLR and MNLR for SCBAC
compressive strength prediction. In the design mixes, cement content was the most sensitive
parameter, followed by the w/c ratio based on the sensitivity analysis. The GEP-based
simple derived equation can be used for the SCBAC compressive strength prediction.

2.5. Concrete with a Blend of Cement, Limestone, Slag, and Natural Pozzolans

Improving concrete sustainability is vital for producers and construction companies
to reduce CO2 emissions and materials’ costs and maintain concrete mechanical properties,
workability, and durability. Wang [43] suggested a straightforward method for determining
the best FA and slag composition for blended concrete, taking into account material costs,
strength, workability, carbon pricing, and carbonation durability. They used the GEP
algorithm to forecast the strength and slump of the concrete, and the carbonation depth
of the ternary blended concrete was computed using the efficiency factors of FA and slag.
The GA was also utilized to discover the best combination under different limitations.
The overall cost, material cost, and carbon pricing all increased as the concrete’s strength
increased, according to the findings. Slag blended and limestone concrete is another
innovative material that belongs to limestone calcined clay cement concrete. Strength is an
essential characteristic of structural concrete. Wang [44] studied ANN and GEP models to
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estimate limestone and slag blended concrete. They introduced a GEP model comprised
of the sum of three expression trees (ETs). ANN and GEP models’ input parameters
were mixing ingredients and ages, and the output was assumed to be the strength of the
samples. The correlation coefficient (R) values of the GEP and ANN models were 0.98
and 0.99, respectively. Both GEP and ANN models can reliably predict the strength of
ternary blended concrete. The flexural strength of these types of concretes is considered
a significant engineering property of concrete. Wang [45] implemented ANN and GEP
with different concrete mixes properties and curing ages as inputs to estimate the flexural
strength. The correlation coefficient values of the ANN and GEP models reported as 0.99
and 0.98, respectively. Both GEP and ANN could reliably estimate the flexural strengths of
ternary blended concrete.

2.6. Concrete with Various Strength Classes of Cement

Mermerdaş et al. [46] propose a prediction model for concretes’ strength estimation,
including various cement types and mix designs. The compressive strength of specimens,
produced with three different cement types at different water rates to cement richness and
cement ratios, was experimentally carried out. A statistical study was conducted on the
experimental results, and the significance of the cement strength, w/c ratios, and cement
content on the compressive strength of concrete was assessed. For the development of
an explicit equation to estimate the compressive strength, GEP was benefited and also
compared with the MLR method. The results showed that the specimens’ compressive
strength was significantly impacted by the type of cement and aggregate-to-cement ra-
tio. The developed GEP model was accurate and showed a good correlation between
experimental and estimated datasets.

2.7. Glass Cullet Modified Concretes Compressive Strength

In the research works by Gandomi et al. [47] and Mirzahosseini et al. [48], GEP was
used to build the compressive strength prediction models using test results on 50mm mortar
cubes containing glass powder. Sensitivity and parametric analyses were accompanied
to estimate the effect of the predictor variables on compressive strength. Moreover, a
comparative study with the classical regression models was performed. The GEP derived
equations accurately characterized the compressive strength of concrete with ground glass
fillers and outperformed the linear regression models. The simultaneous influence of many
parameters, such as curing age, size distributions, glass compositions, and isothermal
temperatures, was a significant element of the GEP suggested models. Compressive
strength is sensitive to the curing temperature, curing age, and particle surface area,
according to sensitivity and parametric analysis.

2.8. Eco-Friendly Concrete Containing Natural Zeolite Compressive Strength and Electrical
Resistivity

Shahmansouri et al. [49] investigated the feasibility of applying the GEP method
for predicting the compressive strength and electrical resistivity of concrete admixed
with natural zeolite (NZ) to improve the durability and mechanical characteristics of the
concrete. The compressive strength and electrical resistivity (ER) of the experimentally
produced specimens at various ages were measured. Contributing input parameters,
including the specimen age, cement, gravel water, sand, NZ, and admixture contents, were
considered. The measured properties were compared with their predicted values, and
the developed GEP models’ great potential for estimating both compressive strength and
ER of concrete containing NZ was indicated. When a concrete building is exposed to an
adverse environment, the life cycle assessment (LCA) is more obvious. Shahmansouri
et al. [50] studied the system boundaries of LCA of concrete mixtures. The samples were
examined for sulphate attack and degradation, which is a common deterioration process in
the Caspian Sea. The GEP method was used to forecast the strength loss and service life of
the mixes. The results revealed that the mechanical and durability properties of NZ mixes
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are superior to those of non-NZ combinations. The GEP approach was used to accurately
anticipate the modified concrete’s service life when exposed to a sodium sulphate assault
based on the test findings.

2.9. Compressive Strength of “Roller Compacted Concrete Pavement” (RCCP)

There is a high expense in paving asphalt roads, and a huge amount of used oil pollutes
the environment; hence, alternative technologies have to be used. “Roller-Compacted
Concrete Pavement” (RCCP) is an accelerated construction rigid pavement that has reduced
maintenance costs [51]. The higher aggregates and lower cement reduces the consistency
of the RCCP; hence, it could be compacted using a roller compactor. The durability of
RCCP was extensively studied due to low water absorption, proper compressive strength,
and resistance to rising temperatures. Accordingly, it suffers less deformation under
sustained loading [52]. Additionally, concrete pavement can resist frost cycles in cold
zones, and prevent possible damage. Finally, using RCCP has no environmental impact
due to its impermeability [53]. The neutral color of RCCP (gray) has a good coefficient
of temperature absorption, which lowers the ambient temperature. Pozzolanic materials
are usually used in RCCP due to their low cost and high strength [54]. Researchers [55,56]
tested the applicability of geopolymer concrete in roller compacted concrete, among other
uses. Generating models to accurately estimate the RCCP compressive strength would
lead to a sustainable benefit, reducing both production time and cost besides optimal mix
designing [54]. The RCCP using binder-based pulverized FA (PFA) powder was explored
by Ashrafian et al. [54]. The PFA combines effectively with the gel created in concrete,
increasing concrete hydration [57] and, as a result, increasing the density of the produced
concrete and improving its chemical and mechanical characteristics. A comprehensive
dataset of 235 test results collected from several studies was used for model development.
Furthermore, MAE, RMSE, R2, “Average Absolute Error” (AAE), “Performance Index” (PI),
and “Objective Function” (OBJ), were implemented to evaluate the proposed GEP-based
models. The results were verified using uncertainty and parametric studies. Moreover, a
sensitivity investigation was also carried out to determine the importance of each input
parameter on the RCCP compressive strength and revealed that sand content and water-
to-binder ratio are the utmost significant predictors. The proposed GEP equation-based
models were simple, robust, and straightforward to utilize, and consequently can be reliably
used for RCCP strength estimation.

2.10. Self-Compacting Concrete (SCC)

When self-compacting concrete (SCC) is used in modern infrastructure development,
it provides enormous benefits; SCC reduces energy use, labor costs, and building costs,
etc. [58]. In order to avoid unnecessary repetition tests and extra material consumption,
the development of models for estimating the strength characteristics of concrete can be
beneficial. Some research works are available in modeling geopolymer concrete prop-
erties [59–64], in which GEP and ANN were implemented to estimate the properties of
geopolymer concrete. GEP and ANN approaches were used by Awoyera et al. [65] to
investigate the strength features of geopolymer SCC (GSSC). For the geopolymer process,
these researchers used a 12M sodium silicate alkaline and sodium hydroxide solution with
a ratio of 0.33 FA. FA was partially substituted with granulated blast furnace slag and
SF in addition to the traditional material. The compressive strength, flexural strength,
and the split tensile of hardened concrete, as well as filler ability and passage ability of
new mixes, were all determined. Raw materials and fresh mix qualities were used as
predictors, while strength attributes were used as the response. Both the ANN and GEP
methods exhibited appropriate estimation of the experimental data, with negligible errors.
However, GEP models could be preferred due to the development of simple equations [65].
The compressive strength of SCC containing FA was investigated using GEP by Özgür
Deneme [66]. GEP models with different numbers of heads were implemented in the mod-
els’ development. Two proposed established models were constructed utilizing cement,
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water, FA, coarse and fine aggregate, superplasticizer, and the specimens’ age, as input
for the compressive strength evaluation. A total of 368 SCC mixtures were employed for
training, and testing sets, and the models were validated using 148 sets for extra generality
evaluation. The results achieved from the established models were compared with exper-
imental values, and the previously proposed ANN model. The comparisons of the GEP
models prediction results and experimental values strongly revealed that the results are
very reliable with acceptable accuracy and correlation.

2.11. Elastic Modulus of Concrete Containing FA

Two GEP models were introduced in Sarıdemir and Billir [67] research for predicting
the elastic modulus (Ec) of concrete containing FA. The proposed models are capable of
elastic modulus prediction from the compressive strength of FA concrete and the amount
of FA and compressive strength of FA concrete. The experimental results for 259 specimens,
with 132 different concrete mixtures for the modeling, were collected from the literature [67].
The results were compared with the experimental results and formulas results given by
some national building codes, which revealed that the outcomes of GEP-based equations
are very reliable and well-agreed with the experimental results.

2.12. Concrete Ultimate Strength under Triaxial Stress States

The inhomogeneous nature of concrete necessitates a more in-depth behavior investiga-
tion of this material under various loading configurations, due to its complexity. Different
loading pathways should be investigated in this context in order to provide thorough
behavioral knowledge. The general pathways explored by different researchers include
uniaxial, biaxial, triaxial, and multiaxial (true-triaxial test). Closed-form equations were
established by Gandomi et al. [68] and Babanajad et al. [69] to demonstrate the correlation
between the compressive strength of concrete and primary stress components. Multiaxial
stress states, also known as true-triaxial stress states, are a fact of life in construction, such
as anchoring zones and shell structures [70]. Babanajad et al. [71] used a unique GEP
feature to create computer-aided estimation models for concrete’s multi-axial strength
under true-triaxial stress. The suggested models connected true-triaxial concrete strength to
mix design parameters and primary stresses without the requirement for time-consuming
laboratory testing. External validation, as well as sensitivity investigation, were carried out
using several performance criteria. The superior performance of the proposed model was
demonstrated by comparing it to the other existing analytical models.

2.13. Recycled Aggregate Concrete (RAC) Compressive Strength

Various types of recycled aggregate concrete (RAC) are employed by researchers and
applied in construction toward sustainable development [72]. Accordingly, demolition and
construction waste can be managed sustainably, while the misuse of natural construction
resources would be significantly decreased, leading to the reduced environmental impact
of concrete production [73]. However, RAC’s primary drawbacks are its poor compressive
strength and Ec [74]. Accurate prediction of the RAC compressive strength is necessary
for design purposes and confidently allows using RAC in buildings and constructions.
González-Taboada et al. [75] compiled a comprehensive database to provide a high preci-
sion model of recycled structural concrete’s mechanical properties using the GP technique.
For predicting RAC strength, Abdollahzadeh et al. [76] proposed 20 models for estimating
the compressive strength of RAC containing SF by using GEP. Experimental data from
228 specimens made from 61 different combinations were gathered from the literature for
model building. In the training phase, 80% of the data sets were used, with the remaining
20% being used in the testing phase. The cement content, age of specimens, water content,
aggregates, recycled aggregates, SF, and amount of superplasticizer, were all arranged
in a format of seven input parameters. The models demonstrate high consistency with
experimental findings for compressive strength assessment of RAC containing SF, accord-
ing to the training and testing results. Using the GEP approach, Gholampour et al. [77]
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provided new empirical models for predicting RAC mechanical characteristics. Statistical
indicators were used to show the findings of mechanical characteristics of RACs models.
The suggested models’ predictions agreed with the experimental test findings, indicating
that, when compared to current models, GEP might offer better estimates of the mechanical
characteristics of RACs.

Recycling and eliminating waste plastic products, such as polyethylene terephthalate
(PET), from the environment are environmental concerns in urban areas. Using waste
materials as a partial replacement for natural aggregate in concrete has shown to be a cost-
effective solution to these materials’ environmental issues. Ematzadeh et al. [72] examined
the compressive strength of fiber-reinforced concrete (FRC) incorporating recycled PET
chips subjected to high temperatures. The volume percentage of PET chips substituting
natural sand, the volume ratio of steel fibers, and the temperature, were all thought to be
relevant variables in the fabrication of 108 specimens. The use of PET in the concrete mix
was shown to lower the compressive strength in the presence or absence of thermal stress.
Using the GEP technique, a closed-form formula was established to estimate the compres-
sive strength. In addition, the GEP model was validated by comparing the estimated and
experimental outcomes, with the results indicating that the model predictions are very
accurate and reliable.

2.14. Green Concrete Incorporating Waste Materials

In order to re-cycle the “Waste Foundry Sand” (WFS), GEP models were studied by
Iqbal et al. [78] to estimate the behavior characteristics of “Concrete Made with Waste
Foundry Sand” (CMWFS). WFS is a significant contaminant produced from metal casting
industries and can be classified as harmful material. An extensive dataset of mechanical
characteristics of CMWFS was collected through the previous research comprised of 234
compressive, 163 split tensile strength tests in addition to 85 elastic modulus experimental
results. The most important factors considered were the “Water-Cement” ratio (W/C),
WFS%, “WFS-Cement” ratio (WFS/C), and WFS’s modulus of fineness. The models’ per-
formance was evaluated by carrying out statistical analysis and comparing the results. The
results indicated that GEP models can accurately predict mechanical properties with high
generality capability. The findings might enhance the reuse of WFS for the development of
green concrete and protect the environment, as well as financial providence. Green concrete
compressive predictive models were developed by Murad et al. [79] using GEP. The mod-
els were developed for the compressive strength estimation of concrete, concrete mixed
with FA, SF admixed concrete, and concrete with both SF and FA. The GEP models were
established and validated using the database compiled from the literature. The R2-value
was implemented to evaluate the GEP models’ performance. Acceptable R2-values (greater
than 0.8) and low RMSE and MAE achieved for GEP models indicate the capability of
estimating the compressive strength of green concrete with reasonable accuracy.

2.15. Lightweight Concrete Design

The use of lightweight concrete (LWC) in earthquake-resistant constructions is advan-
tageous since the structures’ weight and bulk are reduced. Providing references for three
types of lightweight concretes, including clay and natural (mineral) pumice aggregates,
was explored by Jafari and Mahini [80]. Using the aforementioned aggregates, 100 LWC
specimens were constructed and examined in the lab. To obtain the compressive strength
of a certain combination, three equations were constructed using GEP. When LWC mix-
tures are involved, comparing the actual and expected characteristics revealed that the
recommended derivations are relevant and feasible for engineers.

2.16. Recycled Rubber Concrete

Jalal et al. [81] studied the compressive strength prediction of rubber concrete com-
posite containing SF, and zeolite (ZE) was investigated. Different forecasting models were
developed using NMVR, ANN, GEP, ANFIS, and SVM. Closed-form formulations were
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presented using NMVR, ANN, and GEP models. Performance indices, such as R2, MAPE,
and RMSE, were used to compare the performances of the models. Two GEP models
were considered with different complexity in terms of the number of genes. Considering
three and eight genes in GEP (I) and GEP (II) models, R2-values of 0.93 and 0.95 were
reported, respectively. In GEP (I), the cement variable was omitted automatically in the
model evolution trend. This variable exclusion might be due to the inter-correlation cement
with SF and ZE. Both models’ accuracy was acceptable; however, the more complex model
may lead to slightly higher precision (around 2%), which might be taken into account when
the rough estimation of the compressive strength is not the case.

2.17. Shrinkage of Concrete including Mineral Admixtures

Mermerdaş et al. [82] derived a soft computing based mathematical model for predict-
ing concretes shrinkage using GEP. The prediction parameter assigned to water-to-binder
ratio, SF, FA content, cement, aggregate-to-binder ratio, compressive strength, type of
shrinkage for shrinkage, and drying time. The obtained GEP model was compared to an
available formula previously generated by ANN. Models were compared through some
performance indices such as R, MAPE, MSE, and RMSE. An additional assessment of the
performances was performed using an advanced statistical analysis method called “Wilcox
on rank sum test”, which indicates whether the obtained estimated and actual data are
statistically equivalent or not, considering a specified level of significance. Although the
constructed GEP model showed lower performance than the available ANN model, its
simplicity in usage is preferable rather than the ANN one. Additionally, the statistical
analyses proved that the proposed models’ accuracy is good enough to be utilized for
estimation purposes.

3. Soil

This section includes five subsections, which are reported in Figure 4, and will be
described in the following.
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3.1. CBR Value of Fine-Grained Soils

The evaluation of subgrade soil strength is one of the most critical tests in evaluating
the strength property concerning the adopted method for road pavement design. The
“California Bearing Ratio” (CBR) is the most frequent parameter for flexible road pavement
design. In situ or laboratory experiments of CBR are money and time-consuming and
require skilled technicians. A soil sample CBR value evaluation via readily determinable
physical and geotechnical parameters can be practical, which was investigated by Alam
et al. [83] using the GEP approach. Taskiran [84] conducted a study to correlate the CBR of
fine-grained soils from the southeast Anatolia region of Turkey by applying AI techniques.
The CBR values using developed GEP and ANN models were evaluated. It was shown that
both ANN and GEP learned the pattern between the CBR value and basic soil properties.
Performed sensitivity analysis revealed that the maximum dry unit weight is the most
influential parameter on CBR compared to plasticity index, sand content, liquid limit,
optimum moisture content, fine-grained content, and gravel content. Statistical parameters
such as R2, MSE, and “Standard Deviation” (SD), were used to evaluate the accuracy of the



Mining 2022, 2 641

estimated results. Tenpe and Patel [85,86] established mathematical models to predict CBR
using the various soil characteristics as independent variables using GEP and ANN models.
The subgrade strength of both highways and roads depends on the “California bearing
ratio” (CBR) value. Tenpe and Patel [85] attempted to develop models using SVM and
GEP for CBR value prediction. A wide range of databases of different soils was used in the
analysis. Consistency limits, particle size distribution, and compaction characteristics, were
used as the input contributing variables. The benefit of SVM over others is working, based
on statistical risk minimization. A comparison between SVM and GEP models indicated
that the accuracy of SVM outperforms the GEP model. According to the statistical criteria,
overfitting ratio of SVM was about 0.63, while it was about 1.02 for GEP model.

3.2. Compression Index of Fine-Grained Soils

The “Compression index” (Cc) is a main factor in calculating the settlement of clay
layers. Measuring (Cc) value in the lab is an expensive and slow test and requires skilled
labor. Mohammadzadeh et al. [9] investigated Cc’s prediction using basic soil parameters,
such as the PL, LL, and initial void ratio (e0). The GEP model was established using a
database that included 108 different data points, and a closed-form equation was derived
for Cc as a function of PL, LL, and e0. The GEP model’s performance was assessed through
the R2, MAE, and RMSE, based on which the proposed model performed better compared
to that of other models [87].

3.3. Collapsibility Potential of Soils

Collapsible soil is the soil that suffers a large reduction in volume when wetted,
while subjected to continuous compressive pressure. It is one of the well-known causes of
failure of soil-structure projects, such as earth dams and highway/railway embankments.
Uysal [12] developed a GEP model to estimate the collapsibility potential in terms of
sand-to-clay ratio or “coefficient of uniformity”, initial dry density, and water content
besides wetting pressure. The precision of the GEP model was validated using laboratory
experimental results and previous regression-based formulas, which indicated that the
GEP model was more precise in predicting the collapsibility potential.

3.4. Ice-Seabed Interaction Analysis in Sand

Pipelines for the Arctic subsea are often buried for protection against the scour due
to ice. Determining the maximum lateral displacement to guarantee both cost-effective
design and operational integrity is the main challenge of the subsea pipeline industry
in ice-prone zones. Considering a practical and cost-beneficiary solution for estimating
the ice effect on buried pipelines, Azimi and Shiri [88] used the GEP approach to model
the sub-gouge displacement in the sand. The main input parameters included dilation
index, bearing pressure, attack angle, thickness of sub-gouge deformation, and soil depth.
Accordingly, six GEP models were generated and tested by “K-fold” cross-validation
technique. The accuracies of the developed GEP were compared with an ANN model,
and a “Partial Derivative Sensitivity Analysis” (PDSA) was carried out to assess the key
parameters’ influence domain. It was shown that the GEP models could be a precise and
more cost-effective alternative for estimating the ice-induced sub-gouge displacement [87].

3.5. Sand-Waste Tire Mixtures

Waste tires have become a main concern, and each year, the world produces more of
these bulky materials. The problem could mostly be attributed to the world’s increasing
population and thus the demands for automotive transportation by vehicles, which lead to
waste material being amassed after reaching the end of life. These waste and discarded
bulky materials can be used to reinforce weak soils, slope stabilization, or, in the form of tire-
derived aggregates (TDA), be implemented for the backfilling of retaining structures [89–93].
Soil-waste tire mixture showed more compressibility, less void ratio, and more attenuation
than pure soil [94]. Edincliler et al. [95] investigated applications of the GEP and “Stepwise
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Regression” (SR) for the estimation of shear modulus and damping ratio of the sand-rubber
mixtures [92]. The damping ratio and shear modulus of geo-materials were measured
through a series of cyclic triaxial tests, and the assumed input parameters in the generated
GEP and SR models were confining pressures, strain, and type and content, of waste
tires. The outcomes were the damping ratio and the shear modulus. The proposed GEP
models (R2-values of 0.94 and 0.95 for damping ratio and shear modulus, respectively)
were perceived to be more precise than the SR models (R2-values of 0.87 for shear modulus
and 0.91 for damping ratio) [96].

4. Mortar

This section includes four subsections, which are shown in Figure 5, and will be
discussed in the following.
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4.1. Effect of “Nano Silica” (NS) and “Micro Silica” (MS) on Mortar Cement

Supplementary cementitious materials with high pozzolanic properties, or industrial
waste materials, can change the microstructure of cement-based materials such as mortar,
sandcrete, and concrete. It also enhances their mechanical characteristics [97]. Both NS
and MS are the most efficient additives to change the microstructural configuration, which
add to enhance the behavior of concrete and mortar because of their tiny particle size and
pozzolanic reaction [96]. Machine learning techniques have been used to study the NS or
MS in addition to a super plasticizer, which is the traditional way to minimize porosity
and enhance both compressive strength and mortar durability. Tanyildizi and Çevik [98]
reported that GEP was used to evaluate different combinations of considered factors to
get the best fits to test results according to the correlation coefficient. GEP was used to
predict the behavior of LWC with 0.0, 10.0, 20.0, and 30.0% of MS, subjected to a high level
of temperature. Two models were developed, one using ANN and the other using GEP, as
presented in the research work of [99], to estimate the effect of using NS and MS together
on the characteristics of cement mortar. A total of 640 different design mixes were used
to generate both ANN and GEP models, beside those, the 480 results of cube compressive
strength test and the 96 results of bending strength test, were utilized to validate the two
models. The two proposed models showed better accuracy levels than the current models.
Finally, a study was conducted to investigate the impact of considering porosity as an input
factor on the accuracy of the developed models.

4.2. Impact of Porosity on Both Flexural and Compressive Strengths of Cement Mortar Having
Micro and Nano Silica

Emamian and Eskandari-Naddaf [100] estimated the impact of porosity on the strength
of mortar mixtures that include micro and nano-silica. Thirty-two (32) design mixes were
tested for this purpose with different replacement proportions of “Nano-Silica” (NS) and
“Micro-Silica” (MS) in individual and combined forms. “Field Emission Scanning Electron
Microscopy” (FESEM) analysis was used to investigate the impact of the microstructure of
NS and MS on the strength of the mortar. Additionally, both the flexural and compressive
strength of mortar were forecasted using GEP and ANN models, which illustrated the
impact of the porosity on the mortar strengths. A study was conducted on two conditions,
the first without considering the porosity and the second considering it. ANN-I and GEP-I
were generated in the first condition, while ANN-II and GEP-II were generated in the
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second one. The results illustrated that using MS and NS together reduces the porosity
and increases the strengths. Additionally, the results indicated that the second condition
models (ANN-II and GEP-II) are more accurate than the first one.

The prediction and formulation of the hardened characteristics of cement mortar
containing NS and MS together considering the “freeze-thaw” (F-T) cycles based on lab test
results, were conducted by Emamian and Eskandari-Naddaf [101] to evaluate the capability
of the GEP technique. A total of 32 design mixes with a cement content of 990–1200 grams,
water/binder ratios between 0.4 and 0.5, sand/cement ratio of 2.67–3.22, MS/cement ratio
of 0.0–0.16, and NS/cement ratio of 0.0–0.05, were prepared and tested. The targets in the
GEP model were porosity (n), compressive strength, and flexural strength with considering
F-T cycles. The input dataset for the proposed GEP models were results extracted from the
lab tests of this research. Minor differences were observed between the lab test results and
the predicted values by the GEP model. The capability of the GEP technique to predict the
characteristics of hardened cement mortar is proved by the generated predictive formulas.

In the Mahdinia et al. [102] study, 54 design mixes with a w/c ratio of 0.25–0.50, S/C
ratio of 2.5–3.0, and “Cement Strength Classes” (CSC) of 32.5–52.5 MPa, were prepared
and tested, then 270 specimens with ages between 3 and 28 days were prepared and tested.
The GEP technique was utilized to estimate the strength of cement mortar. The impact of
CSC on the mortar strength was investigated by developing two different GEP models, one
with CSC as input and the other without it. The results illustrated that considering the CSC
improves the prediction accuracy of mortar strength.

4.3. Compressive Strength of Ferrosialate Based Geopolymer Mortars

A novel and efficient approach to forecasting the compressive strength of specimens of
mortar by developing estimation formulas was proposed by Yeddula and Karthiyaini [103]
in the present circumstances, where there is no code provision or standard method to
design the mixture of “ferrosialate geopolymers”. It also studied the impact of different
elements on increasing the strength of “ferrosialate geopolymers” regarding the traditional
“FA/sialate geopolymers”. Precursors for geopolymerization materials like red mud (RM)
and FA were used, and GEP was used for the model analytics. Ferrosialate mortar speci-
mens showed compressive strength equal to 112.4% of the sialate mortar specimens with
more dense microstructural composition and least binder unreacted stages. The optimum
RM replacement ratio was 35% and 30% for ambient and oven curing, respectively. For the
“ferrosialate geopolymers” that use RM as raw feed, the optimal dose aqueous solution
of NaOH is 8 Moles, and again, oven curing gives a higher strength gain than ambient
curing. Additionally, in “ferrosialate geopolymers”, the longer the curing period, the
higher gained strength. The R2-values for both developed GEP models were 0.88 and
0.92, respectively. The almost equal error percent of both training and validation datasets
indicated the generality of the developed models.

4.4. Compressive Strength of Lightweight Geopolymer Mortars

For the case of forecasting the compressive strength of lightweight geopolymer mortar
(LWGM) with various types and amounts of binders with different curing regimes, Mermer-
daş et al. [104] presented an inclusive study aimed at establishing a suitable mathematical
model. Lightweight pumice aggregate and alkali activated powder materials are the main
components of geopolymer binder. The experimental investigation collected 306 data
samples, which were utilized to generate explicit model expressions for determining the
compressive strength of LWGMs. The models were created using two methods. The first
was a linear stepwise regression that was simplified. The GEP approach was the second
way. Stepwise regression is a statistical method that evaluates the influence of each element
on the resulting equation based on its strength. The probability effect of the F-distribution
and the null hypothesis are used to determine this strength. The default probability value is
0.05 for each factor’s relevance. As a result, the program assesses each predictor’s likelihood
and only includes those with values less than 0.05. A simplified linear regression equation
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is introduced as a result of the contained predictors. Genetic programming, on the other
hand, is a more advanced approach based on the principles of gene evolution. Each sort of
binder’s modeling is done separately. Equations based on granulated blast furnace slag
and FA-based LWGM were generated as a result. Genetic algorithm-based modeling has
been shown to have reliable potential in the evaluation of the strength of a network using
these models.

5. Asphalt (Pavement)

This section includes seven subsections, which are shown in Figure 6, and will be
discussed in the following.
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5.1. Viscosity Mixing Rule for Asphalt Blends

The binary blends of single hydrocarbons have inactive chemical and physical prop-
erties. It is normal to see that the properties of the mixture are different from the single
hydrocarbons. Regardless of the single viscosity of the elements in the mixture, the total
viscosity of the mixture depends on other factors, such as temperature, pressure, and the
ratios of single components of the mixture [105].

The effect of mixture viscosity was investigated by different researchers to forecast the
relation between elemental components and the binary blends. These mixture viscosity
forecasting models, have shifted from conventional closed-form formulas to modern (AI)
techniques. Modeling bi-mixtures of oils or petroleum blends have been attempted by vari-
ous researchers employing artificial intelligence techniques. These AI techniques included
least-squares “Support Vector Machine” (SVM) [106], “Particle Swarm Optimization” (PSO)
combined with “Neuro-Fuzzy” “NF” inferences [107], and “Artificial Neural Network”
(ANN) [108]. These techniques have their shortfalls as they do not produce formulas that
can be used manually; in other words, they are “black box” techniques. However, “Gene
Expression Programming” (GEP) is an (AI) technique that provides closed-form forecasting
formulas as outcomes, which can easily be used manually. The (GEP)-based model to
estimate the mixture viscosity was proposed by Eleyedath and Swamy [109] in a previous
research work. Bi-mixtures were tested to measure their viscosity at different degrees of
temperature to develop these expressions. The observed dataset was utilized to generate
GEP model for mixture viscosity. A study was carried out to prove that the GEP model is
more accurate than previous references.

5.2. Dynamic Modulus of Asphalt

Asphalt property is a key parameter as an input into the pavement design guide
known as the Mechanistic Empirical Pavement Design Guide (MEPDG). This is employed
to determine asphalt’s mechanical properties. Previously, various researchers, such as
Witczak and Fonseca [110] and Esfandiarpour and Shalaby [111], have evaluated the
efficacy of the dynamic modulus of asphalt, within the framework of MEPDG. Researchers
have advised employing regression-based methodologies to recalibrate different models for
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local settings, since equations calibrated at the national/regional level performed poorly.
Additionally, researchers have attempted to generate intelligent learning-based predictive
models apart from these regression-based predictive ones. Some examples of such new
evolutionary techniques include ANN, Classification and Regression Tree (CART), and GEP.
Ceylan et al. [112] used the Witczak database, which contained 7400 data points from 346
hot mixed asphalt (HMA) combinations, to present an ANN-based dynamic modulus of the
asphalt prediction model. Far et al. [113] used a long-term pavement performance database
to construct a dynamic modulus of the asphalt forecasting model in a similar study. Due
to ANN’s black-box or hidden layer nature, it is only with the help of a computer that its
models can be employed. This makes ANN models inefficient techniques for revealing the
relationship between predictors and targets. Daneshvar and Behnood [114] employed a
CART-based random forest technique to forecast the dynamic modulus of asphalt concrete
commonly used in the northern US. Unfortunately, such a method has problems with: (i)
higher calculation time; (ii) less interpretable decision tree (DT); (iii) slower forecasts; (iv)
overfitting; and (v) subjectivity in selecting the number of trees. Conversely, GEP combines
the merits and strengths of “Genetic Programming” (GP) and “Genetic Algorithm” (GA).
Eleyedath and Swamy [109] presented a new technique, “Principal Component Analysis”
(PCA), the “Gene Expression Programming” (GEP) technique, to estimate the asphalt
concrete’s dynamic modulus. A database of considered factors was used as inputs. The
PCA technique was used to eliminate the input redundancy by reducing the dimensionality.
Extracted “Principal Components” (PC’s) were utilized to develop the first set of prediction
models for the dynamic modulus. The second set of dynamic modulus prediction models
were generated using the most effective factors to the individual PC’s. Comparing the
two sets shows that using factors as input directly in the model improves the prediction
accuracy. Besides that, the achieved accuracy was better than the accuracies of the current
regression-based formulas. The generality of the proposed model allows it to be applied to
any new dataset.

5.3. Fracture Energy of Asphalt Mixtures

The asphalt mixture’s fracture energy was estimated by Majidifard et al. [115]. They
used both (GEP) and “Artificial Neural Network/Simulated Annealing” (ANN/SA) tech-
niques. Both (ANN/SA) and (GEP) models were generated based on experimental test
results, such as “disk-shaped compact tension” (DC (T)) test results for fracture energy.
Various predictor factors, including “asphalt binder performance grading (PG)”, “reclaimed
asphalt pavement” (RAP), “reclaimed asphalt shingles” (RAS), asphalt content, crumb
rubber content, aggregate size, test temperature, and aggregate gradation, were employed
to formulate the fracture energy of asphalt. A procedure was proposed to transform the
models’ outputs into practical design formulas. A study was carried out to evaluate the
impact of each predictor factor on fracture energy. According to the outcomes, the proposed
design formula exhibited high accuracy in characterizing the fracture energy of asphalt
mixtures. Due to its simplicity and superior accuracy, the GEP model is considered more
practical than the ANN/SA model.

5.4. Rutting Depth of Asphalt Mixtures

Using (GEP), Majidifard et al. [116] presented a novel evolutionary model for forecast-
ing the asphalt mixture’s rutting depth. The test results of Hamburg were used to generate
a GEP model. Ninety-six test results made up the database for different asphalt mixtures,
with which the model was executed. The model was proposed with the following predictor
variables: total asphalt binder recycling content; aggregate size; asphalt binder; mixture
type; asphalt content; high-temperature performance grade (PG); and aggregate gradation.
During validation, the model precision was assessed.

A study was carried out to benchmark the estimating accuracy of the GEP model
against an ANN model. The model was able to mimic the mixture properties and testing
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conditions. The model could be used in pre-design or to estimate the depth of rut of asphalt
mixtures without lab tests.

5.5. Effects of Aggregate Angularity on Asphalt Mixture Permanent Deformation

Using nonlinear GEP models, Gandomi et al. [47] studied the estimation of the flow
number of asphalt concrete. In asphalt concrete pavements, the flow number has a rela-
tionship with rutting. Meanwhile, Gopalakrishnan et al. [117] proposed predictive models
for hot mixed asphalt (HMA) dynamic modulus using the GEP technique. The study
showed that the proposed models presented higher accuracies than the existing model
by Witczak. Liu et al. [118] evaluated the HMA’s dynamic modulus by also employing
the GEP technique for mixtures of recycled asphalt shingles. It was also observed that
the GEP model showed better prediction accuracy than the current prediction models.
The advantage of GEP over ANN is that it provides a closed-form formula for pavement
engineers.

It is important to note also that the shape of the aggregate has a great influence on the
interlocking between the particles, also affecting the deformation performance of mixes.
Leon and Ray [119] predicted asphalt concrete’s permanent settlement with the amount of
aggregate angularity by using (GEP) as an untraditional modeling approach. Original data
was obtained through multiple lab experiments for estimating the permanent settlement of
asphalt concrete. The GEP approach showed fair results in the forecasting of permanent
settlements compared to current regression methods.

5.6. Unconfined Compressive Behavior of Hot Mix Asphalt (HMA)

In order to predict the performance of materials during service life, the mechanical
properties of such materials, like “Elastic tangential modulus” (Et) and “Unconfined Com-
pressive Strength” (UCS), can be used. Leon and Ray [119] utilized the GEP method to
evaluate the UCS of hot mix asphalt. The GEP and “Multiple linear regression” (MLR)
techniques employed in the forecasting of UCS and Et showed good results. The “coeffi-
cient of determinations” (R2) for USC were 0.887 and 0.908 for MLR and GEP, respectively.
Similarly, (R2) for Et were 0.785 and 0.648 for MLR and GEP, respectively. The developed
models provided a fast, cheap, and flexible method to estimate the stress-strain relation of
asphalt concrete without the need for experimental tests.

5.7. The Service Life of Flexible Pavement (RSL)

The service life of pavement forecasting is a serious assignment of transportation
engineering and road maintenance. The model forecasting of the RSL evaluates the duration
that main pavement rehabilitation is necessary. The universal method or technique to
forecast RSL includes using tests that are non-destructive. These tests, apart from being
cost ineffective, disturb traffic flow, and compromise safety. In a previous study, Nabipour
et al. [120] studied that the surface distresses of highway pavement are employed to
evaluate the RSL to evaluate the challenges mentioned above. In order to put to work the
suggested theory, 105 segments of flexible pavement were considered.

For every pavement segment, the “Pavement Condition Index (PCI)”, surface damage
extent, type, and severity, were evaluated. The RSL of the pavement was then evaluated
using tests that are non-destructive, which included falling weight deflect meter (FWD) and
“Ground-Penetrating Radar” (GPR). Afterwards, the datasets are compiled, and modeling
is carried out to forecast RSL using three methods, which include SVR, optimized SVR by
the Fruit Fly Optimization” algorithm (SVR-FOA), and GEP. All three modeling approaches
forecast the RSL of the highway pavement by choosing the PCI as input parameter. The
“Correlation coefficient” (R2), “Nash–Sutcliffe efficiency” (NSE), “Scattered index” (SI), and
“Willmott’s index” of agreement (WI) criteria, were used to test the behavior of the three
methods deployed in this model exercise. At last, it was observed that GEP with R2 = 0.874,
NSE = 0.598, SI = 0.601, and WI = 0.807, had the best precision in forecasting the RSL of
highway pavement.
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6. Tailings

This section includes two subsections, which are shown in Figure 7, and will be
discussed in the following.
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6.1. Mineral Tailings

In the field of geotechnical and geo-environmental engineering, deposits of mineral
tailing are one of the most significant issues. Tailings are mineral wastes that are fractured
and wasted after the extraction and exploration of useful minerals. To investigate the
geotechnical behavior of tailings, the tailing’s void ratio is a main parameter, although
as yet there has not been an empirical equation for predicting the tailing’s void ratio. In
previous related research, the waste mineral’s void ratio was predicted using the (GEP)
according to Heshmati et al. [121]. Meanwhile, considering the effective physical factors
that influence the evaluation of this factor [122], eight different model equations were
presented. An experimental database of about 113 laboratory data points gathered from
literature was employed to generate the GEP models. The behavior of the generated GEP
model was calculated using R2, MAE, and RMSE. The outcomes showed that the best
predicted “effective stress” (σ′), “initial void ratio” (e), have MAE = 0.109, R2 = 0.92, and
RMSE = 0.180. Lastly, a novel analytical formulation for the initial forecasting of the void
ratio parameter is generated and suggested based on the analyses mentioned above.

6.2. Filling Slurry in Cemented Tailings Backfill

In most modern mines in China, cemented tailings backfill (CTB) has become a con-
ventional mining technique. In order to meet the desired technical and economical design
requirements, the parameters of the filling slurry are vital in designing a CTB. In a previous
research presentation, Wang et al. [123] provided an approach to optimize the mix pro-
portion of the filling slurry; GP and GA were used in this study. To create the unconfined
CS (UCS), coursing degrees (CD), and slump data points, a series of tests were initially
carried out. The GP results were employed in constraint conditions, which were crucial
in optimization. The combination of the GA and GP revealed an excellent method for
optimizing the CTB mix fraction in this investigation. The combined effect of GP and GA
used in this study gives an engineering strategy for determining the CTB mix fraction.

Generally, beyond the fields of civil engineering and construction materials, GEP
has been adapted to solving various other engineering and environmental problems, as
presented by Sadeghi et al. [124,125]. The list is endless, but the present review work has
presented an extensive search into the application of GEP, fundamentally as it affects major
civil engineering problems and construction materials.

7. Concluding Remarks on the GEP Modeling

The following conclusions can be drawn:

• Like many other numerical approaches, GEP would involve advantages and short-
comings. The most significant distinction in GEP modeling is flexibility, which can
be readily adopted, and evolutions can be initiated, incorporating user-selected or
user-defined functions, constant ranges, and fitness functions. The outcome of the evo-
lutions would lead to closed-form explicit formulations. If the input parameters can
be evaluated through simple laboratory or rapid measurements, and a comprehensive
experimental database was available, the models can be constructed.
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• Compared to the ANN based formulations, which are often too complex to be used,
GEP-based derived models provide estimation equations that are reasonably simple
and can be used for practical design purposes, and can even be used for hand calcula-
tions. Many popular models, such as best-fitted curves based on regression analyses,
MLR, MNLR, and MNVR, can be used for construction materials properties modeling.
However, due to the nonlinearity and complexity of the target properties, the models
developed using regression analysis may not reveal their precise nature. Besides,
regression models may not considerably measure the additive component’s effect on
construction materials properties, such as concrete compressive strength. The lack of
generality in regression models comes from the fact that some functions are defined
for regression in classical regression techniques; while in the GEP approach, there is no
predefined function to be considered, and it reproduces or omits various combinations
of parameters to provide the formulation that fits the experimental outcomes.

• Flexibility in choosing the complexity and fitness functions, such as RMSE and MSE,
might lead to better performance of the approach and well-capturing the governing
pattern behind the material’s characteristics. Thus, GEP can be accepted to be superior
to conventional and classical regression techniques and ANN. Another merit of the
GEP is the automatic feature selection in the evolution process. Input variables inter-
correlated to other contributing parameters, or having minor contributions to the
target, would be put aside and omitted automatically in the model evolution iterations.
Different combinations of the input variables can be considered for GEP modeling
with no specific pre-processing, which is not the case in ANN.

• The results of GEP based models may sometimes show lower accuracies when com-
pared to artificial neural networks and support vector machines. In some cases, the
lower precision might be attributed to the limited number of considered genes, chro-
mosomes, and heads, which are the predefined characteristics in the GEP model
development process. However, the explicit mathematical expressions, which can be
easily implemented in the design and analysis process, may cover the minor inaccura-
cies compared to ANN and SVM approaches. Based on the presented review, it would
sometimes be better to provide more than one GEP model and consider different
combinations of input contributing variables to afford the possible initial feed for a
more settled and comprehensive model.

• Research is ongoing on the topic of the present paper, and as a future study suggestion,
the application of the Adaptive Neuro-Fuzzy Inference System (ANFIS) [81,126] could
be further compared to the Gene Expression Programming (GEP) modeling.
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33. Bilim, C.; Atiş, C.D.; Tanyildizi, H.; Karahan, O. Predicting the Compressive Strength of Ground Granulated Blast Furnace Slag
Concrete Using Artificial Neural Network. Adv. Eng. Softw. 2009, 40, 334–340. [CrossRef]

34. Chidiac, S.E.; Panesar, D.K. Evolution of Mechanical Properties of Concrete Containing Ground Granulated Blast Furnace Slag
and Effects on the Scaling Resistance Test at 28 days. Cem. Concr. Compos. 2008, 30, 63–71. [CrossRef]

35. Angulo-Ramírez, D.E.; Mejía de Gutiérrez, R.; Puertas, F. Alkali-activated Portland blast-furnace slag cement: Mechanical
properties and hydration. Constr. Build. Mater. 2017, 140, 119–128. [CrossRef]

36. Shahmansouri, A.A.; Akbarzadeh Bengar, H.; Ghanbari, S. Compressive Strength Prediction of Eco-Efficient GGBS-Based
Geopolymer Concrete Using GEP Method. J. Build. Eng. 2020, 31, 101326. [CrossRef]

37. Kristóf, J.; Frost, R.; Kloprogge, J.; Horváth, E.; Makó, É. Detection of Four Different OH-Groups in Ground Kaolinite with
Controlled-Rate Thermal Analysis. J. Therm. Anal. Calorim. 2002, 69, 77–83. [CrossRef]

38. Badogiannis, E.; Kakali, G.; Tsivilis, S. Metakaolin as Supplementary Cementitious Material. J. Therm. Anal. Calorim. 2005, 81,
457–462. [CrossRef]

39. Phonphuak, N.; Chindaprasirt, P. Types of Waste, Properties, and Durability of Pore-Forming Waste-Based Fired Masonry Bricks.
In Eco-Efficient Masonry Bricks and Blocks; Elsevier: Amsterdam, The Netherlands, 2015; pp. 103–127. [CrossRef]

40. Faria, K.C.P.; Gurgel, R.F.; Holanda, J.N.F. Characterization of Sugarcane Bagasse Ash for Use in Ceramic Bodies. Mater. Sci.
Forum 2010, 660–661, 1049–1052. [CrossRef]

41. Javed, M.F.; Amin, M.N.; Shah, M.I.; Khan, K.; Iftikhar, B.; Farooq, F.; Aslam, F.; Alyousef, R.; Alabduljabbar, H. Applications of
Gene Expression Programming and Regression Techniques for Estimating Compressive Strength of Bagasse Ash Based Concrete.
Crystals 2020, 10, 737. [CrossRef]

42. Shah, M.I.; Javed, M.F.; Aslam, F.; Alabduljabbar, H. Machine learning modeling integrating experimental analysis for predicting
the properties of sugarcane bagasse ash concrete. Constr. Build. Mater. 2022, 314, 125634. [CrossRef]

43. Wang, X.-Y. Optimal Design of the Cement, Fly Ash, and Slag Mixture in Ternary Blended Concrete Based on Gene Expression
Programming and the Genetic Algorithm. Materials 2019, 12, 2448. [CrossRef]

44. Wang, X.Y. Evaluation Compressive Strength of Cement-Limestone-Slag Ternary Blended Concrete Using Artificial Neural
Networks (ANN) and Gene Expression Programming (GEP). Key Eng. Mater. 2020, 837, 119–124. [CrossRef]

45. Wang, X.-Y. Prediction of Flexural Strength of Natural Pozzolana and Limestone Blended Concrete Using Machine Learning
Based Models. IOP Conf. Ser. Mater. Sci. Eng. 2020, 784, 012005. [CrossRef]
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