Larvicidal Effect of Vitex ovata Thunb. (Lamiales: Lamiaceae) Leaf Extract towards Aedes (Stegomyia) aegypti (Linnaeus, 1762) (Diptera: Culicidae)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Methanolic Extract Preparation
4.2. Mosquito Larvae Rearing
4.3. Larvicidal Bioassay
4.4. Microscopic Observation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McKerr, C.; Lo, Y.-C.; Edeghere, O.; Bracebridge, S. Evaluation of the National Notifiable Diseases Surveillance System for Dengue Fever in Taiwan, 2010–2012. PLoS Negl. Trop. Dis. 2015, 9, e0003639. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Dengue and Severe Dengue. 2019. Available online: https://www.who.int/news-room/q-a-detail/dengue-and-severe-dengue (accessed on 31 July 2021).
- World Health Organization (WHO). Update on The Dengue Situation in The Western Pacific Region. 2020. Available online: https://iris.wpro.who.int/bitstream/handle/10665.1/14461/Dengue-20200102.pdf (accessed on 31 July 2021).
- Ishak, I.H.; Jaal, Z.; Ranson, H.; Wondji, C.S. Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in the dengue vectors Aedes aegypti and Aedes albopictus from Malaysia. Parasites Vectors 2015, 8, 181. [Google Scholar] [CrossRef] [Green Version]
- Rahim, J.; Ahmad, A.H.; Ahmad, H.; Ishak, I.H.; Rus, A.C.; Maimusa, H.A. Adulticidal Susceptibility Evaluation of Aedes albopictus Using New Diagnostic Doses in Penang Island, Malaysia. J. Am. Mosq. Control Assoc. 2017, 33, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Elia-Amira, N.M.R.; Chen, C.D.; Low, V.L.; Lau, K.W.; Haziqah-Rashid, A.; Amelia-Yap, Z.H.; Lee, H.L.; Sofian-Azirun, M. Adulticide Resistance Status of Aedes albopictus (Diptera: Culicidae) in Sabah, Malaysia: A Statewide Assessment. J. Med. Èntomol. 2019, 56, 1715–1725. [Google Scholar] [CrossRef] [PubMed]
- Wan Najdah, W.M.A.; Ahmad, R.; Nor, Z.M.; Hassan, A.F. Spatial distribution, enzymatic activity, and insecticide resistance status of Aedes aegypti and Aedes albopictus from dengue hotspot areas in Kuala Lumpur and Selangor, Malaysia. Serangga 2020, 25, 65–92. [Google Scholar]
- Benelli, G. Research in mosquito control: Current challenges for a brighter future. Parasitol. Res. 2015, 114, 2801–2805. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Chowdhury, N.; Chandra, G. Plant extracts as potential mosquito larvicides. Indian J. Med. Res. 2012, 135, 581–598. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401688/ (accessed on 31 July 2021).
- Silva-Aguayo, G. Botanical Insecticides. 2013. Available online: https://ipmworld.umn.edu/silva-aguayo-botanical (accessed on 31 July 2021).
- Rattan, R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop. Prot. 2010, 29, 913–920. [Google Scholar] [CrossRef]
- Rajashekar, Y.; Bakthavatsalam, N.; Shivanandappa, T. Botanicals as Grain Protectants. Psyche A J. Èntomol. 2012, 2012, 646740. [Google Scholar] [CrossRef]
- Chandrasekaran, T.; Thyagarajan, A.; Santhakumari, P.G.; Pillai, A.K.B.; Krishnan, U.M. Larvicidal activity of essential oil from Vitex negundo and Vitex trifolia on dengue vector mosquito Aedes aegypti. Rev. Soc. Bras. Med. Trop. 2019, 52, e20180459. [Google Scholar] [CrossRef] [Green Version]
- Munir, A.A. A taxonomic revision of the genus Vitex L (Verbenaceae) in Australia. J. Adelaide Bot. Gard. 1987, 10, 31–79. Available online: http://www.jstor.org/stable/23890926 (accessed on 3 June 2021).
- Watanabe, K.; Takada, Y.; Matsuo, N.; Nishimura, H. Rotundial, a New Natural Mosquito Repellent from the Leaves of Vitex rotundifolia. Biosci. Biotechnol. Biochem. 1995, 59, 1979–1980. [Google Scholar] [CrossRef]
- Sutiningsih, D.; Nurjazuli, N.; Nugroho, D.; Satoto, T.B.T. Larvicidal Activity of Brusatol Isolated from Brucea javanica (L) Merr on Culex quinquefasciatus. Iran. J. Public Health 2019, 48, 688–696. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6500525/ (accessed on 3 June 2021). [CrossRef] [PubMed]
- Komalamisra, N.; Trongtokit, Y.; Rongsriyam, Y.; Apiwathnasorn, C. Screening for larvicidal activity in some Thai plants against four mosquito vector species. Southeast Asian J. Trop. Med. Public Health 2005, 36, 1412–1422. Available online: https://pubmed.ncbi.nlm.nih.gov/16610643/ (accessed on 3 June 2021). [PubMed]
- Kiran, S.R.; Bhavani, K.; Devi, P.S.; Rao, B.R.; Reddy, K.J. Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour. Technol. 2006, 97, 2481–2484. [Google Scholar] [CrossRef]
- Massebo, F.; Tadesse, M.; Bekele, T.; Balkew, M.; Gebre-Michael, T. Evaluation on larvicidal effects of essential oils of some local plants against Anopheles arabiensis Patton and Aedes aegypti Linnaeus (Diptera, Culicidae) in Ethiopia. Afr. J. Biotechnol. 2009, 8, 4183–4188. [Google Scholar] [CrossRef]
- Magalhães, L.A.M.; Da Paz Lima, M.; Ortiz Mayo Marques, M.; Facanali, R.; Pinto, A.C.D.S.; Pedro Tadei, W. Chemical Composition and Larvicidal Activity against Aedes aegypti Larvae of Essential Oils from Four Guarea Species. Molecules 2010, 15, 5734–5741. [Google Scholar] [CrossRef] [Green Version]
- Dias, C.N.; Moraes, D.F.C. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: Review. Parasitol. Res. 2013, 113, 565–592. [Google Scholar] [CrossRef]
- Lukminati, N.; Kardela, W.; Ifora. Larvicidal activity and efficacy of Vitex species: A review. Sci. Int. 2020, 32, 493–500. [Google Scholar]
- Jantan, I.; Ping, W.O.; Visuvalingam, S.D.; Ahmad, N.W. Larvicidal Activity of the Essential Oils and Methanol Extracts of Malaysian Plants on Aedes aegypti. Pharm. Biol. 2003, 41, 234–236. [Google Scholar] [CrossRef]
- Kannathasan, K.; Senthilkumar, A.; Venkatesalu, V. Mosquito larvicidal activity of methyl-p-hydroxybenzoate isolated from the leaves of Vitex trifolia Linn. Acta Trop. 2011, 120, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Ravi, R.; Zulkrnin, N.S.H.; Rozhan, N.N.; Yusoff, N.R.N.; Rasat, M.S.M.; Ahmad, M.I.; Ishak, I.H.; Amin, M.F.M. Chemical composition and larvicidal activities of Azolla pinnata extracts against Aedes (Diptera: Culicidae). PLoS ONE 2018, 13, e0206982. [Google Scholar] [CrossRef] [Green Version]
- Ravindran, D.R.; Bharathithasan, M.; Ramaiah, P.; Rasat, M.S.M.; Rajendran, D.; Srikumar, S.; Ishak, I.H.; Said, A.R.; Ravi, R.; Amin, M.F.M. Chemical Composition and Larvicidal Activity of Flower Extracts from Clitoria ternatea against Aedes (Diptera: Culicidae). J. Chem. 2020, 2020, 3837207. [Google Scholar] [CrossRef]
- Yassine, H.; Kamareddine, L.; Osta, M.A. The Mosquito Melanization Response Is Implicated in Defense against the Entomopathogenic Fungus Beauveria bassiana. PLoS Pathog. 2012, 8, e1003029. [Google Scholar] [CrossRef] [PubMed]
- Gusmão, D.S.; Páscoa, V.; Mathias, L.; Vieira, I.J.C.; Braz-Filho, R.; Lemos, F.J.A. Derris (Lonchocarpus) urucu (Leguminosae) Extract Modifies the Peritrophic Matrix Structure of Aedes aegypti (Diptera: Culicidae). Mem. Inst. Oswaldo Cruz 2002, 97, 371–375. [Google Scholar] [CrossRef] [Green Version]
- Procópio, T.F.; Fernandes, K.M.; Pontual, E.V.; Ximenes, R.M.; de Oliveira, A.R.C.; de Santana Souza, C.; de Albuquerque Melo, A.M.M.; do Amaral Ferraz Navarro, D.M.; Paiva, P.M.G.; Martins, G.F.; et al. Schinus terebinthifolius Leaf Extract Causes Midgut Damage, Interfering with Survival and Development of Aedes aegypti Larvae. PLoS ONE 2015, 10, e0126612. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Housefly (Musca domestica L.) control potential of Cymbopogon citratus Stapf. (Poales: Poaceae) essential oil and monoterpenes (citral and 1,8-cineole). Parasitol. Res. 2013, 112, 69–76. [Google Scholar] [CrossRef]
- Govindarajan, M.; Rajeswary, M.; Hoti, S.L.; Bhattacharyya, A.; Benelli, G. Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol. Res. 2015, 115, 807–815. [Google Scholar] [CrossRef]
- Waliwitiya, R.; Kennedy, C.J.; Lowenberger, C.A. Larvicidal and oviposition-altering activity of monoterpenoids, trans-anithole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Pest Manag. Sci. 2009, 65, 241–248. [Google Scholar] [CrossRef]
- Huang, H.-T.; Lin, C.-C.; Kuo, T.-C.; Chen, S.-J.; Huang, R.-N. Phytochemical composition and larvicidal activity of essential oils from herbal plants. Planta 2019, 250, 59–68. [Google Scholar] [CrossRef]
- Meena, A.K.; Niranjan, U.S.; Rao, M.M.; Padhi, M.M.; Babu, R. A review of the important chemical constituents and medicinal uses of Vitex genus. Asian J. Tradit. Med. 2011, 6, 54–60. [Google Scholar]
- Rani, A.; Sharma, A. The genus Vitex: A review. Pharmacogn. Rev. 2013, 7, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Shaalan, E.; Canyon, D.; Younes, M.W.F.; Abdel-Wahab, H.; Mansour, A.-H. A review of botanical phytochemicals with mosquitocidal potential. Environ. Int. 2005, 31, 1149–1166. [Google Scholar] [CrossRef] [PubMed]
- Abidin, L.; Mujeeb, M.; Mir, S.R.; Alam Khan, S.; Ahmad, A. Comparative assessment of extraction methods and quantitative estimation of luteolin in the leaves of Vitex negundo Linn. by HPLC. Asian Pac. J. Trop. Med. 2014, 7 (Suppl. S1), S289–S293. [Google Scholar] [CrossRef] [Green Version]
- Iloki-Assanga, S.B.; Lewis-Luján, L.M.; Lara-Espinoza, C.L.; Gil-Salido, A.A.; Fernandez-Angulo, D.; Rubio-Pino, J.L.; Haines, D.D. Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC Res. Notes 2015, 8, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakeel, A.; Jan, S.A.; Ullah, I.; Shinwari, Z.K.; Xu, M. Solvent polarity mediates phytochemical yield and antioxidant capacity of Isatis tinctoria. PeerJ 2019, 7, e7857. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, H.; Shad, M.A.; Rehman, N.; Andaleeb, H.; Ullah, N. Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Braz. J. Pharm. Sci. 2020, 56, 17129. [Google Scholar] [CrossRef] [Green Version]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- American Chemical Society. High Doses of Phytochemicals, Including Flavanoids, in Teas and Supplements Could Be Unhealthy. ScienceDaily. 2007. Available online: www.sciencedaily.com/releases/2007/04/070430224756.htm (accessed on 12 September 2021).
- World Health Organization. Guidelines for Laboratory and Field Testing of Mosquito Larvicides. 2005. Available online: https://apps.who.int/iris/handle/10665/69101 (accessed on 31 July 2021).
Concentration (mg/L) | Actual Larvae Mortality n ± SE | Actual Larvae Mortality (%) | Arcsine Transformed Larvae Mortality (%) |
---|---|---|---|
10,000 | 21.00 ± 0.89 | 84.00 ± 3.55 | 67.59 ± 2.64 a |
5000 | 19.00 ± 0.74 | 76.00 ± 2.95 | 61.31 ± 2.21 a |
2500 | 13.90 ± 0.50 | 55.67 ± 2.00 | 48.30 ± 1.17 b |
1250 | 8.40 ± 1.16 | 33.67 ± 4.66 | 35.29 ± 2.85 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, M.; Hashan Arif, E.I.; Muhammad Dimyati, N.I.; Ishak, I.H.; Hamdan, R.H.; Syazwan, S.A.; Peng, T.L. Larvicidal Effect of Vitex ovata Thunb. (Lamiales: Lamiaceae) Leaf Extract towards Aedes (Stegomyia) aegypti (Linnaeus, 1762) (Diptera: Culicidae). Parasitologia 2021, 1, 210-217. https://doi.org/10.3390/parasitologia1040022
Aziz M, Hashan Arif EI, Muhammad Dimyati NI, Ishak IH, Hamdan RH, Syazwan SA, Peng TL. Larvicidal Effect of Vitex ovata Thunb. (Lamiales: Lamiaceae) Leaf Extract towards Aedes (Stegomyia) aegypti (Linnaeus, 1762) (Diptera: Culicidae). Parasitologia. 2021; 1(4):210-217. https://doi.org/10.3390/parasitologia1040022
Chicago/Turabian StyleAziz, Mukamilliya, Emir Izad Hashan Arif, Nur Insyirah Muhammad Dimyati, Intan H. Ishak, Ruhil Hayati Hamdan, Samsuddin Ahmad Syazwan, and Tan Li Peng. 2021. "Larvicidal Effect of Vitex ovata Thunb. (Lamiales: Lamiaceae) Leaf Extract towards Aedes (Stegomyia) aegypti (Linnaeus, 1762) (Diptera: Culicidae)" Parasitologia 1, no. 4: 210-217. https://doi.org/10.3390/parasitologia1040022
APA StyleAziz, M., Hashan Arif, E. I., Muhammad Dimyati, N. I., Ishak, I. H., Hamdan, R. H., Syazwan, S. A., & Peng, T. L. (2021). Larvicidal Effect of Vitex ovata Thunb. (Lamiales: Lamiaceae) Leaf Extract towards Aedes (Stegomyia) aegypti (Linnaeus, 1762) (Diptera: Culicidae). Parasitologia, 1(4), 210-217. https://doi.org/10.3390/parasitologia1040022