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Abstract: We present two approaches for fabricating shadow masks for the evaporation of electrodes
onto nanomaterials. In the first one, we combine the use of a commercial fiber laser engraving system
with readily available aluminum foil. This method is suitable for fabricating shadow masks with
line widths of 50 µm and minimum feature separation of 20 µm, and using it to create masks with
complex patterns is very straightforward. In the second approach, we use a commercially available
vinyl cutting machine to pattern a vinyl stencil mask, and we use a glass fiber to define the separation
between the electrodes. With this approach, we achieve well-defined electrodes separated by 15 µm,
but this technique is less versatile in creating complex masks as compared with the laser-based one.
We demonstrate the potential of these techniques by fabricating field-effect transistor devices based
on MoS2. Our approach is a cost-effective and easily accessible method for fabricating shadow masks
with high resolution and accuracy, making it accessible to a wider range of laboratories.

Keywords: shadow mask deposition; rapid prototyping; micro-fabrication; device fabrication;
field-effect transistor; two-dimensional materials

1. Introduction

Electrode deposition is a critical step in the fabrication of electronic devices with
nanomaterials. The most widely extended method to deposit electrodes is probably based
on lithographic techniques, i.e., photolithography or electron beam lithography, which
require specialized and expensive facilities as well as a strong technical background in
micro-fabrication. Recent works show different approaches for lower-cost lithography
setups used with nanomaterials [1,2]. Nevertheless, these lithographic techniques require
chemical treatment steps to ensure the adhesion of the resists for the development and lift-
off steps, which can harm certain nanomaterials that are more sensitive to the environment.

Direct metal evaporation through a shadow mask, on the other hand, has several
advantages over conventional lithographic techniques [3–6]. For example, it is relatively
inexpensive, easy to implement, and does not require a clean room environment. Addi-
tionally, it can be easily applied in labs that do not have a background or infrastructure
in microfabrication. Another important aspect of the method is the fact that it is an
‘all-dry’ process, which means that it is also compatible with nanomaterials that tend to
degrade or damage during the chemical and optical treatments involved in lithographic
techniques [7–9]. Pre-patterned electrodes have the advantage of enabling a nanomaterial
assembly in the glove box, which is crucial for air-sensitive materials [10,11].

Typically, shadow mask fabrication requires a specialized facility similar to those used
for lithographic processing, which can be very costly [12,13]. Most research groups using
shadow mask deposition buy commercially available masks or outsource the fabrication to
micro-fabrication foundries, making the use of shadow mask deposition less flexible and
unsuitable for rapid prototyping. This raises the question of whether there is a technique
to fabricate shadow masks in a way that is affordable and flexible, which would allow
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research groups to design and fabricate their own customized masks without the need for
costly infrastructure or fabrication outsourcing.

Tomczyk et al. recently published a work about laser ablation fabrication of masks
using homebuilt optical systems. However, these systems were typically composed of
expensive components, and the resolution achieved was only in the 50 to 100 µm range [14].
This may not be sufficient for many applications with nanomaterials, which require elec-
trodes in the 10–50 µm range. Moreover, the reported laser ablation setups are difficult to
use and expensive to implement, making it not suitable for many research groups. Elhami
Nik et al. also reported a recent work about the use of a CO2 laser to ablate filter paper to
create shadow masks, resulting in masks with a minimum feature size of 100 µm [15].

In this work, we present two approaches for fabricating shadow masks for the evap-
oration of electrodes to fabricate devices with nanomaterials, bridging the gap between
flexibility in realizing the design and the cost factor. In the first method, we make use of
a commercially available fiber laser engraving system (Atomstack M4, costing less than
EUR 1100) with readily available metal supports (standard kitchen aluminum foil and
thick aluminum foil) for shadow mask engraving of self-drafted layouts with maximum
flexibility. In the second method, we use a vinyl cutting machine (Cricut Maker 3, under
EUR 500) to create a vinyl stencil mask defining the electrodes and pads with pre-defined
gap sizes and maximum cost-effectiveness. As the resolution of the vinyl cutter does not
allow us to achieve electrode separation under 100 µm, we place a glass fiber (15 µm in
diameter) to define the separation between the electrodes. We illustrate the potential of
these methods by fabricating single-layer MoS2 field-effect transistors.

2. Materials and Methods

Figure 1a shows a picture of the compact fiber laser engraving system used in this
work while it cuts through aluminum foil. The system uses a pulsed IR laser (1064 nm)
focused on a spot of ~20 µm and features two scanning galvanometer mirrors that allow it
to reach a marking speed of up to 12 m/s. We found that standard kitchen aluminum foil
can be used to fabricate well-defined shadow masks, but handling them without creating
folds/wrinkles can be challenging (note that an example of a kitchen aluminum foil mask
is given in the Supporting Information Figure S1). We thus tested thicker aluminum foil
(40 µm thick, 150 × 150 mm sheets, typically commercialized for use in shisha/hookah,
LINK) that leads to optimal performance in terms of easiness to pattern and handle after-
ward. Figure 1b shows a picture of one of these thick aluminum foils, laser-cut to form
a shadow mask with pads and drain-source electrodes separated by different gap sides,
adhered to a SiO2/Si substrate with Kapton tape prior to metal evaporation. The inset in
the figure shows a higher magnification image of one of the 20 µm gaps. We found that
masks designed with a drain-source separation under 20 µm tend to fail, thus leading to a
shorted drain-source connection.

Figure 1c shows a picture of the other system tested to fabricate inexpensive homemade
shadow masks: a vinyl cutter. The system operates very similarly to an old-fashioned XY
plotter system, but uses a sharp blade tool instead of a pen. This kind of system, although
inexpensive and very easy to use, cannot be used to make small features or structures
with small pitch (that is, below a 200 µm feature or pitch size, the vinyl-cut masks are not
reliable). To fabricate shadow masks with a smaller separation between drain and source
electrodes, we combined the vinyl-cut mask with a glass fiber that is 15 µm in diameter to
define the separation between drain and source electrodes without being limited by the
vinyl-cutting system. Previous works using glass or carbon fibers as shadow masks have
been reported in the literature to provide good-quality electrodes [16,17]. The combination
with a vinyl cut mask can provide a more controlled way to deposit the metal electrodes
and to pattern the pads and the leads to avoid shorts with other parts of the device or
with the back gate. Figure 1d shows an optical image of one of the vinyl cut masks where
one can appreciate the pads and the electrode leads. One can also notice the glass fiber
deposited in the central part of the substrate before adhering to the vinyl cut mask to define
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the drain-source separation. The inset shows a higher magnification image of the glass
fiber, creating the separation between the electrodes.
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Figure 1. Fabrication of shadow masks with commercially available laser engraver and vinyl cutter
systems. (a) Picture of a fiber laser engraving system Atomstack M4 while cutting thick aluminum
foil. (b) Picture of one of the fabricated shadow masks with drain and source electrodes separated
by different distances ranging from 20 µm to 40 µm, fixed on a SiO2/Si substrate with Kapton tape.
(Inset) Optical microscopy image of the separation between the drain and source electrode at the
central part of the ‘bar-shaped’ lead. The scale bar is 100 µm. (c) Picture of a Cricut Maker 3 vinyl
cutter system used to prepare a vinyl stencil mask with the pads and the electrode leads. (d) Vinyl
mask adhered onto a SiO2/Si substrate using the adhesive of the vinyl. A 15 µm diameter glass fiber
was deposited onto the surface prior to adhering the mask to define the separation between drain
and source electrodes (see inset, scale bar: 500 µm).

3. Results
3.1. Fabrication of Electrodes by Metal Deposition through the Masks

In the following, we characterize the electrodes achieved after metal deposition
through the shadow masks. We employ an electron beam evaporation system to de-
posit 5 nm of Ti (adhesion layer) and 45 nm of Au. Figure 2a shows an optical image of a
shadow mask fabricated onto the 40 µm thick aluminum foil by laser ablation. Figure 2b
shows an optical image of a SiO2/Si substrate after metal deposition that closely follows
the shape of the shadow mask shown in Figure 2a. The inset in Figure 2b shows a higher
magnification optical microscopy image of the gap between the drain and source electrodes.
Figure 2c shows an optical image of a mask made with the combination of a glass fiber and
a vinyl cut stencil. The mask is adhered onto a SiO2/Si substrate before metal deposition.
Figure 2d is an optical image of the SiO2/Si substrate after metal deposition. The inset in
2d depicts a detail of the gap created between the drain and source with the glass fiber.
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3.2. Example of Devices Fabricated with the Shadow Masks 

Figure 2. Resulting electrodes after evaporation through the homebuilt shadow masks. (a) Optical
microscopy image of a drain-source mask patterned on thick aluminum foil with the fiber laser
engraver system. (b) Optical microscopy image of the resulting electrodes after evaporating Au
(45 nm)/Ti (5 nm) onto a SiO2/Si substrate. (Inset) Higher magnification image of the gap between
drain and source electrodes. (c) Optical microscopy image of a drain-source mask fabricated by
combining the vinyl mask with a 15 µm diameter glass fiber adhered onto a SiO2/Si before metal
deposition. (d) Optical microscopy image of the resulting electrodes after evaporating Au (45 nm)/Ti
(5 nm) onto a SiO2/Si substrate. (Inset) Higher magnification image of the gap between drain and
source electrodes.

As one can clearly see from Figure 2, we found that the vinyl + glass fiber approach
yields very well-defined drain-source electrodes whose separation is directly defined by the
diameter of the fiber. But, this technique suffers from lower flexibility in exploring different
customized electrode designs. The laser engraving method, on the other hand, yields poorly
defined electrode edges but ensures complete flexibility over the pattern design. This increased
flexibility allows for the design and implementation of new patterns and layouts, providing
more freedom in the design process and enabling more advanced electronic devices to be
fabricated with nanomaterials. Additionally, this method can be used to quickly test different
designs, which will allow for faster development and optimization of the fabrication process.
In this way, the use of a commercially available fiber laser engraving system can open the door
to additional flexibility in shadow mask fabrication, providing a powerful tool for researchers
working in the field of nanoelectronics, whereas the use of a vinyl cutter in combination
with glass fibers can provide the most cost-effective route to fabricate devices for research
groups running under a moderate budget. We direct the reader to Figure S2 in the Supporting
Information for an atomic force microscopy (AFM) characterization of the electrodes fabricated
with these shadow masks as well as with a commercially available shadow mask (Ossila E321,
Ossila Ltd., Solpro Business Park, Windsor Street, Sheffield S4 7WB, UK).
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3.2. Example of Devices Fabricated with the Shadow Masks

In order to illustrate the potential of these techniques to fabricate devices, we have
deposited single-layer MoS2 flakes bridging the electrodes fabricated by metal deposition
through the shadow masks. We employed a viscoelastic dry-transfer method based on
Gel-Film stamps [18] to transfer a single-layer MoS2 flake to bridge the drain and source
electrodes [19,20]. Figure 3a,c show optical microscopy images of devices fabricated with
electrodes deposited through laser-ablated and vinyl + fiber shadow masks, respectively.
After flake deposition, we perform a vacuum annealing step (2 h, 200 ◦C, 10−3 mbar) to
improve the metal-semiconductor contact. We tested the electronic properties of the devices
in a homebuilt probe station. Figure 3b,d show the source-drain current as a function of the
back-gate voltage measured on the devices shown in Figure 3a,c. The transfer curves were
measured under a constant source-drain bias VDS of 1 V with a gate voltage step speed of
1 Vs−1 (sweeping from −60 V to +60 V).
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Figure 3. Example of nanomaterial-based devices based on the electrodes fabricated with the home-
made shadow masks. (a) Optical microscopy image of a single-layer MoS2 flake bridging the drain
and source electrodes fabricated with the laser-ablated shadow mask. (b) Semi-logarithmic transfer
curve of the resulting MoS2 field-effect transistor for a constant bias VDS of 1 V. (Inset) Gate-dependent
IVs for gate voltages of −60 to 60 V. (c) Optical microscopy image of a transferred single-layer MoS2

flake bridging the drain and source electrodes fabricated with vinyl + glass fiber mask. (d) Semi-
logarithmic transfer curve of the resulting MoS2 field-effect transistor for a constant bias VDS of 0.5 V.
(Inset) Gate-dependent IVs for gate voltages of −60 to 60 V.
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From these measurements, one can extract the field-effect mobility (µFE) of the fabri-
cated field-effect transistors by following this expression [21]:

µFE =
dIDS

dVG

L
W

1
CG·VDS

(1)

where IDS, VDS, and VGS are the source-drain current, source-drain voltage, and gate
voltage, CG is the capacitance of the silicon oxide dielectric, and L and W are the length
and width of the transistor channel. The devices shown in Figure 3 presented a mobility
of 0.94 cm2 V−1 s−1 (laser-ablation mask) and 10.7 cm2 V−1 s−1 (vinyl + fiber mask). In
Figure S3 in the Supporting Information, the reader will find the results of another two de-
vices showing mobilities of 1 cm2 V−1 s−1 (for the laser-ablation mask) and 0.39 cm2 V−1 s−1

(for the vinyl + fiber mask). These field-effect measurements have been carried out in a
three-terminal configuration without discounting for the effect of the contact resistance,
and thus, the mobility values obtained here should be considered lower-bound estimates,
as discounting for the contact resistance would lead to larger mobilities. It is interesting
to note that we found that devices fabricated with electrodes fabricated by deposition
through commercially available shadow masks (Ossila E321) lead to devices with simi-
lar characteristics in terms of threshold voltage, mobility, and current ON/OFF values
achieved by our group [22,23] as well as others [24–27], with typical mobility values be-
low 10 cm2 V−1 s−1 when using SiO2 as the dielectric material. Overcoming these values
and getting closer to MoS2

′s theoretical limit of around 200 cm2 V−1 s−1 would mean
a change to a dielectric material with a higher dielectric constant [21,22,28]. Similarly,
other transistor architectures can be designed, such as simple complete bottom gate tunnel
field-effect transistors [29,30] or anywhere where pre-patterned electrodes are applicable
with consideration of the achievable feature sizes.

3.3. Examples of Shadow Masks with More Complex Patterns

Figure 4 shows a few examples of other shadow mask designs fabricated with the laser
ablation method on 40 µm thick aluminum foil to illustrate the flexibility of this technique
in the rapid prototyping of devices. These patterns are chosen due to their usefulness
when studying nanomaterial-based devices: a Hall bar, a four-terminal mask, and a mask
designed to test in-plane electrical anisotropy.
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Figure 4. Examples of different shadow mask patterns created with the fiber laser engraving system.
(a) Hall bar. (b) Four-terminal configuration. (c) Electrode probes to test in-plane anisotropic materials.

4. Discussion and Conclusions

We have presented two different approaches for fabricating shadow masks for the
evaporation of electrodes onto nanomaterials using a commercially available fiber laser
engraving system or a vinyl cutting machine. The laser engraving of aluminum foil is able
to produce shadow masks with line widths of 50 µm and minimum feature separation
of 20 µm, although with a noticeable edge roughness and with complete flexibility over
the pattern design. In the second technique, we use a vinyl cutter to define the pads
and electrode leads, but we place a glass fiber to create a well-defined narrow separation
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between the drain and source electrodes. This technique allows us to create line widths of
200 µm separated by 15 µm (dependent on the glass fiber diameter) with a very sharp and
well-defined electrode separation. Nonetheless, the vinyl + fiber technique is less flexible
than the laser engraving one in terms of prototyping. We have proven the potential of
these techniques by fabricating devices based on MoS2. A set of different patterns shows
the ability to extend this technique to various applications in the field of microelectronics
without limitation of substrate type and the freedom of post-material assembly due to
pre-patterned structures. By using this method, patterns on flexible substrates can enable
measurements in the field of strain engineering or biomedical applications. Our approaches
are cost-effective and easily accessible methods for fabricating shadow masks with high
resolution and accuracy, making them accessible to a wider range of laboratories. This
work contributes a valuable addition to the field of nanoelectronics by providing simple
and inexpensive methods for fabricating high-resolution shadow masks.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/nanomanufacturing3030022/s1. Figure S1: Mask fabrication on
standard kitchen aluminum foil; Figure S2: Atomic force characterization of the electrodes fabricated
with different techniques; Figure S3: More examples of nanomaterial-based devices based on the
electrodes fabricated with the homemade shadow masks; Video S1: Shadow mask laser writing
process.
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