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Abstract: 3D city models are mainly viewed on computer screens, but many municipalities also
use 3D printing to make urban planning tangible. Since 3D color printing is still comparatively
expensive and the colors often fade over time, many of these models are monochrome. Here, color
textured paper models offer an inexpensive and under-appreciated alternative. In this paper, a greedy
algorithm adapted to CityGML building models is presented, which creates print templates for
such paper models. These 2D layouts consist of cut edges and fold edges that bound polygons of a
building. The polygons can be textured or left blank depending on the existence of CityGML textures.
Glue tabs are attached to cut edges. In addition to the haptic 3D visualization, the quality of the 3D
models can sometimes be better assessed on the basis of the print templates than from a perspective
projection. The unfolding procedure was applied to parts of the freely available CityGML model of
Berlin as well as to parts of models of the cities of Dortmund and Krefeld.
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1. Introduction

Virtual 3D city models are used for simulation purposes (e.g., solar potential analyzes,
flood maps, heat requirement mapping) as well as for vivid visualization of urban planning,
e.g., see [1]. They are also a data source for Building Information Modeling (BIM), see [2].
Over the past decade, CityGML (see [3]) and more recently CityJSON (https://cityjson.
org/specs/ (accessed on 23 November 2021)), have become the standards for representing
3D city information.

Most CityGML models are currently specified in a level of detail that provides some-
what simplified roof facets and walls but lack detailed facade information. In the CityGML
level of detail 1 (LoD 1), the building footprint is extruded to obtain a 3D object with a flat
roof. The CityGML level of detail 2 (LoD 2) allows for arbitrary planar roof facets. The
representation of facades with windows and doors requires a higher level of detail, which
is usually not available. The simple LoD 2 structure with few surfaces, which must also be
planar, is ideal as a basis for paper models, cf. [4]. If color printing is used, this is even more
true for those models that have been textured with oblique aerial images, see Figure 1.

Figure 1. Detail of a textured CityGML model of Krefeld.
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Physical building models are important for participatory planning because they re-
duce the level of abstraction, see, e.g., [5]. These models are a tool for exploration and
communication, and they can show the interplay between structures and their surround-
ing environment, see [6]. The role of haptic visualization of geospatial data is described
in [7]. Handmade physical architectural models (made of cardboard, plaster, or wood in the
past, cf. [8]) are quite expensive but now the presence of virtual 3D models allows for (semi-)
automated production. Laser cutting is used to cut (also colored) pieces that have to be
assembled manually. One can distinguish between subtractive (CNC milling) and additive
techniques (3D printing) as well as forming techniques (deep drawing) to automatically
create physical models, cf. [9]. With the advance of cheap 3D printers, various 3D printing
techniques like stereolithography, powder printing, and Fused Filament Fabrication (FFF)
have been applied to create architectural models in recent years, cf. [10]. Powder printing
is capable of reproducing multi-colored surfaces, and many FFF printers allow for a few
differently colored filaments within one print process. For example, the city of Essen used
color 3D powder printing to reproduce the entire city center, see Figure 2.

Figure 2. Upper left image: 3D-printed city model of Essen, created by “Amt für Geoinformation,
Vermessung und Kataster der Stadt Essen”; other images: Manually colored 3D print of buildings
in Krefeld.

However, 3D printing is a slow process, and compared to FFF printing with few colors,
color powder 3D printing requires expensive materials and hardware. As the Essen model
shows, the colors can fade away over time. In an experiment, we converted CityGML to the
STL format, manually increased the level of detail, printed monochrome with a cheap FFF
printer, and then manually painted facades. Although the results are promising (Figure 2), the
manual effort is tremendous. Textured paper models also show realistic facades but can be
assembled without the need of manual coloring in a fraction of 3D print time if there are not too
many facets.

Paper models are created from printed 2D layouts by cutting along certain edges and by
folding. The transformation of a 3D model to a 2D layout is called unfolding (cf. Section 2.1 for
a formal definition). A general heuristic unfolding algorithm based on computing a minimum
spanning tree is described in [11].

For CAD programs such as Blender (https://docs.blender.org/manual/en/latest/
addons/import_export/paper_model.html (accessed on 23 November 2021)), there exist
plug-ins that can be used to convert 3D models into print templates for paper models,
cf. [12]. However, currently available free tools do not support an easy conversion of
textured CityGML and CityJSON objects into textured CAD models. In contrast to general
optimization approaches as described in [13,14], the typical geometry of the building
models allows a specific greedy procedure for unfolding the models into 2D structures that
results in small 2D layout sizes, see Figure 3.

https://docs.blender.org/manual/en/latest/addons/import_export/paper_model.html
https://docs.blender.org/manual/en/latest/addons/import_export/paper_model.html
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Until now, it has been an open question if every convex polyhedron can be cut along
some of its edges (cut edges) to allow a non-overlapping unfolding onto a 2D plane
([15] pp. 73–75). There exist special polyhedra with convex faces that do not have a non-
overlapping unfolding [16]. Many building models do not even consist of only convex
polygons. For example, a dormer might be placed over an opening in a roof facet. Then
walls and roof of the dormer do not fit into the space of the opening such that no non-
overlapping unfolding exists. For practical purposes, this is not a problem as we can
generate multiple 2D layout images for a given building if necessary. The next section
describes our unfolding approach. It has been implemented for CityGML data only, since
CityJSON and CityGML can be easily converted into each other with freely available
tools, github.com/citygml4j/citygml-tools (accessed on 23 November 2021). The paper
concludes with a discussion of the results.

Figure 3. Print templates of CityGML buildings with automatically added glue tabs.

2. Materials and Methods
2.1. The Greedy Algorithm

In CityGML, buildings can be divided into building parts that can share opposite walls.
Usually, only large buildings are split up into parts. Since 2D layouts of such buildings
may not fit on a single page, the proposed algorithm computes a separate unfolding for
each building part.

Let V be the set of vertices and E be the set of undirected edges of all polygons of
a CityGML building part or building. The graph (V, E) describes the outer hull of the
(watertight) object, it has exactly one connected component. Its dual graph (Vd, Ed) has a
vertex set Vd that consists of the CityGML polygons (the faces of graph (V, E) are now the
vertices), and has a set of edges (1),

Ed := {{p1, p2} : p1 6= p2 ∈ Vd have at least one common edge in E}. (1)

The vertex set Vd is the disjoint union of a set Vd,G of ground plane polygons, a set
Vd,W of wall polygons, and a set Vd,R of roof polygons. We assume that adjacent polygons
lie in different planes. Otherwise, they must be merged before applying this algorithm. An
unfolding of the CityGML object is a spanning tree of (Vd, Ed). If and only if this tree has
an edge between p1 and p2, then the two polygons have at least one common fold edge in
E. Then all common edges of p1 and p2 are fold edges and lie on a straight line. Edges in E
that are no fold edges are cut edges.

Instead of a spanning tree, our greedy algorithm computes a spanning forest of non-
overlapping unfoldings, see Algorithm 1. Unlike the algorithm in [11] that computes a
minimal spanning tree of (Vd, Ed) first and then cuts it into a forest to fulfill the non-overlap

github.com/citygml4j/citygml-tools
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condition, now the tree is successively constructed by adding new polygons until it can no
longer grow due to overlaps. Then a new tree is started.

Polygons are allowed to have openings (interior polygons) in CityGML. Such openings
are usually too small to accommodate another polygon along with a neighbor or a glue tab.
Therefore, polygons that are adjacent to edges of an inner polygon are not treated within
the same tree as in which the inner polygon is considered.

Algorithm 1 Greedy Unfolding
componentNo = 0
while unprocessed polygons exist do

componentNo:=componentNo+1
Initialize new output image
if componentNo = 1 then

Find a largest ground plane face pG
Find a wall polygon p adjacent to longest edge of pG
Draw p as the first polygon to the output image
while attachable wall polygons exist do

. An attachable wall polygon is so far not drawn, with an edge adjacent to a drawn wall
. polygon, such that it can be attached in 2D without overlaps

Draw this polygon attached to the adjacent edge
else

Find a polygon p with largest area size
Draw p as the first polygon to the output image

added := 1
while added do

added=0;
for all remaining polygons p in descending area size do

Edges e ∈ E of p are determined which are also edges of a polygon q already drawn in the
current output image

for each such edge e in descending order (2) do
if p can be attached at e without overlaps then

Draw polygon p into the output image
added = 1

CityGML building models have ground plane polygons pG ∈ Vd,G. All wall poly-
gons pW ∈ Vd,W , which have vertices with a (largest) ground plane face pG in common,
i.e., {pG, pW} ∈ Ed, can be linked to form an initial tree that is a sub-graph of (Vd, Ed).
Two-wall polygons pW,1 and pW,2 can be connected with an edge if and only if they share
a common vertex v ∈ V with pG, i.e., v is a vertex of all three polygons. The greedy
algorithm (Algorithm 1) starts with a wall polygon adjacent to a longest edge of pG, and
then iteratively adds more wall polygons until all adjacent polygons are added to the tree
or until overlaps occur, see Figure 4. By definition, an unfolding is a spanning tree of
the dual graph. It is not guaranteed that cutting along the cut edges and folding along
fold edges will result in a planar layout in which polygons do not overlap. This has to be
checked additionally (see below).

Figure 4. The initial layout consists of wall faces that are adjacent to a ground plane polygon.

Iteratively, further polygons p ∈ Vd are added to the initial tree. For this purpose, the
remaining polygons are sorted and processed in descending order by area size. For each
of these polygons p, those of its edges e ∈ E are determined, which are also edges of a
polygon q already added as a vertex in the tree. These edges e are sorted in descending
order by a combination of edge length l, type of the matching polygon q, and number of
common edges between the two polygons p and q. Edges e with wall and ground plane
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polygons q ∈ Vd,W ∪Vd,G have a higher priority t = 10 than with roof polygons q ∈ Vd,R
where t = 1. Thus, roof planes are attached to wall polygons whenever possible. This
leads to a compact print size and, if possible, avoids chains of roof polygons on the paper.
If the two polygons p and q share more than one edge e, then they are weighted with a
low priority m = 0.01 because it might be difficult to later add other polygons between the
different shared edges. Otherwise, m is set to one. The overall priority is:

l × t×m. (2)

During the iterative tree assembly, a 2D representation of the unfolding is maintained.
The vertices of each considered polygon are projected into the two-dimensional space by
computing coordinates with respect to two orthogonal vectors that span the plane of the
polygon. In the 2D space, affine transformations are then applied to connect projected
polygons along fold edges.

In the described sequence of selected edges e of p, the algorithm tries to extend the tree
by connecting p if possible. To this end, checks have to be performed to identify overlaps.
Thus, intersection points between 2D edges of p and all other 2D edges so far belonging to
polygons of the tree are computed (with the exception of the potential fold edge e used for
the connection). In addition, (partially) overlapping edges on a same straight line with the
projection of e have to be considered. If there exists an intersection point, the polygon p
cannot be connected in this way, and its next selected edge is examined instead.

With this procedure, an attempt is made to connect each remaining polygon with
those already present in the tree, see Figure 3. If it succeeds for at least one polygon, the
procedure is repeated, as there are now new polygons to connect to.

For most buildings, a single tree and thus a non-overlapping unfolding can be con-
structed. However, if polygons remain, the largest remaining one is selected, and then
the procedure is repeated with this new seed to generate a forest. This happens especially
when a polygon has an opening since then the edges of the opening are not considered in
the unfolding process, see Figure 5.

Figure 5. Dormers lead to openings.
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Figure 6. A cupola from the Berlin model forms one connected component belonging to an opening
of a roof.

Figure 7. Examples from the Berlin city model.

Figure 8. Unfolding examples without and with glue tabs.

Each tree of the forest is used to draw a separate image of the corresponding part
of the unfolded model, see Figure 6. Textures are added to polygons in CityGML via
the appearance model. They are positioned with an UV mapping using 2D coordinates
for each polygon vertex. For simplicity however, we assume that texture coordinates are
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limited to the interval [0, 1]× [0, 1] such that no repetitive patterns occur. Such patterns
should not occur in automatically textured models from oblique aerial images. Instead of
the UV mapping, an affine transform based on three iteratively selected polygon points
and their corresponding texture coordinates is applied. After choosing a first point with a
smallest x-coordinate, the other points are chosen such that the minimum distance from the
previously selected points is maximal. The drawn 2D polygon is filled with the transformed
texture image.

Pairs of cut edges separated by unfolding require a glue tab. This must be placed on
one of the two corresponding 2D edges in a layout image. To do this, different sizes and
shapes of glue tabs are tried iteratively and each is checked for intersections with polygon
edges as well as with edges of other glue tabs in the output image. If an intersection occurs,
the next smaller size is selected. Building edges shorter than one meter are not given a
glue tab.

To print with exact scaling, the typesetting system LaTeX can be used. LaTeX allows
to scale included images exactly by specifying the unit truecm. If the page size is exceeded,
the 2D layout has to be divided into smaller pieces. This is done by cutting a bounding
rectangle into pieces. For optimal positioning of the pieces on the paper, a 2D bin packing
problem can be solved, see [11].

Figure 9. Visibility mask for identifying occluded regions.

2.2. Data Preparation

We tested the algorithm with single buildings from the textured Berlin LoD 2 CityGML
data and a textured LoD 2 city model of Dortmund. These buildings were chosen because
of their texture quality. To show that performance is no issue, we also applied the algo-
rithm to all 6485 building parts of two square kilometers of LoD 2 buildings within the
interval [330,000; 5,688,000] × [331,000; 5,690,000] of UTM coordinates in zone 32U. This
is the area around our institute in Krefeld. The Berlin model is freely available (Berlin
Partner für Wirtschaft und Technologie GmbH, https://www.businesslocationcenter.de/
downloadportal/ (accessed on 23 November 2021)). Disadvantages of this model are the
low resolution of the textures and the fact that the footprint areas are often divided into
several ground plane polygons. This can lead to multiple layout images, even if the build-
ing can be represented by one. Therefore, we computed are own textured models based on
oblique aerial images obtained with IGI UrbanMapper digital aerial survey cameras. The
cities of Dortmund and Krefeld supported us not only with these images, but also with
meta data indicating camera positions and camera parameters. With these parameters, we
applied a perspective transform to match an image area with a CityGML polygon of an
LoD 2 city model that was derived with the algorithm in [17] from cadastral footprints
and airborne laser scanning point clouds that are available from the state cadastral office
of the German state, North Rhine-Westphalia (https://www.bezreg-koeln.nrw.de/brk_
internet/geobasis/hoehenmodelle/3d-messdaten/index.html (accessed on 23 November
2021)). The perspective transform was applied before storing the texture images. That
allowed us to correctly replace the UV mapping by an affine transform when drawing 2D

https://www.businesslocationcenter.de/downloadportal/
https://www.businesslocationcenter.de/downloadportal/
https://www.bezreg-koeln.nrw.de/brk_internet/geobasis/hoehenmodelle/3d-messdaten/index.html
https://www.bezreg-koeln.nrw.de/brk_internet/geobasis/hoehenmodelle/3d-messdaten/index.html
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layouts. The obtained textures had a resolution of more than 100 pixels per square meter.
Besides projecting images to model faces, we also identified occluded areas that were then
not textured. This is in contrast to the Berlin model, in which all walls are textured, such
that occluded segments show perspective distortions, see Figure 7.
Feldstraße 45

Figure 10. The algorithm divided the layout into three connected components.

Leaving occluded wall and roof segments blank reduces printing costs and actually
looks better. This also reveals texture errors, as they can be distinguished from occlusion
artifacts. In Figures 5–8, occluded areas of partially hidden walls are gray while fully
occluded walls are white. To determine occluded areas, we drew the CityGML model
with camera parameters of an oblique aerial image by using a Z-buffer. Each facet was
assigned a unique color as ID, see Figure 9. Within a drawn polygon, only areas with its
corresponding color were visible.

2.3. Histogram Matching

The brightness of texture images in all three city models varies greatly depending
on the orientation of polygons towards the sun, see Figure 10. We experimented with
histogram matching to adjust the brightness. Pixels outside the polygon, pixels of occluded
areas, and green pixels indicating vegetation were masked out. Then we processed wall
and roof textures separately. For both sets of images, we determined a reference image each.
This is the brightest image with more than half the maximum number of non-masked-out
pixels in the set under consideration. Then all other images of the set were adjusted to the
reference image, see Figures 11–13.

The histogram function:

hc : {0, . . . , 255} → N0 := {0, 1, 2, . . . } (3)

counts the occurrence of byte values in an image channel c. When (3) is interpreted as
a density function, the corresponding distribution function is Hc : {0, . . . , 255} → [0, 1]
defined by:

Hc(k) :=
∑0≤j≤k hc(j)

∑0≤j≤255 hc(j)
. (4)

Let Href,c be the distribution Function (4) of channel c of the reference image, and let HA,c
be the corresponding distribution function of an image A to be adjusted. Then the classical
histogram matching replaces byte values k of channel c of A with k′ := min{j ∈ {0, . . . , 255} :
Href,c(j) ≥ HA,c(k)}.

We applied an independent histogram matching of RGB channels as well as of HSV
channels and also a matching of only the Y channel of the YCbCr color schema, see Figure 13.

However, the histogram-based approach did not work sufficiently. Buildings often
looked too different on different sides, with rear facades having a dissimilar color to the
corresponding front facade. The different color distribution in connection with independent
matching of the RGB channels led to noisy hue values. Much better results were obtained
by applying histogram matching to the original aerial images before the generation of
the CityGML textures (which unfortunately is not possible when only the final textured
models are available, as in the Berlin city model). These much larger images cover up to
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a thousand buildings. Typically, aerial images are taken with four cameras mounted on
an aircraft. During a flight, these cameras look roughly in the directions of north, south,
east, and west. We worked with images taken around noon, so the images from the camera
facing north were brightest. Using these images as a reference, the other images could be
adjusted quite well if adjusted and reference images showed the same area (and therefore
had similar color distribution), see Figure 14.

Figure 11. Histogram matching of all RGB channels applied to the first unfolding in Figure 3.

Figure 12. The comparison of original textures (upper image) and textures adjusted with RGB
histogram matching (lower image) shows the limitations of the method. The prerequisite that
adjacent polygons do not lie in the same plane is not given with this building of the Berlin model.
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Feldstraße 45 Feldstraße 45

Feldstraße 45

,

Feldstraße 45

Figure 13. Histogram matching applied to Figure 10, from top left to bottom right: Independent
matching of all RGB channels, independent matching of all HSV channels, matching of Y channel in
the YUV schema, independent matching of all YUV channels.

Figure 14. Adjustment of aerial images, (left) detail of the original image, taken in the south direction
(showing dark facades in Figures 10 and 13), (right) adjusted image.

2.4. Implementation

With the Xcode IDE on a MacBook Pro computer with i5 processor, the algorithm
was implemented in C++ based on the OpenCV library (https://opencv.org (accessed
on 23 November 2021)) that is used for image transformation. All tests were performed
on the MacBook with 16 GB memory that was sufficient to handle textures and oblique
aerial images.

3. Results and Discussion

Due to the greedy approach, the unfolding results were available immediately. Most
buildings consist of a few wall and roof facets. Then it is easy to fold the 2D layout back into
a physical 3D model as shown in Figure 15. Figure 16 summarizes some numbers for two
square kilometer tiles around our institute. The fist tile (blue plots) consists of 2502 building
parts and the second consists of 3443 building parts (red plots). The 0.75-quartile of
connected layout components in both tiles was one. More precisely, 85% and 79% of all
building parts could be unfolded to only one connected component. The 0.95-quantile of
connected components was two and three, respectively. A few of these components were
needed because of interior polygons (openings). The maximum number of openings per
building was eight, but the 0.95-quantile was only zero and one, respectively. The numbers
demonstrate that the chosen greedy approach is sufficient.

A higher number of connected components were often associated with buildings that
had many small facets, see Figure 17. Such buildings were also difficult to assemble, and
the level of detail should be reduced prior to unfolding. A simple but effective technique is

https://opencv.org


Geographies 2021, 1 343

to remove openings and any polygons that are inside openings. Another technique reduces
the set of building corners to dominant corners, see [18].

Figure 15. Assembled paper models.

The prerequisite that adjacent polygons do not lie in the same plane was sometimes
violated. This could lead to cut edges that should be fold edges. Merging faces prior
unfolding also requires merging textures. To avoid this effort, the algorithm simply does
not draw glue tabs along these cut edges. This is done by temporarily coloring non-textured
facets and adding glue tabs only after all polygons are drawn. Then a check is performed
to see if the glue tab vertices are already colored. If so, the tab is omitted.

We only checked for occlusion by buildings. Unfortunately, many facades were
covered by vegetation. This was indicated by green areas. However, this type of occlusion
occurred on some walls to an extent that did not allow inpainting.

The slope angles of some roof surfaces were inaccurate in the CityGML models. In addition,
bay windows and balconies were not represented in the simple models. Both problems led to
perspective distortions in the textures, which were clearly visible, cf. Figure 18.

Table 1 summarizes our experiences with paper models compared to 3D printing. The
main disadvantage of paper models is the manual work required to assemble the printed
kits. However, it took less than five minutes to cut out and glue together each of the models
shown in Figure 15. Preparation for a 3D print (cleaning, handling of materials, supervising
the print, removing support structures, etc.) also takes some time. Nevertheless, unlike
color 3D printing, manual interaction limits the paper kit approach to smaller areas like
single streets and to simple geometries, i.e., buildings should not consist of too many facets.
Facets should not be too small. The size of models is bounded by the paper size and by the
build space of a 3D printer, respectively. For both techniques, it is therefore often necessary
to (automatically) cut the models into smaller pieces.
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1 2 3 4 5 6 7-38
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Figure 16. Blue bars: Square kilometer with southwest corner (330,000; 5,687,000) in zone 32U
UTM coordinates, red bars: Square kilometer with southwest corner (330,000; 5,688,000). (a) x-axis:
Number of connected components, y-axis: Building parts with this number of connected components;
(b) models of the two square kilometer test region; and (c) polygons per building part.
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Figure 17. A fragmented flat roof leads to multiple connected components, three are shown here.

Vennfelder Straße 11

Figure 18. The left roof surface in the first, the right roof surface in the last image, and two roof
polygons in the second image do not perfectly match the texture. The balconies in the last image
originate from two aerial images taken from different angles to avoid occluded areas.

Table 1. Comparison between paper models and 3D print models, colors from dark red to dark green
indicate a scale from bad to good.

Paper Model Color Powder
3D Print

FFF with Multiple
Filaments Colors

time needed for
model creation
manual interaction
costs of materials and
equipment
stability of models
quality of color
number of colors
durability of structure
durability of colors
precision of scale
applicability for
simple geometries
applicability for
complex geometries
scalability of models

4. Conclusions and Future Work

Paper models can potentially be used for urban planning and are a comparatively
easy-to-create and cost-effective alternative to virtual 3D visualization as well as manually-
created or 3D-printed architectural models.

We presented a greedy algorithm for automatically unfolding CityGML models into
paper model kits with exact scaling, so that in most cases only a single piece of paper
needs to be cut out, folded, and glued together. However, even without assembling the
models, the kits are an alternative to virtual 3D rendering because unfolding to 2D is
helpful for finding model and texture errors. The fold edges indicate how the 2D facets
fit together in 3D. The 2D rendering shows hidden walls and internal structures that are
not readily apparent when viewing virtual city representations. Thus, textures of walls
between buildings can be checked. Building models in LoD 2 should consist only of the
outer shell such that interior walls indicate errors. At the moment, this 2D representation
is also complimentary to some city model viewers (like the “azul” (https://github.com/
tudelft3d/azul (accessed on 23 November 2021)) viewer) that are not capable of displaying
textures from files. In addition, the current CityJSON plugin for QGIS does not support the
appearance module needed to handle textures, see [19].

https://github.com/tudelft3d/azul
https://github.com/tudelft3d/azul
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Our future work will be to apply algorithms for inpainting to occluded image areas
so that vegetation is removed from the facade images. It would also be useful to simplify
given CityGML models so that cutting and gluing together becomes easier. It should also
be investigated how the production process can be simplified by 2D laser cutting. Laser
cutting would not only eliminate the need to cut out the layouts, but could also prepare
the folding edges by weakening the material. In addition, raised texture patterns would be
possible, which could be obtained from the textures.
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