
Citation: Hochmair, H.H.; Navratil,

G.; Huang, H. Perspectives on

Advanced Technologies in Spatial

Data Collection and Analysis.

Geographies 2023, 3, 709–713. https://

doi.org/10.3390/geographies3040037

Received: 18 October 2023

Accepted: 27 October 2023

Published: 2 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Editorial

Perspectives on Advanced Technologies in Spatial Data
Collection and Analysis
Hartwig H. Hochmair 1,* , Gerhard Navratil 2 and Haosheng Huang 3

1 Geomatics Sciences, Fort Lauderdale Research and Education Center, University of Florida,
Davie, FL 33314, USA

2 Department of Geodesy and Geoinformation, Technical University of Vienna, 1040 Vienna, Austria;
gerhard.navratil@geo.tuwien.ac.at

3 Department of Geography, Ghent University, 9000 Ghent, Belgium; haosheng.huang@ugent.be
* Correspondence: hhhochmair@ufl.edu

1. Introduction

The motivation to organize this Special Issue originated from the observation of rapid
changes taking place in the domain of geographical information science and systems over
the past few decades. For example, 20 years ago, GNSS was only known to a few experts,
whereas today, it is commonly used to track humans, animals, and unmanned devices with
unparalleled precision, availability, and reliability. Web 2.0, smart devices, new generations
of earth observation satellites, and dramatically increasing computing power have enabled
new insights into our world and society and also triggered novel applications. Some
examples of developments that pushed progress are:

• The idea of volunteered geographic information (VGI) [1], which was initially applied
to the collection of geometries and labels for maps and a routable street graph, later on
led to numerous other application fields such as tourism and travel recommendation
systems and analysis [2]; biodiversity modeling [3]; travel pattern analysis [4]; detec-
tion, monitoring and the management of natural disasters [5], sentiment analysis [6],
and environmental monitoring [7].

• Wearable devices for the collection of physiological data in relation to human emo-
tions [8] have, for example, been used to identify locations of increased stress levels
for cyclists in road networks in order to identify urban planning deficiencies [9].

• The deployment of social media and networking apps has enabled the rapid dissemina-
tion of geographic information and the detection of natural and man-made events [10],
monitoring outbreaks of pandemics [11], providing insights into public opinion [12],
traffic forecasting and real-time traffic incident detection [13], and tracking people’s
whereabouts and movements [14].

• GIS cloud computing enables computations and the sharing of services to be performed
in web-based environments instead of local desktop systems and has been used in
application areas such as land valuation [15]. Efficient Spatial Data Infrastructure (SDI),
including standards, protocols, policies, and guidelines on geospatial data capture,
production, and distribution, is a crucial component for sharing a large volume of data
over the web and, thus, GIS cloud computing [16].

• Novel types of mobile networks and communication techniques facilitate the seamless
interaction of small devices, which provides the foundation and increases the popu-
larity of the Internet of Things (IoT) [17]. These integrated sensors (measuring, e.g.,
pressure, positions, distances, light, chemicals, radiation, rain, or soil parameters) play
a vital role in enabling smart city systems [18] and monitoring our living environments,
e.g., regarding indoor air quality [19].

• Recent approaches to GeoAI integrate GIS with AI techniques, such as Artificial Neural
Networks (ANNs), deep learning, or large language foundation models [20]. Different
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types of foundation models, once enhanced with spatial knowledge, e.g., through
geospatial knowledge graphs, can lead toward spatially explicit GeoAI models for
specific domains, such as urban geography [21].

• Blockchain is a distributed ledger technology that enables secure and transparent
transactions within a peer-to-peer network of computers, where any updates to the
data are immediately propagated throughout the network [22]. It can be used to
create a decentralized system for managing spatial data that ensures integrity and the
authenticity of geospatial data [23], e.g., in web-based public participatory GIS [24] or
the management of IoT devices [25].

Each of these technologies demands new approaches or adaptations to existing ap-
proaches to make use of the strengths and mitigate weaknesses. With this Special Issue, we
aimed to collect manuscripts that showcased these changes for a wide range of topics.

2. New Data Analysis Techniques and Datasets

Recent years have seen significant advances in the collection of spatial or spatiotempo-
ral data from various devices and platforms, including high-resolution remote sensing plat-
forms such as Unmanned Aerial Vehicles (UAVs) [26], environmental sensor networks [27],
location-tracking devices [28], human-wearable biometrics sensors [29], smartphone sens-
ing [30], Connected Vehicle Infrastructure [31], or IoT devices [32]. Data are contributed
by governmental agencies, public institutions, NGOs, industry, and the general public,
who collect and share crowdsourced data, including VGI, and participate in citizen science
projects [33,34]. The provision of these different devices and platforms has led to a mas-
sive amount of new data, which can be divided into two main categories, namely earth
observation data and human behavior data [35].

Earth observation data (environment sensing) capture the status of the Earth’s physical
environment, mainly using satellites, UAVs, on-ground monitoring devices, and environ-
mental sensors. Typical examples of such data include remote sensing imagery from
satellites or UAVs, Lidar data, environmental sensor network data (e.g., for monitoring
the water and air quality), street-level images (e.g., from Google Streetview or Mapillary)
captured by moving vehicles, and crowdsourced environmental data. Several studies
included in this Special Issue [36–39] explicitly focus on these datasets and their analy-
sis, including aerial photos, drone images, rain gauges, and rainfall-measuring mission
satellite observations.

On the other hand, human behavior data (social sensing) focuses on human and
social environments and records various human behavioral and social activities, such as
human mobility, social interactions, social–economic activities, and city dynamics. Mobile
phone network data, GNSS data, social media data, social–economic statistic data (e.g.,
from surveys), crowdsourced behavioral data, LBS usage/log data, smart card travel data,
and camera imagery data are notable examples of such data. Some papers in this Special
Issue [40,41] present novel web-based applications and data quality analyses based on
such data, including health outcomes and healthcare data as well as tweets. Survey data
can provide insight into factors that should be considered in urban planning and decision
making, which are illustrated in another contribution of this Special Issue for agent-based
cellular automata modeling [42].

This Special Issue invites contributions from several topics, including (but not limited
to) geospatial open-source software; the analysis of big data, sensor and network data; text
mining; GeoAI; and geovisual analytics. The content of papers published in this Special
Issue falls to some extent into the topics summarized in Table 1.
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Table 1. Topics covered by papers published in this Special Issue.

Analysis Type Theme SI Topic Ref.

Deep Learning Pavement condition evaluation
using aerial imagery AI [10]

Measuring image
processing time

OpenDroneMap
performance analysis Open-source software [11]

Time series analysis Assess rainfall persistence from
CHIRPS satellite observations

Innovative data
collection platforms [12]

3D simulation Assess rockfall hazards using 3D
models and aerial photos

Advanced geospatial
technologies [13]

Web map
development

Web-GIS Tool for
community health Open-source software [14]

Pre/post-statistical
comparison

Assess the effects of Twitter’s
app policy changes on data

sharing
Big data [15]

Questionnaire
analysis

Choice of actor variables in
agent-based cellular automata

modeling

Location-based
questions [16]

3. Future Directions

While geospatial artificial intelligence (GeoAI) is not covered in particular papers
in this Special Issue, this topic experienced recently significant attention within the geo-
science research community through the release of massive pre-trained AI models, includ-
ing large language models (LLMs), such as ChatGPT, Bard, BERT or Claude [43]. The
rapid enhancement of these models provides novel opportunities for future geospatial
research. For example, until recently, the integration of image information with LLMs
to map enhancement tasks using generative AI had to be conducted separately using
LLMs and Vision Foundation Models [44]. However, updated versions of ChatGPT and
Bard can already answer image (e.g., map)-related questions and, therefore, conduct
joint reasoning from vision and language, using Multimodal Foundation Models. Re-
cent studies demonstrate another trend in the GeoAI research area, namely the fusion
of geo-knowledge into Generative Pre-Trained LLMs to improve the quality of spatial
analysis tasks [45]. On a different note, currently released open datasets, such as the Over-
ture Places dataset with millions of points of interest around the globe [46], provide new
opportunities for analysis and data integration with other data sources in numerous geo-
applications. This list of evolving topics is therefore included in the follow-up Special Issue
(https://www.mdpi.com/journal/geographies/special_issues/VN77IP0N1D, accessed
on 17 October 2023), with the goal of enhancing previous findings [47–50] from papers
published in related Special Issues and meetings, such as the ACM SIGSPATIAL GeoAI
workshop series.
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