
Citation: Stanciu, I.; Ioane, D.

Geomorphological and Neotectonic

Structures Studied in the Southern

Part of the Moesian Platform in

Romania. Geographies 2023, 3,

743–762. https://doi.org/10.3390/

geographies3040040

Academic Editor: Gianluca Groppelli

Received: 8 September 2023

Revised: 24 October 2023

Accepted: 12 November 2023

Published: 20 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Geomorphological and Neotectonic Structures Studied in the
Southern Part of the Moesian Platform in Romania
Irina Stanciu 1,* and Dumitru Ioane 2

1 National Institute for Research and Development for Marine Geology and Geoecology—GeoEcoMar,
024053 Bucharest, Romania

2 Faculty of Geology and Geophysics, University of Bucharest, 020956 Bucharest, Romania;
dumitru.ioane@g.unibuc.ro

* Correspondence: irina.stanciu@geoecomar.ro

Abstract: The Moesian Platform represents a major tectonic unit of the foreland of the Carpathians and
Balkans, spanning across the southern part of Romania and the northern part of Bulgaria. Although
the Moesian Platform is considered to be a stable tectonic unit, it has played a significant role in
the geological history of the region, influencing the development of the surrounding Carpathian
and Balkan mountain ranges, making it an area of interest for studying tectonic history, geological
structures, and landscape evolution. In the southern part of the Moesian Platform in Romania,
delineated to the north and to the east by the steep slopes of the Argeş River valley and to the
south by the steep slopes of the Danube River valley, an elevated and W–E promontory-looking
geomorphological feature identified by the local inhabitants as “hill” is distinct from the neighbouring
flat relief of the Romanian plain. This study is the result of a comprehensive investigation into the
geomorphological features and neotectonic structures within this region. An intriguing outcrop
displaying a filled fault, cutting and displacing the Quaternary sedimentary formations of the
recently named Argeş Promontory, shed light on recent tectonic activities that have influenced the
landscape. By integrating field observations, geological, and tectonic data, as well as satellite geodetic
data, our results contribute to a better understanding of the study area’s regional geodynamics,
emphasizing the significant role of tectonic activity in shaping the present-day landscape.

Keywords: Moesian Platform; Argeş Promontory; Crivăt, Fault; active faulting; regional tectonics;
regional geodynamics; geotectonic history

1. Introduction

The Moesian Platform (Figure 1) represents a major tectonic unit of the foreland of the
Carpathians and Balkans, spanning across the southern part of Romania and the northern
part of Bulgaria, in south-eastern Europe. It forms a W–E elongated, fault-delineated
structural unit, extending into the Western Black Sea Basin up to the continental slope,
where it gradually transitions into oceanic-type crust [1,2].

In Romania, the platform is considered to be separated from the Carpathian orogenic
belt by the Pericarpathian Fault, while geophysical and borehole data suggest the northward
prolongation of the platform deep underneath the Southern Carpathians and the East
Carpathians Bend Zone [1–7]. The Moesian Platform extends up to the Trotuş Fault in the
north and the Peceneaga-Camena Fault to the northeast [1,2]. Its western limit is delineated
by the Timok Fault.

The main geomorphological feature of the Moesian Platform north of the Danube
River is the Romanian plain.

In Bulgaria, the Balkans overthrust the southern margin of the platform along the
Prebalkan Fault [8]. The main geomorphological feature of the Moesian Platform south of
the Danube River is the Danube platform (comprising vast Quaternary structural lowlands
and Pliocene platforms), also known as the Danubian hilly plain [9].
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the Danube River is the Danube platform (comprising vast Quaternary structural low-
lands and Pliocene platforms), also known as the Danubian hilly plain [9]. 
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Figure 1. The Moesian Platform: (a) location within south-eastern Europe; (b) tectonic sketch (mod-
ified and simplified after [1,2,10,11]). Hatched area = the Moesian Platform. Black lines = faults (PcF 
= Pericarpathian Fault; PbF = Prebalkan Fault; TrF = Trotuș Fault; TiF = Timok Fault; PCF = Pe-
ceneaga-Camena Fault; IMF = Intramoesian Fault). Red polygon = the Argeș Promontory area. Relief 
map modified after [12]. 

When addressing the Moesian Platform’s geotectonic history, contrasting concepts 
have been carried out [13–31] due to scarce geological data on the basement, while the 
geophysical data did not clarify the structural relationships between the Moesian terranes. 

Although it is considered to represent a stable tectonic unit, it has played a significant 
role in the geological history of the region: it is generally accepted that Moesia collided 
with the Carpathian-Balkan emerging orogens during the Cretaceous through the Mio-
cene [32–35], with an essential role in the achievement of the Carpathian double-bend [1] 
(i.e., the first bend at the southern end of the East Carpathians and the second bend at the 
western end of the South Carpathians, as illustrated in Figure 1). The tectonic effort im-
plied by the achievement of the Carpathian double-bend generated important extensional 
forces within the Moesian Platform during the Pliocene-Quaternary [36]. 

The Moesian Platform was intensively investigated starting in the mid-1950s due to 
its hydrocarbon resources. The most consistent information regarding the upper crustal 
structure in Moesia has been provided by refraction and reflection seismic surveys for oil 
and gas and from boreholes [4], continued by deep refraction seismic profiling studies 
reaching upper mantle depths [37–41]. 

The structural and morphological model of the crystalline basement built by Polonic 
[42] on seismic reflection and deep seismic sounding, integrated with borehole data, 
shows within the Romanian Moesian Platform uplifted structures (e.g., Central Dobro-
gea—outcropping, Balş-Optaşi region—ca. 4 km depth) and depressionary areas (such as 
the Alexandria Depression—more than 10 km depth, Focşani Depression—more than 16 
km depth, Getic Depression—more than 14 km depth). Four main sedimentary cycles 
have been separated based on borehole geological and geophysical data analysis and 

Figure 1. The Moesian Platform: (a) location within south-eastern Europe; (b) tectonic sketch (mod-
ified and simplified after [1,2,10,11]). Hatched area = the Moesian Platform. Black lines = faults
(PcF = Pericarpathian Fault; PbF = Prebalkan Fault; TrF = Trotus, Fault; TiF = Timok Fault;
PCF = Peceneaga-Camena Fault; IMF = Intramoesian Fault). Red polygon = the Arges, Promon-
tory area. Relief map modified after [12].

When addressing the Moesian Platform’s geotectonic history, contrasting concepts
have been carried out [13–31] due to scarce geological data on the basement, while the
geophysical data did not clarify the structural relationships between the Moesian terranes.

Although it is considered to represent a stable tectonic unit, it has played a signif-
icant role in the geological history of the region: it is generally accepted that Moesia
collided with the Carpathian-Balkan emerging orogens during the Cretaceous through
the Miocene [32–35], with an essential role in the achievement of the Carpathian double-
bend [1] (i.e., the first bend at the southern end of the East Carpathians and the second
bend at the western end of the South Carpathians, as illustrated in Figure 1). The tectonic
effort implied by the achievement of the Carpathian double-bend generated important
extensional forces within the Moesian Platform during the Pliocene-Quaternary [36].

The Moesian Platform was intensively investigated starting in the mid-1950s due to
its hydrocarbon resources. The most consistent information regarding the upper crustal
structure in Moesia has been provided by refraction and reflection seismic surveys for oil
and gas and from boreholes [4], continued by deep refraction seismic profiling studies
reaching upper mantle depths [37–41].

The structural and morphological model of the crystalline basement built by
Polonic [42] on seismic reflection and deep seismic sounding, integrated with borehole data,
shows within the Romanian Moesian Platform uplifted structures (e.g., Central Dobrogea—
outcropping, Balş-Optaşi region—ca. 4 km depth) and depressionary areas (such as the
Alexandria Depression—more than 10 km depth, Focşani Depression—more than 16 km
depth, Getic Depression—more than 14 km depth). Four main sedimentary cycles have
been separated based on borehole geological and geophysical data analysis and correlations
by D. Paraschiv [4,43]: Palaeozoic (Cambrian–Ordovician–Carboniferous), Upper Palaeo-
zoic (Permian)–Lower Mesozoic (Triassic), Mesozoic (Jurassic–Cretaceous), and Cenozoic
(Badenian–Pleistocene).
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Starting in the 1990s, benefiting from advances in technology (i.e., the recording change
from analogue to digital), crustal structure seismic investigations on the Carpathians and
their foreland were carried out (e.g., the VRANCEA99 seismic refraction profile [40], de-
ployed on ca. 320 km seismic refraction line, NNE–SSW-trending from Bacău to Bucharest;
the VRANCEA 2001 seismic refraction profile [41], deployed from the Transylvanian Basin,
over the Carpathian Orogen/Vrancea region, to the Moesian Platform/Focşani Depres-
sion and the North Dobrogea Orogen on a ca. 450 km long WNW–ESE-trending seismic
refraction line), looking for regional structural and tectonic features in relation to the
Vrancea region of the East Carpathians Bend Zone, Romania’s strong intermediate-depth
earthquakes prone area.

Several fault systems (see Figure 2) have been interpreted by various authors within
the Moesian Platform based on geological and geophysical data [1–4,10,11,37,44–61]:

• a NW–SE (mainly) strike-slip fault system, relatively transverse to the East Carpathians
Bend Zone, ranging from Palaeozoic to Cretaceous;

• an east–west normal fault system, parallel to the Carpathian and Balkan orogens;
• a NE–SW fault system, parallel to the East Carpathians Bend zone—younger (con-

sidered by Săndulescu [1] to have been generated and, in part, reactivated during
Neogene), with normal and strike-slip faults;

• a N–S fault system.
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= Trotuș Fault; TiF = Timok Fault; PCF = Peceneaga-Camena Fault). Thick red line = Intramoesian 
Fault (IMF). Dark grey lines = faults. Red polygon = the Argeș Promontory area. 

Figure 2. Tectonic sketch of the Moesian Platform (compiled from [1–4,10,11,37,44–61]). Thick black
lines = Moesian Platform delineating faults (PcF = Pericarpathian Fault; PbF = Prebalkan Fault;
TrF = Trotus, Fault; TiF = Timok Fault; PCF = Peceneaga-Camena Fault). Thick red line = Intramoesian
Fault (IMF). Dark grey lines = faults. Red polygon = the Arges, Promontory area.

The platform plunges step-like below the Carpathian thrust wedge as well as below
the Balkan thrust wedge, within the frame of the east–west parallel faults system.
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Within the NW–SE fault system, the Intramoesian Fault (see Figure 1, IMF) represents
a regional trans-crustal fault, which acts as a deep regional tectonic contact [11,62] between
the two compartments of the Moesian Platform: Western Moesia (west of the Intramoesian
Fault) and Eastern Moesia (east of the Intramoesian Fault).

Originating in the research for the “Intramoesian Fault: Geophysical detection and
regional active (net)tectonics and geodynamics” PhD thesis [11], the Moesian Platform is an
area of interest when addressing the geotectonic history of this region, its tectonic features,
geological structures, and landscape evolution.

During field research carried out in 2019 in the southern part of the Moesian Platform
in Romania, an elevated and W–E promontory-looking geomorphological feature came to
our attention (for location, see Figure 1, red polygon). Delineated to the north and to the
east by the steep slopes of the Argeş River valley and to the south by the steep slopes of
the Danube River valley, this intriguing geomorphological feature, identified by the local
inhabitants as “hill”, is distinct from the neighbouring flat relief of the Romanian plain.

By integrated analysis of field observations, geological and tectonic data, as well as
satellite geodetic data, our research contributes to a better understanding of the study area’s
regional geodynamics, emphasizing the significant role of tectonic activity in shaping the
present-day landscape.

2. Data and Methods

Repeated field observations on the geological and geomorphological regional frame-
work of the Moesian Platform in Romania and Bulgaria have been carried out during
2016–2023 in order to assess the regional active (neo)tectonics of the Moesian Platform,
giving the opportunity to observe and analyse its geomorphological and neotectonic struc-
tures. The recently named Argeş Promontory [11], delineated to the north and to the east by
the steep slopes of the Argeş River valley and to the south by the steep slopes of the Danube
River valley, has been subject to yearly field visits starting in 2019, when the Crivăt, Fault
outcrop [11,63] was first observed. Field observations and measurements on the Crivăt,
Fault outcrop (i.e., GPS coordinates of the fault outcrop, strike and dip measurements,
width of the fault zone, throw, roughness of the fault surface analysis, identifying slicken-
sides, documenting the outcrop with photographs) helped in deciphering its characteristics
and geometry.

Various types of geological and geotectonic data, geophysical data, repeated geodetic
levelling, GNSS/GPS (Global Navigation Satellite System/Global Positioning System)
data—from published thematic maps, scientific reports, studies, or scientific papers (all
quoted accordingly and listed as references), have been included in our research and used
in a referenced ESRI ArcGIS geo-database. This enabled an integrated approach to the
interpretation of the available data.

Analysis of regional seismicity data available from published local, regional, and
global earthquake catalogues offered the possibility to analyse the Moesian Platform’s
seismicity, building the grounds for a better understanding of the seismic risk in this region.

Seismicity data analysis has been carried out based on the ROMPLUS Earthquake
Catalogue [64], BIGSEES Selection of Earthquakes Catalogue [65], EMSC Earthquake
Catalogue [66], ISC-GEM Global Instrumental Earthquake Catalogue [67], European-
Mediterranean Earthquake Catalogue (EMEC) [68], Earthquake Catalogue for Central
and Southeastern Europe 342 BC–1990 AD [69], SHARE European Earthquake Catalogue
(SHEEC) 1000–1899 [70], SHEEC earthquake catalogue 1900–2006 [71], USGS Earthquake
Catalogue [72], UNDP/UNESCO Survey of the Seismicity of the Balkan Region—Catalogue
of Earthquakes [73]. Seismicity data have been compiled into a GIS database and care-
fully analysed. Earthquake recordings have been verified in order not to duplicate the
seismic events.

Considering the large variety of earthquake catalogues, with different spatial coverage
and timespan of the records, with possible different accuracies of the hypocentres’ deter-
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minations, the compatibility of seismological data became an important stage before data
interpretation:

• For Romania and the Romanian Black Sea shore, the National Institute for Earth’s
Physics ROMPLUS Earthquake Catalogue [64] was used. We used the earthquake
recordings from the time interval 984–2022.

• For Bulgaria and the Bulgarian Black Sea shore, an updated earthquake catalogue from
Bulgaria was not available. The BIGSEES Selection of Earthquakes Catalogue [65]
was considered the best option for the integrated study of the Romanian and Bulgar-
ian parts of the Moesian Platform, as the BIGSEES Selection of Earthquakes covers
the territory of Romania, plus ca. 100 km of neighbouring areas, which includes
the Moesian Platform in northern Bulgaria. The BIGSEES Selection of Earthquakes
Catalogue was compiled by the National Institute for Earth’s Physics (NIEP) within
their BIGSEES project and includes recordings for the time interval 984–August 2016,
moment magnitude (Mw) ≥ 2.8 earthquakes.

A large number of seismicity maps at various time intervals and various depth in-
tervals as well as in-depth seismicity graphs have been built, aiming to depict seismicity
trends and interpret active faults or active fault segments within the Moesian Platform. The
seismicity data analysis showed that the Moesian Platform, although considered a “stable”
tectonic unit of the Carpathians and Balkans foreland, is still a place of active seismicity,
with some very strong historical earthquake recordings.

We considered the seismic activity within the Moesian Platform to represent the
expression of its contemporary geodynamics, the earthquake occurrences on the specific
trending being an indicator of active faulting.

The study of the crustal movements started in Romania during the mid-1960s, being
based on high-precision geodetic levelling measurements, performed on the territory of the
whole country, published vertical crustal movements maps, e.g., [74–78] illustrating effects
of regional active neotectonic processes.

Precise positioning using GNSS technology offers highly precise measurements of
both horizontal and vertical positioning, often achieving accuracy at the millimetre level.
This exceptional precision is essential for the detection and comprehensive assessment
of ongoing crustal deformations—a defining characteristic of neotectonics. The recent
establishment of extensive global, regional, and local networks of permanent GNSS stations
has enabled continuous monitoring of the Earth’s crust’s horizontal and vertical movements
at an unprecedented level of detail. This has revealed previously unknown modes of
deformation, such as seasonal deformations with very long wavelengths [79], the Earth’s
elastic response to variations in atmospheric load [80], oceanic load [81], or hydrological
load [82], as well as episodic tremors and slips in the Cascadia subduction zone [83,84].

Within the framework of the Central European GPS Geodynamic Reference Network
(CEGRN) activities [85,86], GPS campaigns were carried out from 1994 to 2006 involving
both permanent and epoch stations across Central Europe. Subsequent to this, a systematic
reanalysis of these campaigns, along with additional data collected through the EU-funded
CERGOP and CERGOP-2 projects [87–89], has unlocked the potential of GPS data for
advancing our understanding of the regional geodynamics in the studied area.

3. Results
3.1. Geological Observations

The surface geology and the geological processes that cause tectonic uplifting and
subsidence are forming the framework for the surface processes (i.e., erosion, transport,
accumulation) to shape the present surface topography. When analysing the surface geology
of the Moesian Platform (see Figure 3), the geological map 1:1,000,000 [90] shows that the
western part of the Moesian Platform in Romania is largely covered by Middle Pleistocene
sedimentary formations, while the eastern part of the Moesian Platform in Romania is
covered by Late Pleistocene sedimentary formations. A boundary (blue dotted line in
Figure 3) trending NW–SE along the Teleorman River, continues W–E along the Argeş
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River, separating the western Middle Pleistocene area from the eastern Late Pleistocene area.
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Figure 3. The surface geology as observed on the geological map 1:1,000,000 of the Moesian Platform
(detail from [90], modified). Blue line = geological surface boundary, which separates the western
Middle Pleistocene (Qp2) area from the eastern Late Pleistocene (Qp3) area in the Moesian Platform,
north of the Danube River. Qp2+3 = Middle & Late Pleistocene. K1 = Early Cretaceous.

South of the Danube River, the Moesian Platform in Bulgaria is covered by undiffer-
entiated Middle and Late Pleistocene sedimentary formations. In the central part of the
Moesian Platform in Bulgaria, large outcrops of Lower Cretaceous massive carbonates are
exposed along the rivers, while in the eastern part of the Moesian Platform in Bulgaria,
large outcrops of Sarmatian limestones are exposed along the rivers and along the Black
Sea coastline.

3.2. Geomorphological Observations

The geomorphological characteristics of a region could be useful clues for understand-
ing the ongoing tectonic processes. Analysing the elevation and morphology changes
across landscapes may help identify areas experiencing vertical movement due to tectonics.
Tectonic movements can influence the way rivers flow and shape their courses. Sudden
changes in river direction, elevation drops, or river captures (one river diverting the flow
of another) may indicate tectonic events.

Within the Moesian Platform, typical elevations range between 0 and 300 m. The
highest point is Tarnov Dyal (502 m altitude) on the Shumen Plateau, in Bulgaria. The
lowest point (10 m altitude) is on the lower Siret River valley, in Romania, where a large
confluence area was formed due to active subsidence.

North of the Danube River, in Romania, the topography of the Moesian Platform
is characterised by elevations descending from west and north toward south, east, and
northeast. Plains are the typical geomorphological features, with large valleys.

South of the Danube River, the Moesian Platform in Bulgaria is characterised by
higher elevations than the Moesian Platform in Romania (Figure 4). Within the Bulgarian
Moesian Platform, the altitude rises from west to east. Hills and plateaus are the typical
geomorphological features, with steep meandering valleys (e.g., Yantra, Russenski Lom).
The Bulgarian riverbank of the Danube River is steep, presenting slopes of 50–200 m, higher
than the Romanian riverbank [91].
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Figure 4. (a). NW (Ploieşti, RO)–SE (Schumen, BG) topography profile across the central part of the
Moesian Platform (built on [92]). North of the Danube River, elevations are descending from NW
(Ploieşti, ca. 180 m) toward SE (the Danube River, ca. 20 m). The Argeş Promontory appears as a
distinct geomorphological feature (ca. 85 m maximum altitude). South of the Danube River, the
Moesian Platform in Bulgaria is characterised by higher elevations (495 m at Shumen, BG) than the
Moesian Platform in Romania. (b). Location of the topography profile.

In the southern part of the Moesian Platform in Romania, between the Argeş and
Danube rivers, an elevated geomorphological feature is easily observed (Figures 4 and 5),
which is named by the local inhabitants as “hill”. Delineated to the north and to the east
by the steep slopes of the Argeş River valley and to the south by the steep slopes of the
Danube River valley, this promontory-looking area is distinct from the neighbouring flat
relief of the Romanian plain.

Within the Argeş Promontory, an intriguing outcrop displaying a filled fault cutting
and displacing the Upper Pliocene-Quaternary sedimentary formations was observed by
Stanciu [11] in the vicinity of Crivăţ locality, Călăraşi county (Figures 6–8), during several
field works carried out during 2019–2023. We named this fault the Crivăt, Fault [11,63,93].
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Geographies 2023, 3, FOR PEER REVIEW 10 
 

 

 
Figure 8. Observations on the Crivăţ Fault outcrop, 2022 field works. Excavations performed by 
local inhabitants strongly affected the outcrop. The NNE–SSW-trending Crivăţ Fault separates a 
downlifted SSE compartment of outcropping Quaternary loess and soil deposits, from an uplifted 
NNW compartment of outcropping Upper Pliocene sand deposits of probably Romanian geological 
age. Black dashed lines = observed fault filling fractures. 

The NNE–SSW-trending fault, characterized as a normal fault, is separating a down-
lifted SSE compartment of outcropping Quaternary loess and soil deposits, from an up-
lifted NNW compartment of outcropping cross-bedded Upper Pliocene sediments, repre-
sented by sand deposits of probably Romanian geological age [11,63,93]. The tectonic fea-
ture is a sand-filled fault, ca. 100 cm wide (Figure 8). Its apparent dipping angle varies 
from 60° ESE to 68° ESE. 

On the opposite side of the Crivăţ Fault’s uplifted compartment outcrop, two E–W 
parallel normal faults display a 5–13 cm jump in the sand deposits, as may be observed in 
Figure 9a. Their apparent dipping angle is ca 70° NNW. Spring emergences have been also 
observed in the fault outcrop’s close vicinity (Figure 9b). 
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downlifted SSE compartment of outcropping Quaternary loess and soil deposits, from an uplifted
NNW compartment of outcropping Upper Pliocene sand deposits of probably Romanian geological
age. Black dashed lines = observed fault filling fractures.

The NNE–SSW-trending fault, characterized as a normal fault, is separating a down-
lifted SSE compartment of outcropping Quaternary loess and soil deposits, from an uplifted
NNW compartment of outcropping cross-bedded Upper Pliocene sediments, represented
by sand deposits of probably Romanian geological age [11,63,93]. The tectonic feature is a
sand-filled fault, ca. 100 cm wide (Figure 8). Its apparent dipping angle varies from 60◦

ESE to 68◦ ESE.
On the opposite side of the Crivăţ Fault’s uplifted compartment outcrop, two E–W

parallel normal faults display a 5–13 cm jump in the sand deposits, as may be observed in
Figure 9a. Their apparent dipping angle is ca 70◦ NNW. Spring emergences have been also
observed in the fault outcrop’s close vicinity (Figure 9b).
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Considering that rivers are largely influenced by active tectonics (river networks being
sensitive to both faulting and regional surface deformation [94]), the Moesian Platform
rivers’ network (Figure 10) analysis emphasized several interesting aspects (also discussed
in [93]):

1. The Danube River flows from W to E through the Moesian Platform, delineating
the northern (Romanian) and southern (Bulgarian) parts of the Moesian Platform,
as it serves as a natural boundary between Romania and Bulgaria. It acts as an axis
between the main rivers of the Romanian Moesian Platform, which are trending
NW–SE, and the main rivers of the Bulgarian Moesian Platform, which are trending
SW–NE, towards the Romanian rivers’ points of drainage.

2. The main rivers draining within the Romanian Moesian Platform run nearly perpen-
dicular to the Carpathians, trending NW–SE in Western Moesia until they flow into
the Danube River, while in Eastern Moesia the rivers turn eastward until they flow
into the Danube River, and some of them turn north-eastward until they flow into the
Siret River.

3. Fielitz and Seghedi [95] observed that the river network in the Romanian Moesian
Platform changed from predominantly braided river channels in Western Moesia to
predominantly and often extremely meandering river channels in Eastern Moesia,
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due to a higher river gradient in Western Moesia vs. a lower river gradient and a
finer-grained bedload in the Eastern Moesia, as well as due to the subsidence affecting
the Focşani Depression.

4. Mostiştea is the easternmost river in the Moesian Platform flowing in the NW–SE
direction. Overall, its right (western) bank is slightly elevated than the eastern one.
However, in the Mostiştea lake area, the right (western) bank shows a more than 20 m
steep slope of leoss-paleosoil sequences [96,97], overlying fluvio-lacustrine sediments,
which contain mammal fossils of Pleistocene age [96].

5. On the western bank of the Mostiştea lake (Sultana locality, Călăraşi county), local NE–
SW-trending faults affecting the outcropping sedimentary layers have been observed
during field works in 2020 [11].

6. Western Moesia’s river network is denser than Eastern Moesia’s river network.
7. A transition zone from Western Moesia’s river drainage to Eastern Moesia’s river

drainage, between the Teleorman and Mostiştea rivers, refers to the Argeş drainage
basin. The Argeş River and all its tributaries within the Moesian Platform have NW–
SE courses, which suddenly end south of Bucharest on a sharp W–E change of flow
direction. The morphology of the W–E Argeş River valley displays a southern steep
bank, ca 15 m in height, which separates a southern uplifted, hilly geomorphology
compartment (i.e., the Argeş Promontory) from a northern, flat geomorphology com-
partment. The observed W–E uplifted Argeş Promontory acts as a barrier for the
Argeş River and its tributaries and displaces the Argeş River course eastward by ca.
25 km. Right before the point where the Dâmboviţa River flows into the Argeş River,
a ca. 3 km north-eastward displacement of the Argeş River is also to be observed.
Meandering palaeo-valleys of the Argeş River are still to be observed in this area
on remote sensing imagery data, including Google Earth. After the point where the
Dâmboviţa river flows into the Argeş River and the Argeş Promontory ends, the
Argeş River returns to its NW–SE course and flows into the Danube River.
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3.3. Seismicity within the Argeş Promontory Area

Studying the distribution and intensity of earthquakes in a region can provide direct
evidence of ongoing tectonic processes. The relationship between seismic activity and
surface features can help understand the geological forces at play. An NW–SE High
Seismicity Boundary was interpreted across the Moesian Platform [57,59], separating
an eastern high seismicity compartment of the Moesian Platform from a western, low
seismicity compartment. The lack of seismicity within the Argeş Promontory appears as an
eastward indent of the High Seismicity Boundary, as illustrated in Figure 11.
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Figure 11. The seismicity of the Moesian Platform and the interpreted High Seismicity Boundary—
grey line (modified after [59]). Seismological data from ROMPLUS ([64], dark blue dots) and
BIGSEES ([65], red dots) earthquake catalogues.

A W–E in-depth crustal seismicity section (Figure 12), built on the 44.1 N–44.2 N wide
latitude sector, in the Moesian Platform along the Argeş Promontory eastern part, illustrates
an almost vertical succession of seismic events observed at 26.6 N longitude up to 10 km
depth, which may represent an active fault. Its in-depth change in inclination between
10 and 15 km may be due to a past compressional regime whose intensity was variable
with depth.

Detailed seismicity data analysis [11,57] shows that the Moesian Platform, although
considered a “stable” tectonic unit of the Carpathians and Balkans foreland, is still a
place of active seismicity. The seismic activity within the Moesian Platform represents the
expression of its contemporary geodynamics, the earthquake occurrences on the specific
trending being considered an indicator of active faulting.



Geographies 2023, 3 755

Geographies 2023, 3, FOR PEER REVIEW 13 
 

 

 
Figure 11. The seismicity of the Moesian Platform and the interpreted High Seismicity Boundary—
grey line (modified after [59]). Seismological data from ROMPLUS ([64], dark blue dots) and BIGS-
EES ([65], red dots) earthquake catalogues. 

A W–E in-depth crustal seismicity section (Figure 12), built on the 44.1 N–44.2 N wide 
latitude sector, in the Moesian Platform along the Argeş Promontory eastern part, illus-
trates an almost vertical succession of seismic events observed at 26.6 N longitude up to 
10 km depth, which may represent an active fault. Its in-depth change in inclination be-
tween 10 and 15 km may be due to a past compressional regime whose intensity was var-
iable with depth. 

 

 

(a) (b) 

Figure 12. (a) Location of the seismicity section (red rectangle) on the seismicity map of the Moesian
Platform from Figure 11. (b) W–E in-depth crustal seismicity section in the Moesian Platform, along
the Argeş Promontory eastern part, on a 44.1 N–44.2 N wide latitude sector (modified from [57]).
Red points = earthquake hypocenters, ROMPLUS Earthquake Catalogue data [64]. Black dashed
line = interpreted fault at the eastern end of the Argeş Promontory. Orange square = representation
of Călăras, i city location along the profile.

3.4. Satellite Geodetic Data Analysis

When addressing the Moesian Platform, the present-day geodynamic processes as
illustrated by GPS monitoring results [88,89,98–101] show a south-eastward displacement
of the East Carpathians Bend Zone and its foreland and southward displacement of the
central part of the Moesian Platform in Romania, just north of the Argeş River in our
study area.

The 1997–2004 GPS research campaigns on crustal deformation in Romania based
on GPS monitoring in the South-Eastern Carpathians and their foreland [98,99] show two
main movement directions in the Moesian Platform, separated by the Intramoesian Fault:
a SE-oriented horizontal displacement in Eastern Moesia (ca. 2.5 mm/yr) and a south-
oriented motion in Western Moesia (1–2 mm/yr), all relative to stable Eurasia (Figure 13,
Romanian territory).

Results of the GPS measurements carried out on 1996, 1997, 1998, and 2000 campaigns
in Bulgaria, presented and interpreted by Kotzev et al. [102,103], emphasized a north-
eastward displacement of the central Bulgarian Moesian Platform, with horizontal velocities
of 3 mm/yr at the KAIL station (azimuth 40◦ E) and 2.9 mm/yr at the GABR station
(azimuth 56◦ E) (Figure 13, Bulgarian territory). The horizontal movements were calculated
with respect to the fixed Eurasia plate.

A generalized picture of horizontal movements for Central Europe and the Balkan
Peninsula shows a clockwise rotation with the centre in Serbia and south-oriented and
south-east-oriented velocity vectors for Romania and Bulgaria, as opposed to a counter-
clockwise rotation in the Eastern Mediterranean region, observed by the GPS
data [88,89,101,104–110].
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(PcF = Pericarpathian Fault; PbF = Prebalkan Fault; PCF = Peceneaga-Camena Fault). Thick red
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4. Discussion

Regional geodynamic models and recent space geodetic measurements indicate that
the northward-moving African and Arabian plates collide with the Eurasian plate,
e.g., [111–113]. The faster 23–35 mm/y opening of the southern Atlantic Ocean, as op-
posed to the slower 18–23 mm/y opening of the northern Atlantic Ocean [112] caused the
counter-clockwise rotation of the Africa (Nubia) plate and its NNE displacement towards
the Eurasia plate. Taking the Africa plate as a reference, Bird’s tectonic plates geodynamic
model [113] indicates an NNW–SSE 11 mm/y movement of the Eurasia plate, which is
opposed to the 15 mm/y SSE–NNW movement of the Arabian plate, causing a relative
displacement of Anatolia plate to ENE by 21 mm/y and a 37 mm/y SSV relative displace-
ment of the Aegean plate toward the Africa plate. As a consequence, in the Mediterranean
Sea basin and its eastern prolongation (Black Sea basin), a series of complex geological
phenomena occurred, such as subduction, continental collision, spreading, strike-slip
faulting, etc.

Kotzev et al.’s [102,103] results from GPS measurements carried out in Bulgaria advo-
cate for displacements toward the northeast in the central part of the Moesian Platform, in
the Danube and Argeş Promontory area.

The regional tectonic compression resulted from the southward displacement of the
central part of the Moesian Platform in Romania, just north of the Argeş River in our study
area versus the north-eastward horizontal displacement in northern Bulgaria, creating or
re-activating the E–W fault system, determining the build-up of the Argeş Promontory
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suite of crustal shortening, locally influencing the rivers course. This tectonic regime may
(re-)activate faults from the NE–SW fault system, developed as strike-slip faults in the
Vrancea seismic zone in Romania.

North of the Danube River, the west-east change in the surface geology from the
Middle Pleistocene to Late Pleistocene shown in Figure 3 may be interpreted as due to
uplifting in the western part of the Moesian Platform, west of the NW–SE blue line and
south of the W–E blue line in the Argeş Promontory, versus significant subsidence processes
in its eastern part (sustained also by high-precision geodetic levelling measurements
results [74–78]). South of the Danube River, the Lower Cretaceous and Sarmatian limestone
large outcrops exposed along the rivers suggest uplifting in the northern central and north-
eastern parts of the Moesian Platform in Bulgaria, the results of the geodetic measurements
carried out here [114], showing positive crustal movements of 2–3 mm/year in the Ruse
area (Bulgaria), just south of the Argeş Promontory and the Danube River. We consider
that the uplift was more intense in the northern central part of Bulgaria, where Lower
Cretaceous massive carbonates are exposed along the rivers, as compared to the north-
eastern part, where Sarmatian limestones are exposed along the rivers and on the Black
Sea coastline.

A High Seismicity Boundary was interpreted along the Argeş River (published and
discussed by the authors [59]), separating an eastern high-seismicity compartment from a
western low-seismicity compartment of the Moesian Platform, while the Argeş Promontory
shows no significant seismicity, as illustrated in Figure 11.

The rise of the Argeş Promontory has been a gradual process, shown by successive
palaeo-beds of the Argeş River course while displacing eastward, toward the confluence
with the Dâmbovit,a River. This is still to be observed on remote sensing imagery data.

The E–W-trending Argeş River, delineating the Argeş Promontory by high escarp-
ments, as well as the course of the River Danube are controlled by the E–W fault system,
largely developed in the western part of the Moesian Platform in Romania and in the
central and north-eastern parts of Moesian Platform in Bulgaria [1,2,10,11,60] (Figure 2).

The Crivăt, Fault of the Argeş Promontory has been possibly active during the Upper
Pliocene–Lower Quaternary, due to the regional tectonic regime. The Crivăt, Fault fill is
represented, within the available outcrop, by the sand of the Romanian age. However,
since the Quaternary loess formation is cut and vertically displaced by the Crivăt, Fault, it
suggests that the fault has been active or reactivated during the Quaternary. The sand of
the Romanian age did flow downward into the void created by the open normal fault. The
Quaternary loess formation was more compact and less mobile than the sand and did not
contribute to the fault filling.

The Crivăt, Fault, located at ca. 30 km SE of Bucharest city, is not presently seismically
active, as observed from seismicity data analysis.

5. Conclusions

During field research carried out in the southern part of the Moesian Platform in
Romania, an elevated and W–E promontory-looking geomorphological feature has been
observed: the Arges Promontory.

Within the Argeş Promontory, a filled fault cutting and displacing the Upper Pliocene-
Quaternary sedimentary formations was observed in the vicinity of Crivăţ locality. The
NNE–SSW-trending fault, characterized as a normal fault, is separating a downlifted SSE
compartment of outcropping Quaternary loess and soil deposits from an uplifted NNW
compartment of outcropping cross-bedded Upper Pliocene sediments, represented by sand
deposits probably from the Romanian geological age. Since the Quaternary loess formation
is cut and vertically displaced by the Crivăt, Fault, the fault has been active or reactivated
during the Quaternary.

We consider the regional tectonic regime resulted from the southward displacement
of the central part of the Moesian Platform in Romania, just north of Argeş River study
area, versus the north-eastward horizontal displacement in northern Bulgaria, creating
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or re-activating the E-W fault system, determined the build-up of the Argeş Promontory
suite of an upward extrusion of the geological formations of the Arges, Promontory and a
local eastward lateral escape, of ca. 25 km, of the uplifted structure, taking into account the
Arges, River course displacement. The rise of the Argeş Promontory has been a gradual
process, shown by successive palaeo-beds of the Argeş River course while displacing
eastward, toward the confluence with the Dâmbovit,a River, observed on remote sensing
imagery data.
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structural evolution of the Moesian Platform. In Regional and Petroleum Geology of the Black Sea and Surrounding Regions; Robinson,
A.G., Ed.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1997; Volume 68, pp. 63–90.

11. Stanciu, I.M. Intramoesian Fault: Geophysical Detection and Regional Active (Neo)Tectonics and Geodynamics. Ph.D. Thesis,
Doctoral School of Geology, Faculty of Geology and Geophysics, University of Bucharest, Bucharest, Romania, 2020.

12. Relief Map. Available online: https://maps-for-free.com/ (accessed on 5 January 2021).
13. Burchfiel, B.C. Geology of Romania; Geological Society of America: Boulder, CO, USA, 1976; Volume 158, pp. 1–82. [CrossRef]
14. Ziegler, P.A. Geodynamic model for the Palaeozoic crustal consolidation of W. and C. Europe. Tectonophysics 1986, 126, 303–328.

[CrossRef]
15. Matte, P.; Maluski, H.; Railich, P.; Franke, W. Terrane boundaries in the Bohemian Massif: Result of large scale Variscan shearing.

Tectonophysics 1990, 177, 151–170. [CrossRef]
16. Kalvoda, J. Upper Devonian-Lower Carboniferous foraminiferal palaeobiogeography and Perigondwana terranes at the Baltica-

Gondwana interface. Geol. Carpathica 2001, 52, 205–215.
17. Yanev, S. Gondwana Paleozoic terranes in the Alpine collage system of the Balkans. Himal. Geol. 1993, 4, 257–270.
18. Yanev, S. Paleozoic Migration of Terranes from the Basement of the Eastern Part of the Balkan Peninsula from Peri-Gondwana to Laurussia;

Special Publication 3; Turkish Association Petroleum Geologists: Ankara, Turkey, 1997; pp. 89–100.
19. Yanev, S. Palaeozoic terranes of the Balkan Peninsula in the framework of Pangea assembly. Palaeogeogr. Palaeoclimatol. Palaeoecol.

2000, 161, 151–177. [CrossRef]
20. Yanev, S.; Boncheva, I. Contribution to the Paleozoic evolution of the recent Moesian platform. Geol. Balc. 1995, 25, 3–23.

[CrossRef]

10.17632/tdfb4fgghy.2
http://infp.infp.ro/bigsees/Results.html
http://infp.infp.ro/bigsees/Results.html
https://doi.org/10.1029/2002TC001486
https://maps-for-free.com/
https://doi.org/10.1130/SPE158
https://doi.org/10.1016/0040-1951(86)90236-2
https://doi.org/10.1016/0040-1951(90)90279-H
https://doi.org/10.1016/S0031-0182(00)00121-8
https://doi.org/10.52321/GeolBalc.25.5-6.3


Geographies 2023, 3 759

21. Yanev, S.; Boncheva, I. New Data on the Collision between Peri-Gondwana Moesian Terrane and Dobrudja Periphery of Paleo Europe;
Special Publication 3; Turkish Association Petroleum Geologists: Ankara, Turkey, 1997; pp. 118–132.

22. von Raumer, J.V.; Stampfli, G.M.; Borel, G.; Bussy, F. Organization of pre-Variscan basement areas at the north-Gondwanan
margin. Int. J. Earth Sci. 2002, 91, 35–52. [CrossRef]

23. von Raumer, J.V.; Stampfli, G.M.; Bussy, F. Gondwana-derived microcontinents—The constituents of the Variscan and Alpine
collisional orogens. Tectonophysics 2003, 365, 7–22. [CrossRef]

24. Deroin, J.P.; Bonin, B. Late Variscan tectonomagmatic activity in Western Europe and surrounding areas: The Mid-Permian
episode. Ital. J. Geosci. 2003, 2, 169–184.
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