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Abstract: One common method of estimating emax and emin for mixtures of sand and silt requires
that the values of several empirical constants be determined. These empirical constants are the filling
coefficients, a, and embedment coefficients, b, which can be determined either via lab testing or
correlations. The study reported here developed simple correlations for estimating the filling and
embedment coefficients using readily obtained laboratory data. These models were found to be
excellent in producing filling and embedment coefficients that accurately predicted values of the
index void ratios for sand and silt mixtures, with most R2 values being 0.94 or greater.
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1. Introduction

There are times when it is useful to be able to estimate the maximum and minimum
index void ratios (emax and emin) for mixtures of sand and non-plastic silt at different
silt contents. For example, one might want to perform a series of cyclic triaxial tests on
specimens of sand and silt with different silt contents but want them all prepared to the
same relative density. This either requires numerous lab tests to be performed at each silt
content or some method of estimating emax and emin at each silt content must be used.

Another situation where knowing the relative density of a soil can be useful is when
one is evaluating the liquefaction susceptibility of a soil deposit. Soils with high relative
densities are more likely to be dilative and are therefore less likely to liquefy, and if they do,
they will typically undergo less catastrophic cyclic mobility or limited liquefaction failures.
Conversely, soils with low relative densities are more likely to be contractive and are far
more susceptible to catastrophic flow liquefaction failures. Knowing the relative density of
the soil gives the engineer a first criterion to help decide whether further investigations
and analyses are warranted.

In order to calculate a soil’s relative density, three things must be known: the soil’s
current or proposed void ratio, e, the soil’s maximum index void ratio, emax, and the
soil’s minimum index void ratio, emin. The soil’s void ratio can be obtained from samples
collected during the field investigation or via correlations to SPT blow counts or CPT tip
resistances. In the case of laboratory testing, the specimen’s void ratio may be chosen to
produce a specific relative density. While different standards for determining emax and emin
may apply in different countries, most are similar to ASTM D4254 [1] and ASTM D4253 [2].

If the soil deposit consists solely of clean sand or pure silt, the number of maximum
and minimum density tests that need to be performed, and thus the cost of performing
them, is relatively low. However, if the deposit consists of mixtures of sand and silt at
various silt contents, either maximum and minimum density tests must be performed at
each silt content, or some means of estimating the maximum and minimum index densities
must be employed.
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While numerous methods have been developed for estimating the maximum and
minimum index void ratios of sand, [3–6] few methods exist for estimating these parameters
for mixtures of sand and non-plastic silt. One of the more commonly used methods was
developed by Chang et al. [7], who developed a series of equations for estimating the
maximum and minimum index void ratios (emax and emin) for mixtures of sand and silt
based on binary packing. Implementing their methodology requires five common soil
parameters and four empirical constants.

The soil parameters required can be obtained by performing maximum and minimum
index density tests on both the pure sand (i.e., the sand with all of the silt removed) and the
pure silt (i.e., the silt with all the sand removed). The silt content, defined as the fraction of
the sample that is silt, must also be known.

The four empirical constants that must be determined are amax and bmax, the filling
coefficient and the embedment coefficients, respectively, for estimating the maximum
index void ratio, and amin and bmin, the filling coefficient and the embedment coefficients,
respectively, for estimating the minimum index void ratio.

One means of obtaining the filling and embedment coefficients is to perform a series
of maximum and minimum index density tests over a range of silt contents and estimate
the coefficients from the test results. If the intent of the user is to estimate the index void
ratios for a soil with a specific silt content, the need to run multiple index density tests at
various silt contents negates the main advantage of using the equations, which is to reduce
the number of laboratory tests performed. For this reason, the author developed a series
of correlations for estimating the filling and embedment coefficients based on the median
grain sizes of the sand and the silt, parameters that are easily obtained from a standard
grain-size analysis.

A study was performed to develop simple correlations for estimating the filling
and embedment coefficients, and thereby the maximum and minimum index void ratios,
using easily obtained laboratory data. The author previously developed correlations for
estimating the filling and embedment coefficients [8]; however, for this study, a larger data
set was compiled, thus increasing the range of soils evaluated. The data set compiled
for this contained 60 sand–silt combinations, which consisted of 524 pairs of emax and
emin values.

2. Terminology

For the sake of clarity and brevity, five terms are defined below as they are used within
this article:

(1) “Silt” is used to describe a fine-grained, non-plastic material.
(2) “Sand–silt combinations” refers to the pairing of one specific sand with one specific

silt and is independent of the amount of each soil present.
(3) “Sand–silt mixture” refers to the pairing of one specific sand with one specific silt at

some specific ratio of the two materials (e.g., a silt content of 17%).
(4) “Main data set” refers to the data set consisting of maximum and minimum index

void ratio values at various silt contents for the 60 silt-sand combinations. These data
were used for developing the correlations.

(5) “Independent sand–silt combinations” refers to the three sand–silt combinations
that were not included in the main data set. These data were used for validating
the correlations.

3. Background

In this section, two topics will be briefly reviewed as familiarity with them is necessary
for an understanding of the study and its results. The two topics discussed are threshold
fines content and equations for estimating index void ratios.
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3.1. Threshold Fines Content

As increasing amounts of non-plastic silt are added to the sand, the classification of
the soil mixture transitions from sand to silty sand to sandy silt and eventually to silt. This
transition leads to a fundamental change in the soil behavior from sand-like to silt-like,
with a corresponding increase in compressibility and a decrease in both shear strength
and resistance to liquefaction. Numerous studies have shown that this change in behavior
occurs over a relatively narrow range of silt contents.

The threshold fines content represents the silt content at which the soil begins to
transform from a sand matrix, with silt particles entirely contained in the voids between
the sand grains, to a silt matrix that contains isolated sand grains. Below the threshold
fines content, the soil behaves essentially as sand; above the threshold fines content, the
soil behaves essentially as silt.

For mixtures of sand and silt, there are several different methodologies for calculating the
fines content at which the soil transforms from sand-controlled to silt-controlled [5–9]. Each
methodology utilizes a different equation, yet they all return the same value of threshold
fines content [9].

The threshold fines content can be calculated for a given sand and silt using Equation (1)
(after [9]):

Threshold Fines Content =
Gsfes

Gsfes+Gss(1+ef)
(1)

where Gss is the specific gravity of the sand; Gsf is the specific gravity of the fines; es is the
maximum index void ratio of the sand; and ef is the void ratio of the fines.

Figure 1 provides visual representations of sand–silt mixtures that are (a) below,
(b) at, and (c) above the threshold fines content. In the figure, the brown areas represent
individual sand grains, the yellow areas represent silt, and the white areas represent empty
void space.
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Figure 1. Illustrations of the sand–silt combinations (a) below, (b) at, and (c) above the threshold
fines content.

For soils with silt contents below the threshold fines content, as silt particles are added
to the sand, the ensuing mixture’s index void ratios decrease. These trends continue until
the threshold fines content is reached. At silt contents above the threshold fines content,
as the silt content increases, the index void ratios increase until the soil is silt containing
no coarse-grained material. These changes can be modeled as a bilinear envelope when
plotting the maximum and minimum index void ratios versus the silt content. These trends
may be seen in Figure 2, which presents data for mixtures of Yatesville sand and Yatesville
silt [10], which have a threshold fines content of approximately 36%. In the figure, it can be
seen that the lowest index void ratios occur near the threshold fines content.
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The filling coefficients, a, and the embedment coefficients, b, are empirical parameters.
While they do not have a distinct physical meaning, they are related to the maximum
and minimum index density versus fines content curves, with the filling coefficient being
related to the portion of the curves at fines contents below the threshold fines content and
the embedment coefficient being related to the portion of the curves at fines contents above
the threshold fines content. For both the emax and emin equations, the values of the filling
coefficient, a, and the embedment coefficient, b, vary between zero and one.

The filling coefficient, a, is related to the slope of the line connecting the index void
ratios at silt contents less than the threshold fines content. As previously noted, the
threshold fines content corresponds to the condition where the silt grains and the voids
between them have completely filled the voids in the sand but have not yet begun to force
the sand grains apart.

The value of the embedment coefficient, b, can be thought of as the fraction of the
voids within the silt matrix that are caused by the presence of a sand grain. When the soil
is at the threshold fines content, the embedment coefficient equals one. When there is no
sand embedded in the silt matrix, the embedment coefficient equals zero.

3.2. Equations for Estimating Index Void Ratios

The values of emax and emin for sand are related to several factors. These factors
include inherent soil properties such as particle shape, the mean particle size, and the soil
gradation, most notably the uniformity of the grain sizes and the fraction of fines in the soil
mixture. Unrelated to the soil itself, the methodology used to determine the index void
ratios can also play a major role in the values determined [11–14].

Based on binary packing theory, Chang et al. [7] developed a series of four equations
for estimating the maximum and minimum index void ratios for sand–silt mixtures. These
equations are different for sand–silt mixtures below the threshold fines content (where
the soil matrix is predominately sand grains with silt particles contained in the voids
between the sand grains) and above the threshold fines content (where the soil matrix
is predominately silt particles with non-contiguous sand particles). These equations are
presented below as Equations (2)–(5) (after [7]). For this article, some variable names were
adjusted from those used in the original publication in order to improve clarity.

For sand-controlled soils whose silt content is less than the threshold fines content, the
maximum index void ratio, emax

M1 , and minimum index void ratio, emin
M1 , may be calculated

using Equations (2) and (3), respectively as follows:

emax
M1 = emax

1 y1 + emax
2 y2 − amax(1+emax

2 )y2 (2)
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emin
M1 = emin

1 y1 + emin
2 y2 − amin

(
1+emin

2

)
y2 (3)

For silt-controlled soils whose silt content is greater than the threshold fines con-
tent, the maximum index void ratio, emax

M2 , and minimum index void ratio, emin
M2 , may be

calculated using Equations (4) and (5), respectively as follows:

emax
M2 = emax

1 y1 + emax
2 y2 − bmaxemax

1 y1 (4)

emin
M2 = emin

1 y1 + emin
2 y2 − bminemin

1 y1 (5)

where emax
1 and emin

1 are the maximum and minimum index void ratios of the sand;
emax

2 and emin
2 are the maximum and minimum index void ratios of the silt; and y1 is

the fraction of the sand–silt mixture that is sand. Similarly, y2 is the fraction of the sand–silt
mixture that is silt. The sum of y1 and y2 is always unity; lastly, amax and bmax are the filling
coefficient and the embedment coefficients for the maximum index void ratio, while amin

and bmin are the filling coefficient and the embedment coefficients for the minimum index
void ratio.

4. Methodology for Developing the Correlations for Estimating a and b

The goal of the current study was to develop simple correlations for estimating the
filling and embedment coefficients for any sand–silt combination. This was carried out by
using a computer code to find the best-fit values of the filling and embedment coefficients
for both the maximum and minimum index void ratios for each of the 60 combinations
of sand and silt in the main data set. Following a description of the two data sets used
to develop and validate the correlations and a discussion of the methodology used for
determining the correlations, the validation process for the correlations developed will
be presented.

4.1. Data Sets Used

The main data set consisted of the maximum and minimum void ratios at various silt
contents for 60 combinations of sand and silt gathered from the literature [7,9,15–49]. Each
of these sand–silt combinations had data for between four and seventeen silt contents with
a median of nine silt contents. Overall, 524 pairs of emax and emin were used in developing
the correlations. In addition to the maximum and minimum index void ratios for each
sand–silt pairing, the maximum and minimum index void ratios, the specific gravities, and
the median grain sizes for the clean sand and the pure silt were also known. The properties
of these soils are presented in Table 1.

Table 1. Properties of the soils in the data set.

Soil
Number

Silt
Contents D50 (mm) d50 (mm) d50:D50 Sand

emin
Silt emin

Sand
emax

Silt emax Source

1 6 0.39 0.15 0.385 0.601 0.622 0.79 2.098 [7]
2 9 0.15 0.02 0.133 0.54 0.58 0.77 0.85 [7]
3 5 0.21 0.01 0.048 0.579 0.461 0.872 1.897 [7]
4 7 0.596 0.023 0.039 0.632 0.991 0.795 1.563 [7]
5 6 0.3 0.045 0.150 0.59 0.75 0.98 1.39 [7]
6 14 0.5 0.01 0.020 0.58 0.85 0.85 2 [7]
7 14 0.5 0.01 0.020 0.57 0.86 0.78 1.48 [11]
8 7 0.77 0.04 0.052 0.54 0.72 0.85 1.42 [15]
9 9 0.21 0.017 0.081 0.57 0.87 0.83 1.77 [15]

10 6 0.68 0.01 0.015 0.52 0.71 0.84 1.43 [16]
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Table 1. Cont.

Soil
Number

Silt
Contents D50 (mm) d50 (mm) d50:D50 Sand

emin
Silt emin

Sand
emax

Silt emax Source

11 14 1.08 0.14 0.130 0.579 0.748 0.851 1.176 [16]
12 17 0.12 0.01 0.078 0.755 1.000 1.247 2.740 [17]
13 8 0.61 0.05 0.082 0.52 0.71 0.86 1.05 [19]
14 14 0.21 0.05 0.237 0.581 0.754 0.855 1.183 [20]
15 6 0.12 0.05 0.417 0.617 0.754 0.938 1.169 [20]
16 13 0.17 0.05 0.302 0.581 0.754 0.876 1.180 [20]
17 12 1.50 0.05 0.033 0.538 0.754 0.765 1.176 [20]
18 5 0.22 0.017 0.077 0.59 0.46 0.88 1.89 [20]
19 8 0.23 0.02 0.087 0.84 0.62 1.44 1.41 [20]
20 6 0.25 0.01 0.040 0.608 0.627 0.800 2.100 [20]
21 8 0.23 0.03 0.130 0.84 0.67 1.44 1.15 [21]
22 8 2 0.03 0.015 0.83 0.67 1.12 1.15 [21]
23 8 2 0.02 0.010 0.83 0.62 1.12 1.41 [21]
24 8 0.9 0.03 0.033 0.5 0.67 0.97 1.15 [21]
25 8 0.9 0.02 0.022 0.5 0.62 0.97 1.41 [21]
26 11 1.08 0.40 0.370 0.633 0.644 0.970 1.048 [22]
27 11 1.08 0.42 0.389 0.633 0.590 0.970 0.996 [22]
28 11 1.08 0.26 0.244 0.633 0.696 0.970 1.114 [22]
29 11 1.08 0.17 0.155 0.633 0.682 0.970 1.121 [22]
30 11 1.08 0.14 0.130 0.63 0.7 0.97 1.12 [22]
31 11 1.08 0.10 0.095 0.633 0.651 0.970 1.084 [22]
32 11 1.08 0.10 0.095 0.633 0.668 0.970 1.084 [22]
33 11 1.08 0.10 0.090 0.633 0.682 0.970 1.115 [22]
34 11 1.08 0.06 0.053 0.633 0.700 0.970 1.091 [22]
35 8 0.25 0.01 0.040 0.615 0.634 0.829 2.100 [23]
36 14 0.20 0.05 0.248 0.548 0.754 0.806 1.181 [24]
37 12 0.16 0.05 0.307 0.580 0.754 0.868 1.179 [24]
38 12 0.14 0.04 0.314 0.570 0.754 0.878 1.181 [24]
39 9 0.45 0.04 0.078 0.570 0.760 0.949 1.413 [28]
40 12 0.15 0.01 0.067 0.542 0.622 0.765 0.934 [28]
41 5 0.37 0.16 0.432 0.552 0.583 0.703 0.755 [29]
42 7 0.6 0.02 0.033 0.63 0.99 0.79 1.56 [30]
43 8 0.11 0.02 0.182 0.67 0.68 1.03 1.71 [31]
44 11 0.39 0.04 0.103 0.49 0.776 0.77 1.317 [32]
45 7 0.365 0.026 0.071 0.671 0.479 1.023 1.676 [33]
46 5 0.1 0.03 0.300 0.62 0.87 1.17 1.53 [34]
47 8 0.2 0.05 0.250 0.65 0.74 0.95 1.24 [35]
48 8 0.3 0.08 0.267 0.6 0.71 0.95 1.36 [36]
49 8 0.25 0.014 0.056 0.664 0.987 0.941 1.511 [37]
50 15 0.37 0.038 0.103 0.41 0.65 0.66 1.64 [38]
51 9 0.2 0.016 0.080 0.57 0.9 0.86 1.79 [39]
52 7 0.68 0.057 0.084 0.535 0.72 0.854 1.42 [40]
53 11 0.72 0.017 0.024 0.6 0.81 0.78 1.4 [41]
54 11 0.6 0.027 0.045 0.61 0.99 0.79 1.56 [42]
55 11 0.2 0.027 0.135 0.62 0.97 0.99 1.55 [43]
56 11 0.33 0.027 0.082 0.63 0.98 0.79 1.54 [44]
57 12 0.13 0.043 0.331 0.65 0.8 0.87 1.31 [45]
58 4 0.45 0.012 0.027 0.43 0.72 0.72 2.13 [46]
59 5 0.21 0.01 0.048 0.579 0.461 0.872 1.897 [47]
60 9 0.45 0.04 0.089 0.57 0.76 0.95 1.41 [48]
61 11 0.18 0.03 0.167 0.653 0.727 0.972 1.723 [10]
62 11 0.43 0.03 0.070 0.631 0.727 0.821 1.723 [10]
63 9 0.35 0.023 0.066 0.47 0.67 0.75 1.49 [46]

In addition to the main data set, data for three independent sand–silt combinations
were set aside for use in validating the models. These sand–silt combinations were Yatesville
sand with Yatesville silt [10], Monterey #0/30 sand with Yatesville silt [10], and Ottawa C-
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109 sand with #6 Sil-Co-Sil silt [50]. Both Yatesville silt and #6 Sil-Co-Sil silt are non-plastic.
The properties of these soils are also presented in Table 1 as soil numbers 61, 62, and 63,
respectively. They form a reasonable representation of the soils in the main data set, as their
parameters fall within the range of the soils in the main data set.

4.2. Development of the Correlations

Once the main data set was compiled, a computer script was used to calculate the
best-fit (i.e., optimal) values of the filling and embedment coefficients for the maximum
index void ratio (amax and bmax) and separately for the minimum index void ratio (amin

and bmin) for each of the 60 sand–silt combinations. First, the filling coefficient varied
from 0.00 to 1.00 in increments of 0.01. For each increment of the filling coefficient used,
the embedment coefficient also varied from 0.00 to 1.00 in increments of 0.01 so that the
soil was evaluated using 101 values of b for each value of a considered. This yielded
10,201 combinations of the filling and embedment coefficients for each of the index void
ratios for each of the 60 sand–silt combinations.

For each pair of filling and embedment coefficients evaluated, the maximum or mini-
mum index void ratios were calculated at each silt content for that sand–silt combination.
The estimated values of emax or emin were then compared to the corresponding laboratory-
determined values. For each combination of filling and embedment coefficients evaluated,
the coefficient of determination, R2, was calculated for that sand–silt combination. The
combination of the filling and embedment coefficients that yielded the highest R2 value and
thus produced the most accurate match to the laboratory-determined data for that sand–silt
combination was chosen as the best-fit values of the filling and embedment coefficients.
These values of a and b were subsequently used in the regression analyses.

Once the best-fit values of the filling and embedment coefficients were determined
for each of the 60 sand–silt combinations, linear regression analyses were performed, and
correlations for estimating the filling and embedment coefficients were developed.

The filling coefficients, amax and amin, and the embedment coefficients, bmax and bmin,
can be estimated using Equations (6)–(9).

amax= 0.512 + 0.161D50−0.373d50−0.506
(

d50

D50

)
(6)

bmax = 0.623 + 0.122D50 − 0.339d50 − 0.540
(

d50

D50

)
(7)

amin= 0.478 + 0.158D50−0.343d50−0.427
(

d50

D50

)
(8)

bmin= 0.599 + 0.164D50 −0.405d50−0.571
(

d50

D50

)
(9)

where amax and bmax are the filling and embedment coefficients for the maximum index
void ratio; amin and bmin are the filling and embedment coefficients for the minimum
index void ratio; D50 is the median grain size in millimeters for the sand fraction of the
sand–silt mixture; and d50 is the median grain size in millimeters for the silt fraction of the
sand–silt mixture.

While a thorough evaluation was not performed, it seems likely that the reason that
the correlations perform well based solely on the median grain size of the two soils is that
they are directly related to the packing structure of the material mixture.

4.3. Equation Validation

The correlations developed for estimating the filling and embedment coefficients were
validated using a two-step process. The first step consisted of using Equations (6)–(9) to
estimate the filling and embedment coefficients for each of the 60 sand–silt combinations
in the main data set. These coefficients were then used to estimate the maximum and
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minimum index void ratios for that sand–silt combination at silt contents corresponding to
the laboratory-determined values for that sand–silt combination data.

From these predictions, 60 R2 values were determined for the emax values, one for each
of the 60 sand–silt combinations. This R2 value reflects how closely the estimated values of
emax matched the laboratory-determined values of emax for the silt contents reported for
that sand–silt combination. Similarly, an R2 value was determined for the emin values for
each of the 60 sand–silt combinations; this R2 served to measure how closely a and b were
estimated by the regression equations.

The second step in the equation validation process consisted of using the correlations to
estimate the filling and embedment coefficients for each of the three independent sand–silt
combinations that were not included in the main data set used for the regression analyses.
The coefficients estimated for each sand–silt combination were then used to estimate the
maximum and minimum index void ratios at each of the silt contents for each of the three
sand–silt combinations, and R2 values were determined.

5. Results

The results of the first stage of the analyses performed may be seen in Figures 3 and 4.
Figure 3 plots the 524 values of emax determined using the estimated values of the filling
and embedment coefficients on the y-axis and the values of emax measured in the laboratory
on the x-axis. Also plotted is a trend line inclined at 45◦ to the x-axis, which represents the
case where the predicted void ratio is equal to the void ratio determined in the laboratory.
If a point plots above this line, the predicted void ratio is greater than the measured void
ratio. Similarly, if a point plots below this line, the predicted void ratio is smaller than
the measured void ratio. The distance from the line to any point is proportional to the
size of the estimation error. The comparison of the actual and predicted maximum index
void ratios produced an R2 value of 0.955, indicating that the maximum index void ratios
predicted by the correlations and equations closely matched the laboratory data.

Similar to Figure 3, Figure 4 plots the 524 values of emin determined using the estimated
values of the filling and embedment coefficients on the y-axis and the values of emin
measured in the laboratory on the x-axis. As in Figure 3, a trend line inclined at 45◦ to the
x-axis was plotted. The comparison of the actual and predicted minimum index void ratios
produced an R2 value of 0.884, indicating that the minimum index void ratios predicted by
the correlations and equations closely matched the laboratory data.
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Figure 4. Measured versus estimated minimum index void ratios developed based on the values of
amin and bmin estimated using Equations (8) and (9).

Figure 5 presents a histogram of the relative frequencies of the R2 values determined
for the maximum index void ratios for the 60 sand–silt combinations based on the filling
and embedment coefficients developed using Equations (6)–(9). This analysis resulted in
R2 values for the 60 soil combinations ranging from 0.899 to 0.999, with a mean of 0.983 and
a median of 0.988. For the maximum index void ratio, 59 out of 60 sand–silt combinations
(98%) had R2 values greater than 0.94.
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Figure 5. Relative frequency of R2 values for maximum index void ratios developed based on the
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Figure 6 presents a histogram of the relative frequencies of the R2 values determined
for the minimum index void ratios for the 60 sand–silt combinations based on the filling
and embedment coefficients developed using Equations (6)–(9). This analysis resulted in
R2 values for the 60 soil combinations ranging from 0.789 to 0.999, with a mean of 0.968 and
a median of 0.973. For the minimum index void ratio, 54 out of 60 sand–silt combinations
(90%) had R2 values greater than 0.94.
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While this analysis is not truly statistically rigorous because it uses the data set that the
models were derived from to validate the derived models, the high values of R2 achieved
by the analyses indicate that Equations (6)–(9) yield values of the filling and embedment
coefficients that produce accurate values of emax and emin.

The second and more statistically rigorous step in validating the correlations consisted
of using the correlations to estimate the necessary coefficients for each of the three sand–silt
combinations that were not included in the main data set. These coefficients were then
used to estimate the maximum and minimum index void ratios at each of the silt contents
for each of the three sand–silt combinations.

For the maximum index void ratios, analysis of the three independent sand–silt
combinations resulted in R2 values ranging from 0.963 to 0.994 with a mean of 0.978 and a
median of 0.979. For the minimum index void ratios, this analysis resulted in R2 values
ranging from 0.906 to 0.991 with a mean of 0.944 and a median of 0.936. Typical results
from the analysis are presented in Figure 7 for mixtures of Yatesville sand and Yatesville
silt, which had an R2 value of 0.979 for emax and an R2 value of 0.906 for emin. A more
detailed breakdown of the coefficients of determination obtained is provided in Table 2.
Additionally, the corresponding R2 values for the main data set previously discussed are
included in Table 2 for comparison.
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Table 2. Coefficients of determination, R2, for index void ratios calculated using the estimated filling
and embedment coefficients.

Sand Type Silt Type emax emin Average

Monterey Yatesville 0.963 0.936 0.949
Ottawa C-109 #6 Sil-CO-Sil 0.994 0.991 0.993

Yatesville Yatesville 0.979 0.906 0.943

60 sand–silt combination data set 0.956 0.884 0.920

Given that each of the six R2 values is above 0.905 for the three independent data
sets, it can be concluded that Equations (6)–(9) yielded values of filling and embedment
coefficients that did an excellent job of estimating the maximum and minimum void ratios
at the various silt content for all three sand–silt combinations examined.

6. Limitations

The correlations presented herein were developed based on mixtures of sand and
non-plastic silt. The use of these correlations for other soils, such as those containing large
quantities of gravel or those with plastic fines, may lead to inaccurate values of a and b.

7. Conclusions

In summary,

• Four correlations were developed for estimating the filling coefficients, a, and embed-
ment coefficients, b. These correlations were developed using a data set collected from
the literature and are presented as Equations (6)–(9).

• These correlations use only the median grain size of the sand, D50, the median grain
size of the silt, d50, and their ratio, d50:D50. Both D50 and d50 can be obtained from a
standard grain-size analysis consisting of a sieve analysis and a hydrometer.

• When values of a and b determined based on the correlations were used in Chang
et al.’s equations [7], accurate values of maximum and minimum index void ratios for
sand–silt mixtures were produced.

• The values maximum and minimum index void ratios predicted generally had R2

values greater than 0.94 when compared to the laboratory-measured values.
• The true strength of these correlations lies in their simplicity and ability to accurately

estimate values of the filling and embedment coefficients while requiring only data
from simple, common laboratory tests.
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Nomenclature/Abbreviations

a Generalized filling coefficient
amax Filling coefficient for estimating the maximum index void ratio
amin Filling coefficient for estimating the minimum index void ratio
b Generalized embedment coefficient
bmax Filling coefficient for estimating the maximum index void ratio
bmin Embedment coefficient for estimating the minimum index void ratio
d50 Median grain size in mm for silt
emax Maximum index void ratio
emax

1 Maximum index void ratio of the sand fraction of a sand–silt combination
emax

2 Maximum index void ratio of the sand fraction of a sand–silt combination
emax

M1
Maximum index void ratio of soil below the threshold fines content

emax
M2

Maximum index void ratio of soil above the threshold fines content
emin Minimum index void ratio
emin

1 Minimum index void ratio of the sand fraction of a sand–silt combination
emin

2 Minimum index void ratio of the silt fraction of a sand–silt combination
emin

M1
Minimum index void ratio of soil below the threshold fines content

emin
M2

Maximum index void ratio of soil above the threshold fines content
y1 Fraction of the sand–silt mixture that is sand
y2 Fraction of the sand–silt mixture that is silt
D50 Median grain size in mm for sand
M1 Silt content of soil below the threshold fines content
M2 Silt content of soil above the threshold fines content
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