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Abstract: The mineralization of nitrobenzene was executed using an innovative method, wherein
Ag/Cu2O semiconductors stimulated by visible light irradiation were supported with persulfate
anions. Batch-wise experiments were performed for the evaluation of effects of silver metal contents
impregnated, persulfate concentrations and Ag/Cu2O dosages on the nitrobenzene removal efficiency.
The physicochemical properties of fresh and reacted Ag/Cu2O were illustrated by X-ray diffraction
analyses, FE-SEM images, EDS Mapping analyses, UV–Vis diffuse reflectance spectra, transient
photocurrent analyses and X-ray photoelectron spectra, respectively. Because of intense scavenging
effects caused by benzene, 1-propanol and methanol individually, the predominant oxidant was
considered to be sulfate radicals, originated from persulfate anions via the photocatalysis of Ag/Cu2O.
As regards oxidation pathways, nitrobenzene was initially transformed into hydroxycyclohexadienyl
radicals, followed with the production of 2-nitrophenol, 3-nitrophenol or 4-nitrophenol. Afterwards,
phenol compounds descended from denitration of nitrophenols were converted into hydroquinone
and p-benzoquinone.
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1. Introduction

Nitrobenzene is commonly used for the manufacture of polyurethane by way of
intermediates of aniline. It has been also applied in the following industries: plastics,
pesticides, pharmaceuticals and explosives [1]. Due to high risks for mutagenicity and
carcinogenicity suffered, effluent contaminated with nitrobenzene and related derivatives
would cause strong damage to the aqueous circumstances [2,3]. Consequently, much effort
has been focused on the development of economically and effectively treating manners for
industrial wastewater.

Advanced oxidation processes have been extensively explored for the mineralization
of nitrobenzene in wastewater due to its resistance to biodegradation resulted from the
electron-withdrawing property of nitro groups [4]. Firstly, much research has been carried
out on hydroxyl radical-based processes, such as Fenton’s methods [5–7], Fenton-like
manners [8–10], Fenton reagents with auxiliary ultrasound [11] and Fenton reagents cou-
pled with fluidization flow patterns [12,13]. Secondly, as commercial titanium dioxide is
under investigation, the significant enhancement of the nitrobenzene destruction efficiency
took advantage of doping ferric oxides, which successfully prevent the combination of
photon-induced electrons with holes [14]. In another aspect, ultraviolet absorbance band
was obviously changed to the visible light range by virtue of impregnating ammonium and
cerium nitrates simultaneously [15,16]. On the other hand, ozone supported with ultra-
sound was employed for nitrobenzene removal, wherein hydroxyl radicals were claimed
to be predominant oxidizing agents [17,18]. The oxidation of nitrobenzene through the
catalysis of ozone over aluminum silicate was performed to elucidate the influences of op-
erating parameters [19,20]. Additionally, the electrochemical oxidation of nitrobenzene was
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conducted by the modified PbO2 electrode plates, which were incorporated with titanium
dioxide nanotubes, resulting in ordered arrangement and surface areas extended [21,22].

To date, sulfate-radical-related processes have been also dedicated to decomposing
nitrobenzene in wastewater. The thermal activation of persulfate was effective for the
disposal of effluents contaminated with nitrobenzene, wherein reaction pathways consist
of 2-nitrophenol, 4-nitrophenol, 2,6-dinitrophenol and 2,4-dinitrophenol [23]. Except fer-
rous ions for the catalytic transformation of persulfate to sulfate radicals, zinc metal and
magnetized iron metal also exhibited fruitful performance on nitrobenzene removal [24–26].
With a view to promoting nitrobenzene abatement, experiments were carried out utilizing
persulfate anions irradiated with ultraviolet light [27]. Even though persulfate activated
with photoelectrons descended from semiconductors excited by visible light, this has been
barely studied in regard to nitrobenzene oxidation. As expected, the band gap energy of
semiconductors meets the luminous energy of the incident light, leading to the generation
of photo-induced electron–hole pairs. Persulfate anions would be transformed into reactive
sulfate radicals via the activation of photo-induced electrons [28].

In this research, an innovative technique for the effective removal of nitrobenzene
in wastewater was developed. Considerable sulfate radicals could be produced by way
of persulfate via photoelectrons originated from Ag/Cu2O irradiated with visible light,
which are well known as semiconductors [29–32]. The influences of operating parameters
on the nitrobenzene degradation behaviors were explored, such as persulfate concentra-
tions and Ag/Cu2O dosages. Nitrobenzene decomposition pathways catalyzed by the
Ag/Cu2O coupled with persulfate under visible light irradiation would be investigated in
the meantime.

2. Experimental Methods
2.1. Testing of Photocatalytic Oxidation of Nitrobenzene by Ag/Cu2O with Assistance of Persulfate

The experimental system containing the main equipment was referred to in our
previous report [33]. The photocatalytic cell was a quartz cylinder fitted internally with
a magnetic stirrer and cooling coils, in which the testing temperature was maintained
through a thermostat (PIIN JIA Technol. Co. New Taipei City, Taiwan). Visible light
irradiation was supplied from twelve lamps (8.6 W each) surrounding the cell with three
chief peaks of 438 nm, 550 nm and 619 nm, respectively (Philips Corp. PL-S, Hanover,
MD, US). Owing to consistence with practical concentrations of industrial wastewater,
feedstock was prepared at 1.0 mM concentrations of nitrobenzene (≥99.5%, Riedel-de
Haen, Seelze, Germany) [34], being well agitated with proper weights of sodium persulfate
(≥99.5%, Fluka, Seelze, Germany) beforehand. The Ag/Cu2O, manufactured from Cu2O
powder (SHOWA, Tokyo, Japan) by incipient impregnation with 1–5 wt% of silver nitrate
(≥99.5%, Fluka), respectively, and sequential 3 h calcination at 473 K by sieving with 400
mesh [35], was carefully loaded into the basket and fixed near the center of photocatalytic
cell. For the duration of tests, samples were taken from the cell at constant time intervals,
and sequentially quenched to the temperature of 273 ± 0.5 K to terminate nitrobenzene
oxidation [36]. Aqueous samples were executed on total organic carbon analyses to evaluate
residual organic compounds. The Ag/Cu2O separated from oxidation tests were examined
by an X-ray photoelectron spectrometer. In this work, experiments were performed in a
series of persulfate concentrations of 35.0 to 70.0 mM to elucidate the sulfate radical effect
at the pH values of 5 to 6. Photocatalytic tests under diverse dosages of Ag/Cu2O (1.05 up
to 1.50 g L−1) were carried out for enhancement on nitrobenzene removal efficiency. All
experiments were undertaken repeatedly for the affirmation of data reliability.

2.2. Total Organic Carbon (TOC) Analysis

Within the duration of photocatalytic testing by Ag/Cu2O assisted with persulfate,
wastewater was periodically sampled and measured, utilizing a TOC analyzer (GE Corp.
Sievers InnovOx, Boston, MA, USA). The hydrocarbons involved were completely oxi-
dized into carbon dioxide and quantified through nondispersive infrared (NDIR) analyses,
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wherein persulfate mineralization was carried out under supercritical water conditions. On
the contrary, non-hydrocarbons were exhausted in the species of carbonic acid. In this work,
the TOC concentrations reported were calibrated to the standard curve, fulfilled faithfully
in the range (0–5.0 mM) utilizing standard chemicals of potassium hydrogen phthalate.

2.3. Physicochemical Properties of Ag/Cu2O

The crystal compositions of fresh Ag/Cu2O semiconductors were examined using
an X-ray diffractometer (Rigaku, MiniFlex II, Tokyo, Japan) integrated with high-intensity
monochromated CuKα radiation at the wavelength of 0.15418 nm, operating with the
current of 30 mA and 40 kV volts over the 2θ range from 10 to 80 degrees. For the inspection
of surface morphology and silver content impregnated on Ag/Cu2O semiconductors,
surface scanning was executed by a field-emission scanning electron microscope (JEOL,
JSM-6500F) equipped with an energy dispersive X-ray spectroscope (JEOL, JED-2300). As
far as light absorption band is concerned, the Ultraviolet–Visible diffuse reflectance spectra
on Ag/Cu2O were measured using a UV–Vis spectrometer (PerkinElmer, Lambda-850,
Waltham, MA, USA), of which wavelength was among the range of 250 to 800 nm with
reference to BaSO4. The photocurrent measurements of the samples were carried out
using a potentiostat (Zensor, ECAS-100, Etterbeek, Belgium) under continuous visible light
irradiation (Philips, PL-S), wherein a Pt wire served as an auxiliary electrode, coated with
Ag/Cu2O and polymer electrolyte membrane, and was referenced to a saturated calomel
electrode. Further, electronic states of fresh and reacted Ag/Cu2O semiconductors were
monitored by means of XPS spectra from an X-ray photoelectron spectrometer (Kratos
Analytical Ltd. Axis Ultra, Manchester, UK), in which monochromated AlKα irradiation
was used as a light source and the binding energy of samples was calibrated to 284.8 eV for
C 1s core level of adventitious carbon.

2.4. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis

A proper amount of wastewater was withdrawn from the photocatalytic cell after
nitrobenzene oxidation testing for 30 min. The microextraction fiber spread with car-
boxen/polydimethylsiloxane (Supelco, Bellefonte, PA, USA) was added into aqueous
solution for the effective adsorption of degradation intermediates. Then, the fiber was
directly packed into a micro-needle which was immediately injected into the orifice of the
gas chromatograph–mass spectrometer (Hewlett Packard, MASS 59864B/5973, Palo Alto,
CA, USA). The metal capillary column for ingredient separation was used at the dimension
of 30 m × 0.25 mm (Ultra ALLOY UA-5), wherein helium gas served as the carrier gas. The
degradation intermediates resolved were trustworthy based on mass spectra obtained in
comparison with those of standards.

2.5. Scavenging Effects

In order to disclose the main oxidants on the mineralization of nitrobenzene, testing
was conducted in the presence of diverse scavengers simultaneously, such as methanol,
1-propanol and benzene, respectively [37,38]. The nitrobenzene degradation percentage
was determined on the basis of the peak area (262 nm) shown in a UV–Vis spectrophotome-
ter (PerkinElmer, Lambda 850) [8]. In the course of pretesting, benzene was verified as the
most sharp scavenger. The benzene scavenging effect may represent sulfate radical yields
at different experimental conditions. To evaluate sulfate radical yields, the decrement of
nitrobenzene degradation percentage was examined upon the addition of suitable amounts
of benzene scavenger into wastewater.

3. Results and Discussion
3.1. Comparison of Photocatalytic Oxidation by Ag/Cu2O Alone and Ag/Cu2O Assisted with
Persulfate Respectively

Figure 1 demonstrates the time flow patterns of TOC removal efficiency executed
by photocatalytic oxidation over Ag/Cu2O alone and Ag/Cu2O aided with persulfate,
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respectively. Apparently, the nitrobenzene removal rate caused by Ag/Cu2O supported
with persulfate process was much higher than those simply using persulfate anions, Cu2O
and Ag/Cu2O alone. Noteworthily, Ag(1%)/Cu2O integrated with persulfate displayed
a synergistic performance in comparison with photocatalytic behaviors exhibited with
the Ag(1%)/Cu2O and persulfate individually. The observation could be ascribed to
great enhancement on reactive sulfate radical yields. In fact, persulfate anions have been
successfully transformed to sulfate radicals through the photocatalysis of Cu2O [39]. It has
been also recognized that Ag metal functions as an electron sink and strengthens charge
separation, leading to the repression of the combination of photo-induced electrons and
holes over Cu2O [40,41]. As expected, a higher extent of Ag metal doped on the surface
of Cu2O gave rise to higher nitrobenzene removal efficiency (refer to Figure 2). The main
reactions that occurred could be concluded as follows.

(1) Ag/Cu2O + hυ→ h+
vb + e−cb

(2) S2O8
2− + e−cb → SO4•− + SO4

2−

(3) SO4
2- + h+

vb → SO4•−
(4) H2O + h+

vb → HO• + H+

where in e−cb represents photo-induced electrons in the conduction band and h+
vb rep-

resents photo-induced holes in the valence band. Ag(5%)/Cu2O was chosen as a candidate
for next testing due to its better nitrobenzene degradation behavior.
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Figure 1. Time flow patterns of TOC removal efficiency by Cu2O, persulfate, Ag(1 wt%)/Cu2O,
Cu2O-persulfate and Ag(1 wt%)/Cu2O-persulfate, respectively under the conditions of visible light
power = 103.2 W, persulfate concentration = 50 mM, Cu2O or Ag(1 wt%)/Cu2O dosage = 1.20 g L−1

and T = 318 K.

XPS measurements were carried out to elucidate surface electronic states of Ag(5%)/
Cu2O. Figure 3 illustrates the Cu2p XPS spectra of fresh Ag(5%)/Cu2O and reacted
Ag(5%)/Cu2O. As far as fresh Ag(5%)/Cu2O semiconductor is concerned, two peaks
centered at 933.0 and 952.0 eV were clearly found, which were appointed to the bind-
ing energy of Cu+2p (3/2) and Cu+2p (1/2), respectively [42–44]. With regard to reacted
Ag(5%)/Cu2O, four peaks centered at 933.5, 941.0, 953.0 and 961.0 eV were present, which
were separately assigned to the binding energy of Cu+2p (3/2), Cu2+2p (3/2), Cu+2p (1/2)
and Cu2+2p (1/2) [45,46]. Obviously, Cu+ cations on the surface of reacted Ag(5%)/Cu2O
shifted to higher oxidation states in comparison with the fresh one, in consideration of
the migration of photo-induced electrons to persulfate anions [39,47]. The observations
manifest the above hypothesis that persulfate anions could be converted into sulfate rad-
icals upon activation by photo-induced electrons. Instead, sulfate anions may be also
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transformed to sulfate radicals via photo-induced holes over Ag(5%)/Cu2O [48]. It makes
partial contributions for nitrobenzene oxidation.
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Figure 2. Effect of silver metal contents on the TOC removal efficiency under the conditions of
visible light power = 103.2 W, persulfate concentration = 50 mM, Ag/Cu2O dosage = 1.20 g L−1 and
T = 318 K.
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Figure 3. X-ray photoelectron spectra of Cu+2p or Cu2+2p core level for original Ag(5 wt%)/Cu2O
and reacted Ag(5 wt%)/Cu2O semiconductors.

3.2. Physicochemical Properties of Ag/Cu2O

The X-ray diffraction patterns of Ag/Cu2O semiconductors are displayed in Figure 4.
Major peaks in the spectra were matched with crystal planes of Cu2O, wherein the charac-
teristic peak at 2θ value of 36.5◦ was ascribed to the (111) plane [48,49]. Conversely, the
diffraction peak at 2θ values of 38.1◦ was appointed to the (111) plane of Ag metal [50]. It is
evident that slight weight of Ag metal was doped on the surface of Cu2O. Figure 5 presents
field-emission SEM images of Ag/Cu2O semiconductors. Obviously, the majority of the
Cu2O surface was smooth. In contrast, a few irregular-shaped sediments were found over
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Ag/Cu2O and more clumps of particles were observed upon increasing Ag extent. It is ap-
parent that Ag metal was well spread on the surface of Cu2O. The Energy-Dispersive X-ray
Mapping analysis on Ag/Cu2O is illustrated in Figure 6. Ag metal was well dispersed, and
its contents measured agreed with those impregnated theoretically (see Table 1).
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Figure 7 depicts the UV–Vis diffuse reflectance spectra for a series of Ag/Cu2O
semiconductors. The analogous spectra were observed between Ag/Cu2O and Cu2O
at the absorbance wavelength between 400 and 530 nm, which fall into the visible light
range. Particularly, the light absorbance intensity of Ag/Cu2O was stronger than that of
Cu2O. It implies that Ag/Cu2O semiconductors are more responsive to the visible light
irradiation. This phenomenon could be mainly ascribed to Ag metal dopant, creating an
electron sink and restraining a combination of photo-induced electrons with holes over
Cu2O [51,52]. Further, the Ag/Cu2O band gap energy was resolved by means of a Tauc’s
equation [(αhν)1/n = A(hν − Eg)], in which hν stands for incident optical energy. The
“n” parameter was set at the value of 1/2 according to the electronic transition state of
Ag/Cu2O semiconductors. The draft of (αhν)2 varied with incident optical energy; (hν)
was drawn to obtain the band gap energy by intercepting tangent lines to the X-axis [53–55].
Consequently, the Cu2O band gap energy was determined to be 2.17 eV, consistent with
that reported by Muthukumaran et al. [56]. For a series of Ag/Cu2O semiconductors, the
band gap energy was estimated to be 2.06, 1.92, 1.75, 1.55 and 1.43 eV, respectively, upon
increasing Ag metal doping (refer to Table 2). The superior photocatalytic performance
presented by Ag(5%)/Cu2O could be reasonably attributed to a significant yield of photo-
induced electrons, caused by a lower band gap energy. In other words, the optical energy of
visible light could stimulate Ag/Cu2O semiconductors for the generation of electron–hole
pairs. Persulfate anions would be effectively converted into reactive sulfate radicals via
activation of photo-induced electrons. Likewise, photo-induced holes may also transform
sulfate anions into sulfate radicals. Figure 8 illustrates transient photocurrence of Cu2O
and Ag(5%)/Cu2O excited under visible light irradiation. The photocurrent intensity of
the latter was clearly higher than that of the former. It means that Ag(5%)/Cu2O possessed
the higher yield of photo-induced electron [40,41]. The results support the issue of the
inhibition of a combination of photo-induced electrons and holes over Cu2O through the
impregnation of Ag metal.
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Figure 6. The EDS Mapping analyses on Ag/Cu2O semiconductors: (a) Ag(1 wt%)/Cu2O, (b)
Ag(2 wt%)/Cu2O, (c) Ag(3 wt%)/Cu2O, (d) Ag(4 wt%)/Cu2O and (e) Ag(5 wt%)/Cu2O.
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Table 1. The elemental compositions of semiconductors by EDS analyses.

Semiconductor Ag(wt%) Cu(wt%) O(wt%)

Cu2O 0.00 85.81 14.19
Ag(1 wt%)/Cu2O 1.15 87.41 11.44
Ag(2 wt%)/Cu2O 2.05 87.56 10.39
Ag(3 wt%)/Cu2O 3.56 84.32 12.12
Ag(4 wt%)/Cu2O 4.99 82.39 12.62
Ag(5 wt%)/Cu2O 6.84 80.67 12.49
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Figure 7. UV–Vis diffuse reflectance spectra of Cu2O, Ag(1 wt%)/Cu2O, Ag(2 wt%)/Cu2O,
Ag(3 wt%)/Cu2O, Ag(4 wt%)/Cu2O and Ag(5 wt%)/Cu2O semiconductors.

Table 2. The band gap energy of semiconductors by UV–Vis DRS analyses.

Semiconductor Band Gap Energy (eV)

Cu2O 2.17
Ag(1 wt%)/Cu2O 2.06
Ag(2 wt%)/Cu2O 1.92
Ag(3 wt%)/Cu2O 1.75
Ag(4 wt%)/Cu2O 1.55
Ag(5 wt%)/Cu2O 1.43

3.3. Effect of Scavenger Dosages on Photocatalytic Oxidation by Ag/Cu2O Assisted with Persulfate

Equivalent concentrations of benzene, 1-propanol and methanol were individually
blended with nitrobenzene in wastewater to disclose reactive radicals under photocatalysis
by Ag/Cu2O with assistance of persulfate. As demonstrated in Figure 9, nitrobenzene re-
moval efficiency was sharply faded upon the addition of benzene, due to a high reaction rate
constant for benzene and sulfate radicals (3 × 109 M−1 s−1) [37]. Alternatively, 1-propanol
and methanol slightly suppressed the nitrobenzene removal rate, on account of moderate
rate constants for 1-propanol and methanol, with sulfate radicals being 6.0 × 107 M−1 s−1

and 3.2 × 106 M−1 s−1, respectively [57]. It deserves noting that the extent of nitrobenzene
removal percentages faded corresponds to the reactive activity for various scavengers
and sulfate radicals. It was revealed that sulfate radicals were principal oxidants for
nitrobenzene degradation in wastewater.
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Figure 8. The transient photocurrent analyses of Cu2O and Ag(5%)/Cu2O under visible light irradiation.
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degradation efficiency.

3.4. Effect of Persulfate Concentrations on Photocatalytic Oxidation by Ag/Cu2O Assisted
with Persulfate

The optimal persulfate concentration for nitrobenzene elimination should be deter-
mined in consideration of commercialization. As presented in Figure 10a, the time flow pat-
terns of TOC removal efficiency were dependent on persulfate concentrations. Undoubtedly,
increasing persulfate concentrations enhanced nitrobenzene removal rates, wherein high
sulfate radical yields could be sensibly expected. Nonetheless, the nitrobenzene removal
efficiency faded under an excess persulfate concentration (70 mM). This phenomenon
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may be interpreted with probable side reactions for the overdosage of persulfate anions
and sulfate radicals [38,58]. Further, the photocatalytic oxidation of nitrobenzene was per-
formed in the existence of benzene scavengers to discriminate sulfate radicals yields under
various persulfate concentrations (refer to Figure 10b). Definitely, the scavenging effect dra-
matically displays an analogy between sulfate radical yields and TOC removal efficiency.
Accordingly, sulfate radicals were likely to be responsible for nitrobenzene oxidation.
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Figure 10. (a) Effect of persulfate concentrations on the TOC removal efficiency under the conditions
of visible light power = 103.2 W, Ag(5 wt%)/Cu2O dosage = 1.20 g L−1 and T = 318 K. (b) The
difference of nitrobenzene degradation efficiency between the absence of benzene and presence of
benzene monitored by UV–Vis and served as scavenging effect under the conditions of visible light
power = 103.2 W, Ag(5 wt%)/Cu2O dosage = 1.20 g L−1 and T = 318 K.

3.5. Effect of Ag/Cu2O Dosage on Photocatalytic Oxidation by Ag/Cu2O Assisted with Persulfate

An optimal dosage of Ag/Cu2O semiconductor needs to be essentially established
from the process design viewpoint. Figure 11a illustrates the time flow patterns of TOC
removal efficiency as functions of Ag/Cu2O dosages. Evidently, the nitrobenzene degra-
dation rate raised with an increment of Ag/Cu2O dosages, whereas it reduced under
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overdosages of Ag/Cu2O (≥1.50 g L−1). The improvement in the nitrobenzene removal
efficiency could be attributed to high sulfate radical yields, caused by the massive activation
of persulfate anions via the photocatalysis of Ag/Cu2O. Conversely, lesser semiconductors
received optical energy because of scatter of visible light irradiation, resulting from exces-
sive dosages of Ag/Cu2O powder [59]. Nitrobenzene decomposition efficiency likewise
displayed a similar trend as benzene scavenging behaviors (refer to Figure 11b). The
outcomes convince us that sulfate radicals were chief oxidants toward nitrobenzene de-
struction. Especially, the optimal conditions for complete mineralization of nitrobenzene
were determined as follows: visible light power = 103.2 W, persulfate concentration =
60 mM, Ag/Cu2O dosage = 1.35 g L−1 and T = 318 K. In this work, the photocatalytic
stability of Ag/Cu2O was proved via repetitions of five tests (shown in Figure 12). Evi-
dently, nitrobenzene removal efficiency reached almost 98% during the overall experiment.
That convinces us of the feasibility for the potential application of Ag/Cu2O to industrial
wastewater treatment.
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of nitrobenzene degradation efficiency between the absence of benzene and presence of benzene
monitored by UV–Vis and served as scavenging effect under the conditions of visible light power =
103.2 W, persulfate concentration = 60 mM and T = 318 K.
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Figure 12. The photocatalytic stability of Ag(5 wt%)/Cu2O examined by means of repetitions of
five tests.

3.6. Reaction Pathways of Photocatalytic Oxidation of Nitrobenzene by Ag/Cu2O Assisted
with Persulfate

All reaction intermediates extracted from photocatalytic oxidation of nitrobenzene
using Ag/Cu2O with assistance of persulfate were examined by a GC-MS spectrometer. Ta-
ble 3 summarizes the ingredients procured, including nitrobenzene used for raw materials,
phenol, 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, hydroquinone and p-benzoquinone.
In consideration of the source of 2-nitrophenol, 3-nitrophenol and 4-nitrophenol, it was
believed that nitrobenzene underwent O2 addition, followed with HO2• elimination for
the generation of hydroxycyclohexadienyl radicals and sequential hydroxylated com-
pounds [57,60]. Phenol was clearly monitored as an intermediate because of the probable
occurrence of nitrophenol denitration [61]. Afterward, phenol ordinarily executed oxi-
dation reaction to hydroquinone, accompanied with successive hydrogen abstraction to
p-benzoquinone. Ultimately, nitrobenzene would be mineralized into nitrate ions (analyzed
by UV–Vis 313 nm), water and carbon dioxide. Based on most degradation intermediates
cautiously identified, the hypothesized pathways for photocatalytic oxidation of nitroben-
zene by Ag/Cu2O aided with persulfate is demonstrated in Figure 13.

Table 3. Compositions of nitrobenzene and reaction intermediates identified by GC-MS.

Component m/z (Relative Abundance, %)

Feedstock
Nitrobenzene 50 (15.7), 51 (37.7), 65 (13.6), 74 (9.0), 77 (100), 78 (7.5), 93 (16.9), 123(70.2)

Reaction intermediate
Phenol

2-Nitrophenol
38 (5.4), 39 (12.5), 40 (6.9), 55(6.4), 63 (6.5), 65 (21.0), 66 (27.4), 94 (100), 95 (7.7)
39 (15.7), 53 (9.8), 63 (20.2), 64 (13.9), 65 (25.5), 81 (19.6), 109 (18.2), 139 (100)

3-Nitrophenol 39 (35.9), 53 (10.7), 63 (14.7), 64 (7.9), 65 (63.7), 81 (15.8), 93 (51.4), 139 (100)
4-Nitrophenol 39 (44.2), 53 (23.3), 63 (28.1), 65 (79.9), 81 (33.0), 93 (26.9), 109 (67.1), 139 (100)
Hydroquinone 39 (6.9), 53 (14.4), 54 (12.9), 55 (10.5), 81 (25.3), 82 (12.3), 110 (100), 143 (9.6)

p-Benzoquinone 26 (18.1), 52 (17.9), 53 (17.1), 54 (63.3), 80 (28.2), 82 (36.3), 108 (100), 110 (12.1)
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Figure 13. Overall reaction pathways of nitrobenzene in wastewater by photocatalysis of Ag/Cu2O with assistance
of persulfate.

4. Conclusions

In light of the above discussions, nitrobenzene contaminants were principally miner-
alized via reactive sulfate radicals, induced from persulfate anions activated effectively by
the photocatalysis of Ag/Cu2O semiconductors. It was intensely supported by benzene
scavenger, wherein sulfate radical yields display an analogy with nitrobenzene removal
efficiency. As far as GC-MS analyses are concerned, the overall reaction pathways on ni-
trobenzene oxidation could be proposed as follows. Firstly, nitrobenzene was transformed
into hydroxycyclohexadienyl radicals, followed with oxidation step into 2-nitrophenol,
3-nitrophenol and 4-nitrophenol separately. Sequentially, nitrophenol-related compounds
executed the denitration procedure to phenol, which was oxidized further for the synthesis
of hydroquinone and p-benzoquinone. As expected, nitrobenzene would be nearly miner-
alized into carbon dioxide, nitrate ions and water. The striking results persuade us that the
photocatalysis of Ag/Cu2O coupled with persulfate is an effective and synergistic manner
for disposal of industrial effluents.
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