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Review of Recent Studies Employing

Hyperspectral Imaging for the

Determination of Food Adulteration.

Photochem 2021, 1, 125–146. https://

doi.org/10.3390/photochem1020008

Academic Editor: Anna Cleta Croce

Received: 30 May 2021

Accepted: 5 July 2021

Published: 8 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Research and Technology Transfer, Pladis Turkey R&D Center, Kocaeli 41400, Turkey
2 Department of Chemical Engineering, Faculty of Engineering, Van Yuzuncu Yıl University, Van 65080, Turkey;

berdanulas@yyu.edu.tr
* Correspondence: tumay.temiz@pladisglobal.com

Abstract: Applications of hyperspectral imaging (HSI) methods in food adulteration detection have
been surveyed in this study. Subsequent to the research on existing literature, studies were evaluated
based on different food categories. Tea, coffee, and cocoa; nuts and seeds; herbs and spices; honey
and oil; milk and milk products; meat and meat products; cereal and cereal products; and fish and
fishery products are the eight different categories investigated within the context of the present
study. A summary of studies on these topics was made, and articles reported in 2019 and 2020 were
explained in detail. Research objectives, data acquisition systems, and algorithms for data analysis
have been introduced briefly with a particular focus on feature wavelength selection methods. In
light of the information extracted from the related literature, methods and alternative approaches
to increasing the success of HSI based methods are presented. Furthermore, challenges and future
perspectives are discussed.

Keywords: hyperspectral imaging; feature wavelengths; adulteration; chemometrics; neural net-
works; wavelength selection

1. Introduction

There is a growing need for alternative analytical techniques in the search for rapid, ac-
curate, and reliable quality control systems for large scale production to prevent fraudulent
practices and hence to ensure food safety. Food products subjected to adulteration most
often are reported to be coffee, tea, juice, wine, spices, olive oil, honey, milk, cereals, meat,
fish, and organic food by the European Parliament. In the detailed study of Ulberth et al.,
extensive use of spectrometry/spectroscopy-based methods to detect adulteration was
determined. A lack of internationally accepted validation protocols and the requirement
for robust spectral databases of authentic products have been found responsible for the
inapplicability of these techniques to routine analyses at present [1]. Within this context,
there is an increasing interest in the combined use of optical imaging and spectroscopic
techniques for food safety and quality analysis since they provide non-destructive detec-
tion, chemical information, and visualization at the same time [2]. Hyperspectral imaging
(HSI) is a promising technology that allows simultaneous measurement of spectral and
spatial information in a fast and reliable way. The application of chemometric methods is
required to extract spectral, textural, and morphological features from high dimensional
HSI data [3]. Chemometrics, with its powerful synergy with analytical techniques, provides
extraction of essential information buried in high dimensional data sets and helps to reduce
the abstrusity of the data [4].

Simultaneous analysis of the samples is one of the unique advantages of HSI based
techniques that are not possible for other spectroscopic techniques [5]. NIR hyperspectral
imaging (NIR-HSI), Raman hyperspectral imaging (Raman-HSI), and hyperspectral fluo-
rescence imaging (HSFI) are three HSI techniques frequently used for the determination
of food quality and safety. The fact that it collects a high amount of information and
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provides high accuracy discrimination has enabled the NIR-HSI technique to find a wide
variety of applications in food analysis [3,6–9]. Visible (380 to 800 nm), ultraviolet (200 to
400 nm), VIS/NIR (400 to 1000 nm), NIR (900 to 1700 nm), and short wave infrared (970 to
2500 nm) are the spectral regions that are widely used for HSI based food analysis. There
are a number of difficulties reported for IR imaging, which are water absorption of the IR
radiation, low spatial resolution due to long IR wavelengths, and low signal intensity due
to background interference [10].

Through the combination of Raman spectroscopy and imaging, Raman-HSI or Raman
chemical imaging allows researchers to visualize chemical properties and distribution of
components by acquiring spectral and spatial information at once [11]. Since it is possible
to perform measurements at the micro or nano-scale level, limitation of HSI to macro-scale
level could be overcome by Raman-HSI [8]. Allowing label-free detection and simultaneous
imaging of the spatial distribution of multiple chemical species through their fingerprint
Raman spectra, which is comprised of well-resolved peaks, is an additional advantage
of Raman-HSI. The very weak Raman signal of water makes Raman-HSI suitable for the
analysis of aqueous solutions. Several review articles are summarizing the principles and
applications of Raman-HSI for food quality and safety evaluation [2,12]. To increase data
acquisition rates, eliminate fluorescence backgrounds, and enhance the quality of Raman
signals, research on Raman based imaging methods is essential. Coherent anti-Stokes
Raman scattering (CARS) imaging, stimulated Raman scattering (SRS) imaging, surface-
enhanced Raman scattering (SERS) imaging, and tip-enhanced Raman scattering (TERS)
imaging are some of the recently developed techniques [2]. Raman HSI is a relatively new
technique compared to NIR HSI methods. The promising potential of this technique for
food quality and authenticity studies was emphasized in [13], but there are still limited
studies employing this technique for food analysis.

Most of the HSI based studies conducted on food and agricultural products have
employed hyperspectral reflectance imaging technology, which measures reflectance in the
visible region to short-wave infrared region. Fluorescence phenomenon is described as the
absorption of short-wavelength light by the molecules and its subsequent emission as light
with a longer wavelength, and this phenomenon provides compositional information about
the analyzed sample at the same time. Hence, like reflectance, it is possible to measure
fluorescence both spectroscopically or by HSI [14]. The low rate of data acquisition seems
to be one of the main barriers to HSFI being used in real-time applications. However, efforts
are being made to develop HSFI systems using high-speed computers combined with fast
data analysis algorithms. Not having fluorescent properties of all components of food is
the inherent disadvantage of the technique. Miniaturization of the system components and
development of portable systems are described as the near trends of HSFI [15]. Emphasis
has been put on the use of alternative light sources, which quickly induce fluorescence while
not generating too much heat. The operation of HSFI in transmittance mode and combined
use with reflectance-HSI are other subjects that have been pointed out. Applications of HSFI
for quality and safety analyses of food and agricultural products have been summarized in
several articles [16,17].

There are several review articles on the use of HSI for food analyses. Studies about
the use of HSI on different food categories, namely fruit, vegetables, meat, seafood, and
grains, have been gathered by Huang et al. [5]. The use of HSI for quality and safety
determination of fruits and vegetables has been summarized in [9]. The main components
of HSI were represented, and applications of the multispectral imaging (MSI) and HSI for
safety and quality evaluation of fruits and nuts, vegetables, meat, grains, and beverages
were reported [18]. In other review articles, studies on food quality and safety control
were classified based on the data acquisition mode; reflectance, fluorescence, transmittance,
interactance, and scattering [3,19]. Unlike the abovementioned articles, this study has
explicitly focused on the detection of food adulteration in different categories. These
are tea, coffee, and cocoa; nuts and seeds; honey and oil; herbs and spices; milk and
milk products; meat and meat products; cereal and cereal products; and fish and fishery
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products. Feature wavelengths determined by different algorithms in recent reports were
tabulated based on food categories included in this article. Ways to increase success and
alternative approaches are offered in HSI based methods. Moreover, challenges and future
perspectives are discussed.

2. Applications of HSI to Detect Food Adulteration
2.1. Tea, Coffee, and Cocoa

Hyperspectral image data collected between 408 to 1117 nm was analyzed using the
support vector machine (SVM) as a pattern classifier to differentiate five grades of roasted
green tea. Principal component analysis (PCA) was used to reduce the dimension of the
data and to select optimal band images. The performance of artificial neural networks
(ANN) was compared to those of linear discriminant analysis (LDA), back-propagation
ANN (BP-ANN), and radial basic function ANN (RBF-ANN) [20]. Vis-HSI, coupled
with maximum likelihood classifier (MLC) and ANN was used to classify five different
Chinese tea samples based on data between 400 and 800 nm. PCA was applied to extract
uncorrelated components from highly correlated data [21]. Hyperspectral images captured
in the range of 920 to 2514 nm were used to differentiate herbal tea raw materials and
quantify the composition of herbal tea blends. PCA and partial least squares-discriminant
analysis (PLS-DA) models were developed [22]. In another study conducted on quality
assessment of herbal tea blends, hyperspectral images acquired between 1000 to 2500 nm
were analyzed using PCA and PLS-DA [23]. Sixteen green tea samples from seven different
geographical origins were differentiated using a fusion of textural and NIR-HSI data at raw
data-, feature- and decision-levels where the highest classification efficiency was obtained
through raw data-level fusion. The spectral range used in this study was reduced to 967 to
1700 nm by the application of the Savitzky-Golay filter to remove noise. Error-correcting
output code (ECOC)-SVM models were developed to differentiate the samples [24].

NIR-HSI was employed, and data between 955 and 1700 nm was collected to classify
Arabica and Robusta coffee species. Sparse methods, namely sparse PCA (sPCA) + kNN
and sparse PLS-DA (sPLS-DA), were compared with the classical methods, namely PCA + kNN
and PLS-DA [25]. Hyperspectral images captured between 874 and 1734 nm were used
to identify four different Chinese coffee bean varieties. Performances of prediction maps
and SVM discrimination models constructed using full sample average spectra, pixel-
wise spectra, and the selected optimal wavelengths by second derivative spectra were
compared [26]. Roasting and grinding processes enhanced the ease of adulteration in
coffee and made it one of the most tempting targets of fraudulent practices in the food
industry. Roasted and ground coffee samples adulterated with coffee husks, roasted and
powdered corn kernels, wood sticks, and soil were analyzed using FT-NIR-HSI and the
multivariate curve resolution with alternating least squares (MCR-ALS). Pure Robusta
coffee bean certified by producers was used as the reference sample, and its spectrum was
compared to the MCR recovered spectra to identify the adulterant. Collected data was
between 4000 and 7800 cm−1. Additionally, a control chart was created, which is composed
of MCR-ALS scores of pure samples and adulterants at varying ratios. Warnings and action
limits were defined in this control chart to determine whether the unknown sample is
adulterated or not [27].

There is increasing consumer demand for the verification and certification of cocoa
beans imported from the different geographical origin of production. Fermented and dried
Forastero cocoa beans from Africa, America, and Southeast Asia were classified by proton
transfer reaction-quadrupole interface-time of flight-mass spectrometry (PTR-QiToFMS)
and HSI. Volatile profiles and spectra were used to create a fingerprint for each cocoa
sample. Pearson correlation test was used to correlate the results of two different techniques,
but only an indirect relationship was found. A high degree of separation between the
African and American samples and high variability within Southeast Asian samples were
reported [28].
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2.2. Nuts and Seeds

Jiang et al. have analyzed the potential of fluorescence hyperspectral imaging (FHSI)
coupled with several data analysis methods, namely the Gaussian-kernel based SVM
approach [29] and PCA-Gaussian mixture model (GMM) based method [30] to differentiate
shell and meat parts of walnut samples. Independent component analysis with k nearest
neighbor classifier (ICA-kNN) was used for the analysis of the data between 425 and
775 nm [31]. Raman spectral imaging coupled with PCA and PLSR was used to quantify
adulteration of pistachio nut granules with green pea granules. Raman spectral data was
between 200 and 3700 cm−1 [32].

HSI was used to discriminate the basil seeds based on their country of origin and to
predict their physicochemical properties, namely moisture content, crude lipid content,
total phenolic compounds content, fatty acid content, and color. Collected data between
900 and 1700 nm was analyzed using PCA and PLS-DA [33].

2.3. Honey and Oil

The application of HSI for the analysis of liquid and semi-liquid foods is less common.
Baiano et al. summarized the studies on classification, determination of adulteration,
and evaluation of quality parameters of edible oils like virgin olive oil, sesame oil, and
frying oils [34]. Hyperspectral images were obtained for olive oil samples to evaluate their
correlation with reference methods in terms of free acidity, peroxide index, and moisture
contents. Genetic algorithm (GA), least absolute shrinkage, and selection operator (LASSO),
and successive projection algorithm (SPA) were chosen to determine the optimal wave-
lengths [35]. Biochemical changes that occur during the ripening process of olive fruit were
monitored using FTIR imaging coupled with PCA and PLS-DA. Olive oil accumulation in
flesh and modifications of cell wall polysaccharides in flesh and hypodermis were deter-
mined. Temporal changes in flesh and hypodermis tissues were monitored by evaluating
the spectral intensity changes in PLS loading vectors [36]. Quality characteristics of sesame
oils produced from different raw materials, namely whole-sesame seeds, sesame powder,
and the mixture of both, were determined using HSI. PLS-DA and PCA were used for data
analysis [37].

The potential of HSI to detect adulterated honey samples by the addition of sugar
syrup has been evaluated. VIS-NIR images were analyzed using ANN, SVM, LDA, Fisher,
and Parzen classification methods [38]. The VIS-NIR HSI system was used to discriminate
honey samples of acacia, lime, buckwheat, rapeseed, and heather. Machine learning
techniques, namely, radial basis function (RBF) network, SVM, and random forest (RF),
were employed [7]. Segmentation and calibration techniques were purposed to eliminate
distortions due to temperature and lighting fluctuations and to obtain reproducible spectra
of honey samples using HSI in reflectance and transmittance modes [39]. Reflectance
spectra obtained by a VIS-NIR HSI system that collects data between 399.40 to 1063.79 nm
were evaluated to classify honey samples based on their botanical origin. In the related
study, a new classification algorithm consisting of two successive stages was used. ‘One
class classification’ and ‘main class classification’ allows the system to filter out invalid
inputs and allow only familiar inputs to proceed to the second stage [40].

Feature wavelengths reported to be utilized for discrimination or determination of
adulteration in tea, coffee, cocoa, nuts, seeds, honey, and oil samples were summarized
in Table 1. Molecules responsible for related wavelengths chosen as the discriminant
wavelength were indicated in most of the studies. Collected data was frequently in a
similar wavelength range. Although a wide variety of algorithms were employed to detect
these wavelengths, the loadings plot of PCA and PLS-DA are still the most commonly used
wavelength selection methods.



Photochem 2021, 1 129

Table 1. Feature wavelengths reported for tea, coffee, cocoa, nuts, seeds, honey and oil.

Type of
Adulteration

Spectral
Range (nm)

Selected
Wavelengths (nm)

Wavelength
Selection Method Assignment of the Wavelengths Reference

Different roasting
levels in green tea 408–1117 762, 793, 838

Local maximum
weighing coefficients

of PCA
No assignment [20]

Two different
Sceletium species in
herbal tea blends

1000–2500
1874–2061,
2061–2248,
1436, 2123

High weighted
loadings of PCA No assignment [23]

Green tea from
different

geographical origin
967–1700 1381 PSNR and SSIM No assignment [24]

Classification of
cocoa beans from

different
geographical origins

400–1000
600–700

700–730, 870–910
770–830

Loading values of
PCA

Color
Organ, compounds, Fatty acids

Aminoacids
[28]

Identification of
coffee bean varieties 874–1734

995, 1005, 1019
1129, 1139, 1210, 1214,

1241
1342, 1372, 1399

1409, 1440, 1443, 1460
1483
1500

1507, 1534
1609
1629

Peaks and valleys
with large differences
in second derivative

spectra

2nd overtone of N-H stretch
2nd overtone of C-H stretch

C-H vibrations
Water

2nd overtone of O-H stretch
CH2 stretching and nonstretching

1st overtone of N-H stretch
1st overtone of C-H stretch

Aromatic C-H band

[26]

Classification of
Arabica and Robusta

coffee species
955–1700

1143
1446
1410
1420

1195–1225

Loading vectors of
PCA, PLS-DA, sPCA

and sPLS-DA

C-H aromatic 2nd overtone
C-H combination band

O-H 1st overtone of aliphatic alcohol
O-H 1st overtone of aromatic alcohol

C-H aliphatic 2nd overtone

[25]

Walnut shell and
walnut meat

differentiation
425–775 456.5, 443, 429.5,

447.5, 438.5

ICA based optimal
band selection

approach
No assignment [31]

Discriminating the
origin of Ocimum

basilicum L.
900–1700

1450–1457,
1242–1254,
1380, 1696

Beta coefficients of
PLS-DA

Moisture, Lipid, Phenolic contents
and

Fatty acids
[33]

Green pea
adulteration in
pistachio nut

granules

200–3700 cm−1 1441, 1655 cm−1 Changes in band
intensity Lipid content [32]

Discriminating the
floral origin of honey 400–1000 425 Loadings plot Color [7]

Quality parameters
of olive oil 900–1700

1000–1160, 1280–1350,
1480–1500, 1570–1640
1210–1240, 1390–1430,

1630–1670
1206–1241, 1390–1440,
1447–1594, 1640–1660

GA
SPA
SPA

Free acidity
Peroxide index

Moisture content
[35]

Discrimination of
olive fruits at

different stages of
maturation

750–4000 cm−1

900–1200
1072
1034
1101

1513, 1606, 1626
1175, 1462, 1747, 1750

1395, 1582

Loading vectors of
PLS-DA

Pectic polysaccharides and
hemicellulose

Galactose
Glucose
Pectin

Phenols
Olive oil triglycerides
Depolymerisation and

de-esterification of cell wall polymers

[36]

Discrimination of
sesame oils 900–1700 1149, 1442, 1673, 1693 Beta coefficient of

PLSDA model Fatty acid composition [37]

PCA: principal component analysis, PLS-DA: partial least squares-discriminant analysis, PSNR: peak signal-to-noise ratio, SSIM: structural
similarity index measure, SPA: successive projection algorithm, GA: Genetic Algorithm, ICA: independent component analysis, sPCA:
sparse-principal component analysis, sPLS-DA: sparse-partial least squares-discriminant analysis.
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2.4. Herbs and Spices

Herbs and spices are often exposed to fraudulent practices through the addition of
cheaper materials that resemble the color or appearance of the main ingredient. The use of
visual and microscopic inspection methods to detect these types of food adulterations has
been recommended by the British Retail Consortium, the Food and Drink Federation, and
the Association of Spices in the Guide on the Authenticity of Herbs and Spices [41].

HSI imaging was used to distinguish between two similar species of Sceletium tor-
tuosum and Sceletium crassicaule since S. tortuosum has gained massive interest due to its
potential use in the treatment of several psychological conditions. Images were analyzed
using PCA and PLS-DA [42]. Potential of HSI to determine the substitution or adulteration
of Ilicium verum (Chinese star anise) with Illicium anisatum (Japanese star anise) was investi-
gated since Japanese star anise is known to be highly toxic. Hyperspectral image data was
analyzed using PCA and PLS-DA [43]. HSI was employed to determine incorrectly labeled
commercial products and raw materials of Echinacea species. Authentic species, namely,
Echinacea angustifolia, Echinacea pallida, and Echinacea purpurea, are included in various
treatment formulations for upper respiratory tract infections. A clear differentiation was
obtained through the analysis of collected data by PCA and PLS-DA [44]. HSI, coupled
with PCA and PLS-DA, was used to differentiate Stephania tetrandra and Aristolochia fangchi
root powder while the latter is known to contain aristolochic acid that causes urothelial
carcinoma and aristolochic acid nephropathy [45].

The presence of millet and buckwheat flours in black pepper samples was determined
using a NIR-HSI system. PCA and PLS-DA were the methods of choice for data analy-
ses [46]. Quantification of papaya seed, as one of the most widely used adulterants of
black pepper, in black pepper powder and black pepper berry samples was investigated
using the NIR-HSI system. PCA, soft independent modeling of class analogy (SIMCA),
and PLSR were used as the data analysis methods [47]. The handheld HSI system was
employed to authenticate nutmeg samples and to predict the adulteration ratio. PCA,
PLS-DA, and artificial neural networks based on multilayer perceptron (ANN-MLP) were
used for the analysis of collected data [48]. Zanthoxylum bungeanum is a type of condiment
that has found applications in medical and food industries due to its aroma, numbing
spiciness, and therapeutic properties, which are influenced by its geographical origin. HSI,
coupled with SVM, was used to evaluate the data obtained between 380 and 1040 nm to
classify the samples based on their geographic origin [49]. An MSI system was employed
to determine turmeric powder samples adulterated with tartrazine colored rice flour. A
relationship was established between the adulteration ratio and Bhattacharyya distance
through a second-order polynomial. Multispectral images were captured using LEDs
with nine different peak wavelengths, namely, 405 nm, 430 nm, 505 nm, 590 nm, 660 nm,
740 nm, 850 nm, 890 nm, and 950 nm. It is emphasized in the study that a small number of
spectral bands and low resolution of captured images diverted the researchers to develop a
five-stage data analysis algorithm consisting of (i) dark current subtraction, (ii) adaptive
Weiner filtering, (iii) PCA based dimension reduction, (iv) multivariate Gaussian model
construction, and (v) construction of the functional relationship between the Bhattacharyya
distance and the adulteration levels [50].

Table 2 shows the feature wavelengths utilized for discrimination or determination
of adulteration in herbs and spices. A lack of assignment for feature wavelengths was
determined for most of the samples in these categories.
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Table 2. Feature wavelengths reported for herbs and spices.

Type of Adulteration Spectral Range
(nm)

Selected Wavelengths
(nm)

Wavelength
Selection Method

Assignment of the
Wavelengths Reference

Three Echinacea species
in commercial products 920–2514 1937–2400

Loadings line plots
of the first vector

in PCA
No assignment [44]

Aristolochia fangchi in
root powders of

Stephania tetrandra
920–2514 964–1474, 1323–1434

964–1322,1435–1474

Trend Tool
PCA Loadings plot
PCA Loadings plot

No assignment
Aristolochia fangchi
Stephania tetrandra

[45]

Adulteration of Ilicium
verum with Illicium

anisatum
920–2514

1254–1342, 1737–1887,
2049–2179

1504–1530, 1905–1993,
2254–2297

Loadings line plots Illicium anisatum
Ilicium verum [43]

Millet and buckwheat
flour in black pepper 1000–2498 1461, 1995, 1999, 2241,

2303, 2347 Loadings line plots Protein and oil
content [46]

Papaya seeds in
powders and berries of

black pepper
900–1700 1029, 1242, 1385, 1494,

1518, 1584, 1669

Beta regression
coefficients of

PLSR

Phenols, flavonoids,
quinines, starch in

black pepper
Fiber, protein,

phenols, quinines in
papaya seeds

[47]

Pericarp, creamy spent,
brown spent and shell in

nutmeg
400–1000 400–500, 650–850,

950–1000 Visual inspection No assignment [48]

Discriminating the
origin of Zanthoxylum

bungeanum
380–1040 Not specified. CARS and VCPA No assignment [49]

PCA: principal component analysis, PLSR: partial least squares regression, CARS: competitive adaptive reweighted sampling, VCPA:
variable combination population analysis.

2.5. Milk and Milk Products

NIR-HSI was employed to determine the presence and location of melamine particles
in nonfat milk powders at low levels. Data were evaluated using spectral similarity analy-
sis methods, namely spectral correlation measure, spectral angle measure, and Euclidian
distance measure, which resulted in similar performances [51]. The same wavelength
range was utilized in another study by the same research group in which NIR hyperspec-
tral images were converted to reflectance images. Several PLSR models with different
preprocessing methods were developed to determine melamine particles in nonfat milk
powder [52]. Hyperspectral images were collected using an NIR-HSI system to quantify
melamine particles in nonfat and whole milk powders. A linear correlation algorithm was
used to determine optimal bands, and then band ratio images were obtained for these two
wavelengths. A successful application of NIR-HSI coupled with band ratio methodology
for melamine detection was reported [53]. Studies on the use of HSI for turbid liquid and
semi-liquid food analyses such as determination of milk adulteration or discrimination of
different yogurt microstructures, have been summarized in a review article [34].

HSI was used to determine corn starch levels in adulterated fresh cheese samples.
Collected data were analyzed using PLSR. Effects of moisture content in cheese and type of
adulterant starch on the success of the model were emphasized in this study [54]. Commer-
cial cheddar cheeses of four different brands were classified using NIR-HSI coupled with
PLS-DA, LDA, and SPA-LDA. PLS-DA regression coefficients were used to determine the
wavelengths differentiating cheddar cheeses of different brands. Higher PLS-DA model
performances were obtained by utilizing HSI data rather than texture and color data [55].

Table 3 shows the feature wavelengths utilized for discrimination or determination of
adulteration in milk and milk products. The determination of melamine adulteration has
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been a hot topic in this category. Although almost the same wavelength interval was used
in different studies, research was focused on employing different wavelength selection
methods to increase accuracy.

Table 3. Feature wavelengths reported for milk and milk products.

Type of
Adulteration

Spectral Range
(nm)

Selected
Wavelengths (nm) Selection Method Assignment of the

Wavelengths Reference

Melamine in milk
powder 990–1700 1473.8 Spectral similarity

analysis Melamine content [51]

Melamine in milk
powder 990–1700 1478.6, 1468.9 Beta coefficients of

PLSR Melamine content [52]

Melamine in milk
powder 938–1654 1447, 1466 Band ratio

algorithm Melamine content [53]

Starch in fresh
cheese 200–1000 928, 984 Beta coefficients of

PLSR Water content [54]

Classification of
commercial

Cheddar cheeses
from different

brands

950.35–1654.15

1190
1124

1268, 1271
1367, 1370

1235
1055, 1171

1364
1152, 1312

Regression
coefficients of

PLSR

Fat content
L* value
a* value
a* value

Fat content, Enzyme
treatment

Protein and total saturated
fatty acids

Protein content, pH value
L* value, Water holding

capacity

[55]

PCA: principal component analysis, PLSR: partial least squares regression.

2.6. Meat and Meat Products

The European horse meat scandal in 2013 has been a warning sign for food safety
authorities, food scientists, and consumers to bear in mind how vulnerable the food supply
chain is [56]. In a very comprehensive report on the global beef supply chain, primary and
secondary processing and farming were determined as the most vulnerable steps in which
counterfeiting and adulteration were the most frequent type of fraud [57].

In the early studies, MSI analysis coupled with neural networks was employed to
separate wholesome carcasses from unwholesome carcasses during an on-line poultry
carcass inspection [58]. Elmasry et al., has published a detailed review article discussing
the promising potential of HSI and other imaging techniques compared to traditional
methods for determination of meat quality in terms of color, quality grade, marbling,
maturity, texture, and simultaneous measurement of multiple chemical constituents [59].
Several authors investigated the differentiation of fresh and frozen-thawed meat using
HSI coupled with texture analyses. Hyperspectral reflectance images were analyzed using
PLS-DA and probabilistic neural networks (PNN). Their results were given with a correct
classification ratio, sensitivity, specificity, and accuracy values, as well as confusion matrices,
receiver operating characteristic (ROC) analysis, and the value of the area under the ROC
curve (AUC) [60–62].

Several studies were reported on the use of HSI for the determination of meat adulter-
ation. In these studies, partial least squares regression (PLSR) models were constructed to
detect the adulteration ratio. Although similar results were obtained using full spectra, the
importance of the selection of the specific wavelengths was emphasized since it reduces
the dimension of hyperspectral data [63–65]. PLS-DA models discriminated pork, poultry,
and fish protein meals with high classification ratios through the integration of spectral
and textural information extracted from NIR-HSI data [66]. Vis/NIR-HSI was employed
to predict the fresh meat adulteration with spoiled meat of the same origin. PLSR, SVM,
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least squares support vector machine (LS-SVM), and extreme learning machine (ELM)
were employed to develop models with adequate coefficients of determination (R2) and
RMSEs [67]. Duck meat adulteration in beef was determined using VIS-NIR HSI coupled
with PLSR and principal component regression (PCR). PCA loadings and two-dimensional
correlation spectroscopy (2D-COS) were used to select feature wavelengths. The optimal
wavelength selection method of PC resulted in better prediction performance. Adulteration
distribution maps were generated through the transfer of the PLSR model to each pixel
in the image [68]. Due to their high heterogeneity, meat and meat products have been
frequently analyzed using HSI techniques [68]. A method based on a visual appraisal to
determine minced beef adulteration with minced chicken was developed using VIS-NIR
HSI operating between 380 and 1000 nm. Gaussian distribution of regression coefficients
(GD-RC) model was used for data analysis, and its performance was compared to that
of SVM, kNN, and decision tree (DT) methods. The ratio of chicken pixels to total meat
pixels was described as the adulteration ratio [69]. VIS-NIR HSI and machine learning algo-
rithms were used to quantify minced beef and minced pork adulteration with chicken and
textured vegetable protein. Hyperspectral data between 400 and 1000 nm was utilized to
construct classification models by feed-forward artificial neural networks (FFNN), decision
trees, kNN, LDA, PLS-DA, and SVM. PLSR was used to determine the adulteration ratio.
Sequential forward selection (SFS) and interval partial least square (IPLS) were used for
wavelength selection of classification and adulteration models. However, both algorithms
have come out with too many feature wavelengths and this result has been associated
with the large number of adulterant levels investigated in the study. It was emphasized
in the study that using selected wavelengths does not always guarantee higher model
performance [70]. Minced pork adulterated with minced pork jowl meat was determined
using PLSR coupled with NIR-HSI acquiring data between 400 and 1000 nm. The jowl is
not convenient for human consumption since it is described as a kind of lymphatic meat
with a significant amount of lymph nodes. Three different wavelength selection methods,
namely regression coefficients of PLSR, wavelengths selected by two-dimensional correla-
tion spectroscopy, and loadings of PCA, were employed to eliminate useless wavelengths.
Selected wavelengths by each method have individually been used to construct PLSR
models. The best results were obtained when regression coefficients were utilized while the
performance was slightly decreased compared to full spectra models [71]. Selected wave-
lengths and their molecular assignments were summarized in Table 4 for only very recent
articles. A comparison was made between line scanning HSI and NIR and VIS snapshot
HSI in terms of their efficiency to classify red meat products, namely lamb, beef, and pork.
A deep 3D convolution neural network (3D-CNN) model has been employed to extract
spectral and spatial features out of collected data. In order to improve the performance of
3D-CNN, a graph-based post-processing method was also developed. Although accuracy
was comparatively low for snapshot HSI, a new subject has been set forth for further
research [72]. Specific wavelengths for predicting meat quality attributes, detecting safety
parameters in meat, and authentication of meat were summarized [73]. Components of HSI
systems, operating spectral ranges, and data analysis methods used for safety and quality
detection of chicken meat were documented. Urgent need for cameras with higher spectral
and spatial resolution, alternative light sources and measures to be taken to reduce the
specular reflection, and importance of the developments in artificial intelligence algorithms
were indicated [74].



Photochem 2021, 1 134

Table 4. Feature wavelengths reported for meat and meat products.

Type of Adulteration Spectral Range
(nm)

Selected
Wavelengths (nm) Selection Method Assignment of the

Wavelengths Reference

Minced pork
adulteration with

minced pork jowl meat
400–1000

440
491

545, 560, 570, 752
632
686
871

491, 632, 871
433, 450, 481, 558,
578, 594, 634, 661,

889, 948

Loading lines of
PCA

2D-COS
Regression

coefficients of PLSR

Deoxymyoglobin
Metmyoglobin
No assignment
Sulfmyoglobin

Redness
Hydrocarbons
No assignment
No assignment

[71]

Beef adulteration with
duck meat 400–1000

605, 676
948

505, 537, 576, 605,
636, 676, 948

2D-COS
Loading lines of

PCA

Red color
Water content
No assignment

[68]

PCA: principal component analysis, PLSR: partial least squares regression, 2D-COS: two-dimensional correlation spectroscopy.

2.7. Cereal and Cereal Products

Detection and quantification of entire or broken ergot bodies along with other con-
taminants such as rapeseed and straw pieces in cereals, namely rye, organic rye, organic
triticale, oats, black oats, and barley, was performed using an NIR-HSI system. Transfer
of the developed protocol from laboratory level to industrial level was completed suc-
cessfully within the context of this study [75]. NIR-HSI was employed to discriminate
between wheat and three different types of contaminants. The naive Bayes (NB), SVM, and
k-nearest neighbors (k-NN) classifiers were used to evaluate the obtained data [76]. The
NIR-HSI system was employed to discriminate between oat, barley, wheat, and rye. PCA
and PLS-DA classification models were developed for this purpose. The application of a
wavelength selection algorithm called variable importance in projection (VIP) has provided
better prediction efficiency [77]. Detection of durum wheat contamination with common
wheat was performed based on four different approaches, namely morphological criteria,
NIR spectral profile, protein content criteria, and vitreousness, using PLS-DA coupled
with NIR-HSI [78]. Five different added fibers in various ratios and their distribution in
three different semolina samples were determined by PCA, SIMCA, and PLSR models con-
structed using NIR-HSI data [79]. Spectral, textural, and morphological features extracted
from HSI data coupled with principal component analysis network (PCANet) was used to
determine rice adulteration. Accuracy levels obtained using PCANet were compared with
those of KNN and random forest [80].

Peanut adulteration in wheat flour was quantified using NIR-HSI operating between
1000 and 2200 nm. Collected data were analyzed using PCA [81]. In the subsequent research
of the same group, the potential of NIR-HSI, coupled with independent components
analysis (ICA), employing a joint approximation diagonalization of eigen-matrices (JADE)
algorithm to determine peanut adulteration in wheat flour was investigated. Capabilities
of PCA and ICA were compared, and the superiority of ICA due to its ability to recover
the source signals was emphasized [82]. Peanut powder contamination in spring wheat
flour and winter wheat flour was determined using NIR-HSI, while competitive adaptive
reweighted sampling (CARS) was used to select the optimal wavelengths. PLSR models
were developed for quantitative adulteration analysis [83]. Through the identification of
each pixel as an adulterant or sample, the detection of defatted peanut adulteration in
wheat flour was investigated at pixel scale using NIR-HSI coupled with a matched subspace
detector (MSD) algorithm. Unlike from the previous ones, in the related study, researchers
focused on proposing a solution based on the linear mixing model of the subpixel detection
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problem that occurs when the particle size of the analyzed samples is smaller than the pixel
size [84].

The potential for short wave-NIR-HSI to detect the adulteration of wheat flour and
bread with sorghum, oat, and corn was investigated [85]. A new wavelength selection
approach called first-derivative and mean centering iteration algorithm (FMCIA) was
developed to determine the adulteration of organic spelt (Triticum spelta L.) flour with rye
flour and organic wheat flour and spelt flour. Afterwards, PLS-DA, MLR, and PLS models
were constructed by employing selected optimal wavelengths, and a multispectral real-
time imaging system was proposed [86]. In another research reported by the same group,
the potential of HSI to detect Irish organic wheat flour adulteration by common wheat
flour, cassava flour, and cornflour was investigated. Feature wavelengths were determined
based on loading plots of both PCA and FMCIA, while the superiority of the letter method
was emphasized [87]. Hyperspectral image data was collected for cooked millet flour,
cooked soybean flour, and two adulterated flours. PCA, SPA, and CARS methods were
used to select feature wavelengths, while classification models were constructed using
LS-SVM [88]. Studies employing HSI for safety and quality issues of cereal and cereal
products were summarized in a review article [89].

Binary mixtures of cornstarch and icing sugar with similar particle size and particle
density were analyzed using NIR-HSI and Raman HSI systems. PCA and PLSR were used
for data analysis. The main aim of the study was to compare the potential of two different
techniques for food powder analysis, while slightly better results were obtained with
NIR-HSI [90]. Line-scan Raman hyperspectral imaging (RHI) employing a 785 nm laser
line was used to visualize and determine multiple wheat flour adulteration with benzoyl
peroxide, alloxan monohydrate, and L-cysteine. Pixels belonging either to flour background
or adulterant were discriminated using spectral angle mapping (SAM) [91]. NIR-HSI was
employed to localize and discriminate talcum powder and benzoyl peroxide in wheat
flour both individually and synchronously. The first derivative band difference, spectral
correlation measurement method, and band ratio method were used to discriminate pure
samples from mixture samples [92]. Simultaneous discrimination and quantification of
seed, non-seed, and grain ingredients in multigrain flour mixes were investigated using
HSI operating at the visible and near-infrared range. The need for high acquisition speed,
high spatial resolution, and high discrimination power was emphasized since an industrial
application was planned. The performance of the developed method was compared
with regular color imaging, while lower accuracy was obtained for the latter. LDA, the
quadratic discriminant classifier (QDC), SVM, random forest (RF), and ANN were used for
classification [93].

A wide range of spectral intervals was employed to detect adulteration in cereal
and cereal products. They were summarized in Table 5. Loadings plot of PCA, PLS, and
PLS-DA is the most commonly used wavelength selection method. Water, protein, and
starch contents are the major molecules responsible for the discriminant wavelengths.

2.8. Fish and Fishery Products

In terms of food safety and consumer awareness issues, false declaration of geograph-
ical origin or production method, mislabeling of frozen-thawed or cold-stored products
as fresh, and substitution of high priced products with cheap alternatives are significant
problems encountered in the seafood industry. Several researchers have reviewed studies
employing HSI for the determination of fish freshness and quality [6,94].
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Table 5. Feature wavelengths reported for cereal and cereal products.

Type of
Adulteration

Spectral
Range (nm)

Selected Wavelengths
(nm)

Wavelength
Selection Method

Assignment of the
Wavelengths Reference

Peanut
adulteration in

wheat flour
1000–2200 1200, 1395, 1734

1450, 1580, 1940, 2100
Loadings plot of

PCA

Higher content of long chain
fatty acids

Starch and water content
[81]

Peanut
adulteration in

wheat flour
1000–2200

1200, 1395, 1734
1580, 2100
1450, 1940

2030

Independent
Components of

ICA

Higher content of long chain
fatty acids

Starch content
Water content
Amide content

[82]

Peanut
adulteration in

wheat flour
935.61–1720.23

1196, 1354, 1411, 1478,
1482, 1492, 1545

1200, 1203, 1242, 1245,
1249

Loadings plot of
PLSR

C-H 2nd overtone from
CH3, C-H combination band
from CH3, O-H 1st overtone

from ROH in oil, N-H
stretch 1st overtone from

CONH2 and CONHR, O-H
stretch 1st overtone in starch
Protein and starch content

[83]

Adulteration of
organic spelt flour 897–1753 1145, 1192, 1222, 1349,

1359, 1396, 1541, 1567

Loading plot of
StdDev coefficient

resulting from
FMCIA

No assignment [86]

Discrimination of
oat from barley,
wheat, and rye

900–1700 1069, 1126, 1189, 1243,
1413 VIP No assignment [77]

Adulteration of
cooked millet

flour
865–1711

935, 968, 1011, 1117,
1207, 1297, 1416, 1567
1084, 1130, 1207, 1230,

1330, 1426, 1552
1184, 1204, 1323, 1393,

1420, 1479, 1556

PCA
SPA

CARS
No assignment [88]

Discrimination of
durum wheat
from common

wheat

1100–2400

1420,
1910;1702,2274;1979,

2054, 2199
1420, 1947; 1677, 2330;
1476, 2023, 2230; 2117

Loadings plot of
PLS-DA model on

protein content
Loadings plot of

PLS-DA model on
vitreousness

Water; Fat; Protein and
Gluten content

Water; Fat; Protein and
Gluten; Starch content

[78]

Prediction of corn
flour content in

icing sugar
samples

880–1720

NIR-HSI 1391, 1419,
1426, 1454, 1482, 1503
Raman-HSI 164.3, 167,

169.7, 172.4, 459.3,
515.6, 551.2, 553.7, 579,

581.5, 599.1

Ensemble Monte
Carlo Variable

Selection
No assignment [90]

Identification of
fiber added to

semolina
928–2524 Not specified. Loadings plot of

PCA
Water, Starch and Cellulose

content [79]

PCA: principal component analysis, PLSR: partial least squares regression, ICA: independent component analysis, SPA: successive
projection algorithm, PLS-DA: partial least squares-discriminant analysis, VIP: variable importance in projection, CARS: competitive
adaptive reweighted sampling, FMCIA: first derivative and mean centering iteration algorithm.

Discrimination was targeted between fresh, fast frozen-thawed, and slow frozen-
thawed fish samples using LS-SVM classifiers applied to VIS-NIR hyperspectral data
between 380 and 1030 nm. Data acquisition was performed on the samples equilibrated
to room temperature. PCA was used as the data reduction method, while the Gray-level
co-occurrence matrix (GLCM) was employed to attain textural variables out of images [95].
The freshness of rainbow trout samples that were kept on ice for 1, 3, 5, and 7 days were
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compared using VIS-NIR HSI operating between 400 and 1000 nm and SW-IR HSI working
between 1000 and 2500 nm while the latter system has resulted with better prediction
efficiency. PCA and PLS-DA were used for data analysis. Savitzky-Golay (SG) function
for smoothing, standard normal variate (SNV), multiplicative scatter correction (MSC),
first derivative, second derivative, and several combinations of these preprocessies were
applied to remove unwanted physical effects in the collected spectra [96]. Fresh, cold-
stored, and frozen-thawed samples of shelled shrimp were discriminated using VIS-NIR
HSI, acquiring data between 328 and 1115 nm. SPA and uninformative variable elimination
(UVE) based on regression coefficients of PLS was used to select feature wavelengths while
GLCM was used for textural extraction. RF and SIMCA were chosen as the classifiers.
The importance of data fusion in terms of combining spectral and textural data to obtain
higher classification rates between different groups was emphasized in the study [97].
The freshness of soaked and fresh prawn samples either in unfrozen or frozen states was
determined using VIS-NIR HSI operating between 300 and 1100 nm. SPA was used to
choose feature wavelengths while LS-SVM, adaptive boosting (AdaBoost) algorithm, and
back-propagation neural networks (BP-NN) were used to build classification models using
both full spectra and selected wavelengths. LS-SVM models utilizing full second derivative
spectra have resulted in the highest correct classification ratio [98]. NIR-HSI acquiring data
between 308 and 1105 nm was employed to discriminate fresh, cold-stored, and frozen-
thawed grass carp fish fillets. Compared to other applied pre-processing methods such as
multiplicative scatter correction, standard normal variate, and the second derivative, the
highest correct classification ratio was obtained using first derivative spectra for building
SIMCA, PLS-DA, LS-SVM, and PNN models. SPA was the method of choice to select
feature wavelengths [99].

SW-NIR-HSI operating between 400 and 1000 nm was employed to analyze the shelf-
life of vacuum-packed smoked salmon fillets. PLS-DA models were built with three
different approaches, namely random pixel selection (without filter), spatial mean (basic
filter), and pixel selection based on color (advance filter) [100]. Freeze–thaw history of
vacuum-packed cod samples was analyzed using HSI operating at interactance acquisition
mode between 430 and 1000 nm. Unlike previous studies, this work targeted to perform
measurements on samples in the frozen state through the equilibration with −20 ◦C, and
better classification results were obtained using the data acquired in the frozen state rather
than the thawed state. Different procedures were followed for freezing, thawing, and
frozen storage of the samples. Fast and slow freezing, as well as quick and slow thawing,
was applied to different sample groups. Whole spectra, data between 450–600 nm, and
data between 900–990 nm were utilized individually for PCA and k-NN models, while
superior results were obtained when using entire spectral data [101].

Differentiation of fish species and determination of fish freshness was aimed at devel-
oping methods based on multimode HSI techniques. The efficiency of short-wavelength
infrared (SWIR), VIS-NIR, fluorescence, and Raman HSI techniques was investigated
within the context of the study. The higher sensitivity of fluorescence and Raman images
to the tissue variations was revealed. Models utilizing full spectra, first ten PCs, or feature
wavelengths were built using decision trees, discriminant analysis, naive Bayes classifiers,
SVM, k-NN classifiers, and ensemble classifiers. Wavelength intervals were 419 to 1007 nm,
438 to 718 nm, and 842 to 2532 nm for VIS-NIR, fluorescence, and SWIR measurements,
respectively. Raman spectra were collected from 103 to 2831 cm−1. Feature wavelengths
were selected using PCA and SFS. The highest classification accuracy was obtained by
whole spectra VIS and NIR models for fish species differentiation and full spectra SWIR
model for fish freshness determination [102]. Shrimp muscle samples from low-salinity
freshwater and seawater farms were discriminated using NIR-HSI, acquiring images be-
tween 874 and 1734 nm. Potential of SPA, sequential forward selection (SFS), random frog
(RF), and CARS were compared in terms of their ability to select feature wavelengths. Ad-
ditionally, a deep selection process employing a correlation coefficient threshold between
selected wavelengths was used to eliminate the selected wavelength that is still highly
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correlated with the rest of the selected wavelengths. Classification models were built by
utilizing either selected wavelengths or whole spectra based on PLS-DA, LS-SVM, or ELM
methods. The best performance was obtained for the SFS-PLS-DA model. Using Pearson
correlation analysis, a correlation was established between higher 13C content of samples
from high-salinity water and the corresponding hyperspectral data at 918–925 nm [103].
VIS-NIR HSI acquiring image between 393 to 1009 nm coupled with machine learning
algorithms was employed to monitor the alterations in external appearances of live rain-
bow trout induced by two different diets containing either fish oil or plant oil during their
cultivation. Performance of SVM models constructed with different preprocessed data was
compared, and the best results were obtained through the SVM modeling of data treated
by Savitzky-Golay smoothing and first derivative baseline removal. It is emphasized in
the study that investigating the effects of different diets, nutrient deficiency, disease, age,
and other environmental factors on fish skin properties may be evaluated as the subjects of
future studies [104].

Feature wavelengths that have been used to discriminate fish species or determine fish
freshness are summarized in Table 6. Lipids, carotenoids, and proteins are the molecules
that are mostly responsible for the selection of determined wavelengths. When the results
of the current literature on the use of HSI for food adulteration determination are evaluated
with a bird’s eye view, there is a need to say that there is huge diversity of both data
analysis and variable selection methods. Despite the variety of data analysis methods that
can be preferred for analyzing the information obtained using HSI, it seems that there is
still a need for improvement in the assignment of characteristic signals so that this method
can better define the analyzed sample. In this context, it should be taken into account that
the new trends in the HSI method, which will be explained in the next section of the current
article, may meet this need.

In the context of this review article, the application of hyperspectral imaging to
different food product categories was discussed. It is clear from the literature that PCA
and PLS-DA are still the two wide-spread chemometric methods applied to HSI data. The
available literature has reached some maturity to compare the adequacy of chemometric
methods in analyzing HSI data. In order to eliminate the different disadvantages of
these methods, it is seen that a massive number of algorithms based on different complex
mathematical foundations have been developed in recent years. The necessity of these
developments is indisputably important. Since the major drawback of PCA modelling
is the neglection of the spatial data, efforts have been focused on compensating for this
drawback through the combination of PCA with different algorithms such as fixed size
moving window-evolving factor analysis, deep learning algorithms, superpixelwise PCA
approach, (SuperPCA), Gabor filtering, etc. Despite the numerous advantages of the
incredibly diverse variety of algorithms reported by the authors in different studies, it
currently does not seem sensible to compare the results and recommend the algorithm
that will provide the greatest success in identifying a particular type of adulteration. In
terms of building know-how, it is thought that it would be useful to test the performance
of the developed data analysis technique over the quality of the obtained data acquired
at different experimental environments and acquired from foods with different physical
structures such as solid/liquid, granule/powder, fresh/frozen, packaged/unpackaged, etc.
The only purpose of the studies should not be to determine the algorithm that gives the
highest correlation and classification coefficient and to report the relevant results. Although
the HSI technique seems to be suitable for integrating into industrial production conditions,
considering its practical application, the know-how provided by the relevant literature on
this subject does not seem sufficient in its current form. In order for HSI-based techniques
to take place more often in industrial settings, the collection, storage, and processing
of high-dimensional data remain an important problem. In addition, the effect of the
conditions in which the data were collected on the success of the analysis needs to be
investigated further.
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Table 6. Feature wavelengths reported for fish and fishery products.

Type of
Adulteration

Spectral
Range (nm)

Selected
Wavelengths (nm)

Wavelength
Selection Method Assignment of the Wavelengths Reference

Discrimination
between fresh and
frozen-thawed fish

samples

380–1030
729, 836, 970

928
512 and 620

Savitzky–Golay 2nd
derivative of

absorbance data

Water content
Lipid and Protein content

Heme pigments
[95]

Discrimination
between fresh, cold

stored and
frozen-thawed
shelled shrimp

samples

328–1115

500
800

416, 435, 452, 478, 639,
689, 783, 813

Uninformative
variable elimination

(UVE)-SPA

Water content
Astaxanthin content

No assignment.
[97]

Discrimination
between fresh and

soaked prawn
samples in frozen

and unfrozen states

300–1100

420–460
530–580

950–1010
428, 504, 546, 556,

1000

SPA of 1st derivative
spectra

Astaxanthin content
Metmyoglobin content

Moisture content
Wavelengths discriminating

unfrozen-fresh versus
unfrozen-soaked samples

[98]

Discrimination
between fresh,

cold-stored and
frozen-thawed grass

carp fish fillets

308–1105

560
970

446, 528, 541, 596, 660,
759, 970

SPA of 1st derivative
spectra

Astaxanthin and Canthaxanthin
contents

Water content
Wavelengths discriminating fresh and

stored samples

[99]

Discrimination
between shrimp

samples from
freshwater and
seawater farms

874–1734
918965

1605, 1612, 1700
1656

Deep selection
process applied with
SPA, CARS, Random

Frog (RF) and
sequential forward

selection (SFS)

3rd overtones of functional groups
C-H/N-H/O-H stretching of organic

components
2nd overtone of ester C=O vibration

1st overtone of C-H and its de-
formations of protein and glycogen

1st overtone of double bonds of vinyl
groups (C=C) or aromatic rings of
C-H stretching (Flavor difference)

[103]

Discrimination of live
rainbow trout that

are on different diets
393–1009 450–750

900–1000 Visual inspection Lipid source influences the absorption
and deposition of carotenoids [104]

Differentiation of fish
species and

determination of fish
freshness

VIS-NIR
419–1007 nm

SWIR
842–2532 nm
Fluorescence
718–84 2 nm

Raman
103–2831 cm−1

VIS-NIR 546, 560, 578
VIS-NIR 636

SWIR 984
SWIR 1208

Fluorescence ~470,
500, 530, 560, 590, 620,

650, 680, 700
Raman 487, 636, 734,

1097, 1311, 1451, 1651,
2305, 800–1000

PCA

VIS-NIR Hemepigments
VIS-NIR Methemoglobin

SWIR water content
SWIR fat content

Fluorescence protein–protein
interactions, Collagen structures

Raman unsaturated lipid composition

[102]

PCA: principal component analysis, SPA: successive projection algorithm, CARS: competitive adaptive reweighted sampling, SWIR:
short-wavelength infrared.

3. New Trends in HSI Based Methods

There are many research and review articles on the use of HSI-based techniques in
food analysis. Some important points and new trends emphasized separately in these
studies are brought together within the scope of the current article.

3.1. Hyperspectral Image Processing

The significant steps of an HSI operation are ordered as follows: data acquisition
strategies, the hardware of HSI, hyperspectral image acquisition in different modes, im-
age and spectral processing, classification and regression models, and visualization of
chemical imaging [105]. Image processing is an essential step of HSI since it facilitates the
removal of useless information and affects the performance of subsequent classification
and prediction analyses as well as the quality of chemical imaging. Details of the methods
have been described for hyperspectral image preprocessing composed of hyperspectral
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image calibration, reduction of data size and image cleaning, spectral preprocessing tech-
niques, and algorithms for spectral unmixing, and different ways of hyperspectral image
post-processing were explained [106].

3.2. Selecting Feature Wavelengths to Design Multispectral Imaging Instruments

To design on-line multispectral sensors for specific purposes, the importance of select-
ing feature wavelengths out of high dimensional hyperspectral data has been emphasized
in the literature. In a very detailed study, wavelength selection techniques were classified
into three categories, which are filter methods, wrapper methods, and embedded methods.
Principals and comparisons of these techniques can be found in the related study. Fea-
ture wavelengths for predicting food quality attributes that are determined using PLSR,
SWR, SPA, UVE, spectrum derivative, and band ratio methods, artificial neural network
(ANN) and its derivative methods such as causal index (CI) of the trained ANN model,
feed-forward back-propagation ANN models, simulated annealing (SA), genetic algorithm
(GA), CARS, receiver operating characteristic (ROC) analysis, branch and bound (BB)
algorithm, minimum redundancy-maximum relevance (MRMR), and adaptive branch and
bound algorithm (ABB) were summarized in the study [107].

3.3. Application of Regression Methods in HSI

Chemometric algorithms are mainly used to establish a reliable relationship between
the quality attribute and the collected hyperspectral data. Details about the principles of
linear and nonlinear quantitative regression algorithms and applications for meat quality
detection have been explained. Multiple linear regression (MLR), principal component
regression (PCR) and partial least squares regression (PLSR) are the most widely used
examples of linear regression algorithms while SVM and ANN are the most commonly
used nonlinear regression algorithms. Details of other methods such as LS-SVM, back-
propagation neural network (BPNN) developed by the derivatization of these algorithms
were also described [108]. Precautions that need to be followed in order to establish robust
calibration models are listed below.

An essential issue for natural products is that bulk concentrations are considered
for the construction of calibration range, while prediction is made based on pixel concen-
tration. Using samples that are highly representative of the analyzed property is much
more essential rather than using too much sample in the construction of the calibration
model [109].

Targeting a specific adulterant rather than non-targeted food fraud testing, improper
sampling, and non-reproducibility of measurements were defined as the three main ob-
stacles that most of the studies failed to overcome. These points should be taken into
consideration to establish a proper validation and employ the developed method in prac-
tice [110].

The immense importance of prediction data sets used to test the performance of
calibration models was pointed out in the literature to avoid optimistic calibration results,
which may be caused by the presence of features unrelated to the responses [60]. In
addition to the use of an external test set, cross-validation must be performed to monitor
the stability of the model, detect outlier samples, and get information about plausible
sources of variation [109].

3.4. Snapshot Hyperspectral Imaging

To satisfy the need for low-cost and highly compact HSI cameras, single shot, or
so-called snapshot hyperspectral sensors are developed using semiconductor process
technology [111]. They allow imaging at video rate without the need to move the camera
(detector) or sample (platform). In other words, using the snapshot technique, it is possible
to obtain a hyperspectral image without scanning [112]. Their miniature size provides high
portability. These features allow these sensors to get closer to the real-time applications,
remote, and mobile HSI systems. The high speed of snapshot hyperspectral sensors
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compared to conventional HSI systems constitutes promising potential for future industrial
uses, while efforts are still needed to enhance the limited spatial resolution [72]. One of the
recent results of these efforts is a hybrid camera setup in which a low spatial resolution HSI
and a high spatial resolution conventional RGB image are combined with proper geometric
alignment, and this approach is called HSI-super-resolution [113].

3.5. Alternative Imaging-Based Methods

The use of digital images captured by simple commercial devices to obtain chemical
information is called digital image-based chemical analysis and has been employed to
detect food adulteration [114]. It differs from multivariate image analysis since MIA uses
only spectral features of the images [115]. It is reported that if computer vision systems
(CVS) can be developed to obtain spectral information from foods, the long time required
for data collection and processing in the HSI technique can be eliminated. It is stated that
CVS offers promising potential for on-site and real-time food authentication [116]. On the
other hand, maintenance of camera settings and adequate resolution of the photographic
equipment to capture the analyzed characteristics are some of the essential parameters that
need to be considered in terms of feasibility of visible imaging techniques to in situ and
their real-time implementation [117].

3.6. Data Fusion

Zhou et al. have surveyed the effect of information fusion on the performance of food
quality authentication studies. Although the superiority of fusion-based methods for food
authentication was emphasized by the authors [118], it was not possible to generalize this
positive effect of data fusion for methods coupled with HSI [119]. It is also pointed out that
the cost–benefit ratio has to be considered in data fusion approaches [4].

4. Conclusions and Future Perspective

The HSI technique provides both spatial and spectral information as a result of one
measurement. The high potential of HSI to fulfill the needs of industrial food control
and sorting systems was ascertained almost a decade ago. However, high dimensional
hyperspectral data with redundant information is still standing as the main challenge for
this technique to be used for real-time monitoring in the food industry. Especially in the
case of classification, the required number of samples for the training data set increases in
tandem with the increasing dimensionality of the feature space. This fact about HSI is the
main cause of the Hughes phenomenon and reported studies in the literature that employ
either feature selection or feature extraction methods to overcome this problem. However,
there is too much diversity and a lack of standardization in both preprocessing methods
and data analysis algorithms used for both size reduction and visualization. Developments
are still needed in hardware and artificial algorithms for faster data acquisition and more
rapid data analyses. Besides, the complex nature of food products complicates the task of
both food and data scientists. The presence of a possible relation between the algorithms
developed to reduce the data size and the collected data (data acquisition system, food
from which the data is collected, ambient conditions, etc.) should be questioned. In this
way, applicable recommendations and know-how transfer will be provided, especially for
industrial applications in the future.

The integration of HSI based systems to production lines is a hot topic; therefore,
the efficiency of these techniques in the different steps of production lines (before/after
packaging, etc.) should be studied in the future. Studies performed in plant or industrial
environments rather than a laboratory may provide experience revealing the additional
factors that should be given consideration. Additionally, studies discussing the significance
of the difference between lab-scale and plant-scale performances of the developed method
(from data acquisition to data analysis) are of great importance in terms of revealing the
development areas of HSI-based techniques for industrial applications.
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The use of Raman HSI in food analysis has come to a certain level, especially for
powdered foods. However, there is still space for exhibiting its potential in the analysis of
different food products. Enhancement of Raman signals through high laser power and long
integration times are the first solutions that come to mind. Still, alternative solutions are re-
quired to mature this technique for its use in routine analyses of the food industry. Need for
development in the database, hardware, image preprocessing, and processing algorithms
is being felt for both HSFI and Raman HSI. Customizing the capabilities of fluorescence
sensors may enhance their potential use for real-time monitoring. The combined use of
hyperspectral fluorescence data with other measurement modes such as hyperspectral
reflectance, etc., may also enhance the accuracy of the developed models.
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