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Abstract: This article covers the structural and optical property analysis of the sillenite Bi12NiO19

(BNO) in order to characterize a new catalyst that could be used for environmental applications.
BNO crystals were produced by the combustion method using Polyvinylpyrrolidone as a combustion
reagent. Different approaches were used to characterize the resulting catalyst. Starting with X-ray
diffraction (XRD), the structure was refined from XRD data using the Rietveld method and then the
structural form of this sillenite was illustrated for the first time. This catalyst has a space group of
I23 with a lattice parameter of a = 10.24 Å. In addition, the special surface area (SSA) of BNO was
determined by the Brunauer-Emmett-Teller (BET) method. It was found in the range between 14.56
and 20.56 cm2·g−1. Then, the morphology of the nanoparticles was visualized by Scanning Electron
Microscope (SEM). For the optical properties of BNO, UV-VIS diffusion reflectance spectroscopy
(DRS) was used, and a 2.1 eV optical bandgap was discovered. This sillenite′s narrow bandgap
makes it an effective catalyst for environmental applications. The photocatalytic performance of the
synthesized Bi12NiO19 was examined for the degradation of Basic blue 41. The degradation efficiency
of BB41 achieved 98% within just 180 min at pH ~9 and with a catalyst dose of 1 g/L under visible
irradiation. The relevant reaction mechanism and pathways were also proposed in this work.

Keywords: sillenite Bi12NiO19; Rietveld method; optical properties; photodegradation; BB41 dye

1. Introduction

Traditional methods of water treatment cannot effectively eliminate pollutants from
wastewaters and could cause great harm to the environment [1–4]. On the other hand, it
has been shown that photocatalysis is a promising approach for the degradation of non-
biodegradable compounds in water [5,6]. It is based on a photocatalyst that can be activated
by light such as sunlight and using this energy to remove various types of pollutants [7].
Among these pollutants, basic blue 41 (BB41) has been identified as one of the most
problematic dyes. It is present in industrial effluents and commonly used in acrylic, nylon,
silk, cotton, and wool dyeing [8–10]. This dye is potentially fatal to living organisms. It is
effective as a strainer for identifying avian leukocytes, blood, and bone marrow cells. It can
also induce short periods of fast or difficult breathing when inhaled, and it can also cause
nausea, vomiting, excessive perspiration, mental disorientation, and methemoglobinemia
when consumed through the mouth [11]. Therefore, its detection and elimination are
challenging goals. Based on our previous studies, photocatalysis-using catalysts have
successfully removed both organic and inorganic pollutants in wastewater [12,13]. A novel
catalyst with high photocatalytic activity and a narrow bandgap must be developed and
tested in order to achieve this goal [14].
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The increase in research in recent years for new material categories allowed new
studies on structural and optical properties [15,16]. Among these materials—despite be-
ing relatively new—sillenites have attracted the attention of many researchers due to
their unusual crystal formations, their peculiar electronics, their interesting photochromic,
photorefractive, electro-optic, piezoelectric, dielectric properties, and promising optical
activity [17–19]. They are used in various industrial applications, such as image amplifi-
cation, phase conjugation, real-time and multiwavelength holography, optical memories
for data storage, optical communications, signal processing and a variety of photocatalytic
applications [20,21]. Sillenite crystals with a general formula of Bi12MO20x (BMO) have a
body-centered cubic crystal structure crystallized in the I23 space group [22]. Their overall
structure is described by the atom of bismuth surrounded by seven oxygen atoms that share
corners with other similar Bi polyhedrons and with MO4 which represents a tetravalent
ion or a combination of ions that exist both at the cube center and on the corners in the
BMO structure [23,24]. There are a significant number of new sillenites that are used as
photo-catalysts in previous research, such as Bi12TiO20 [25], Bi12GeO20 [21], Bi12PbO19[22],
Bi12CoO20 [26], Bi12SiO20 [21], Bi12MnO20 [17], Bi12FeO20 [27] and Bi12ZnO20 [28]. Among
the sillenite crystals, bismuth nickelate Bi12NiO19 (BNO) has not been used as a photo-
catalyst yet, although it has recently gained considerable attention because of its tiny
bandgap, its high photoconductivity, ease of separation of photogenerated electron-hole
pairs and ease of recycling [29–31]. BNO is a single-phase multiferroic, which co-exists
with ferroelasticity and has a magnetic character. It is also a lead-free and environmentally
friendly material, which makes it very promising for photocatalytic applications. Due to
its novelty in the photocatalyst field and its interesting proprieties, we selected BNO as a
photocatalyst for this work.

We report in this study the synthesis of Bi12NiO19 sillenite by the sol-gel method using
polyvinylpyrrolidone (PVP) as a combustion reagent. Firstly, the phase of the crystals
was identified by X-ray diffraction (XRD); then, the structure and lattice constants of the
phase were refined using the Rietveld method. The special surface area (SSA) of BNO was
determined by the Brunauer–Emmett–Teller (BET) method. Then, the morphology of the
nanoparticles was investigated by Scanning Electron Microscope (SEM). After that, the
BNO’s optical properties were investigated using UV-VIS diffusion reflectance spectroscopy
(DRS), and the obtained bandgap was discussed. The photocatalytic activity of the sillenite
Bi12NiO19 was tested for photodegradation of basic blue 41 dye.

2. Materials and Methods
2.1. Chemicals

Chemicals used in the present study were: nickel nitrate hexahydrate [Ni(NO3)2·6H2O]
(98% Biochem), bismuth nitrate pentahydrate [Bi(NO3)3·5H2O] (98.5% Chem-Lab),
Polyvinylpyrrolidone PVP K30 (Pharmalliance pharmaceutical company, Ouled Fayet,
Algeria), ethanol (Biochem), nitric acid, HCl and NaOH (Sigma Aldrich; St. Louis, MO,
USA). The basic blue 41 (>98% purity) was provided by Aldrich. Distilled water was used
as a solvent. Without further purification, all chemicals were used as obtained.

2.2. Synthesis of the Sillenite Bi12NiO19

The Bi12NiO19 material (sillenite type) was synthesized by mixing nitrates of bismuth
pentahydrate [Bi(NO3)3·5H2O], and nickel nitrate hexahydrate [Ni(NO3)2·6H2O] was
dissolved in water using stoichiometric amounts (12:1 ratio). In order to improve the
solubility of the solutions, nitric acid was added. The reaction was carried out according to
the following equation:

12 [Bi(NO3)3·5H2O] + [Ni(NO3)2·6H2O]→ Bi12NiO19 + 38 NO2 + 66 H2O + 19/2 O2 (1)

After total solubilization, PVP K30 as a complexing agent was added to the reaction
solution with a concentration of 15% w/w to obtain its complexing role [32]. The obtained
solution was dehydrated by evaporation on a hot plate until it turned to a gel, then burned
to form Xerogel, an amorphous powder, and after that denitrified at 600 ◦C for 3 h. Before
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calcination, the obtained powder was homogenized by grinding in an agate mortar; it was
calcined then in an air oven for 6 h at 800 ◦C. The calcination step was done to increase
the crystallinity and to remove all carbonated waste left after the combustion reaction. All
the synthesis process was summarized and illustrated in Figure 1. Then, the sample was
subjected to phase identification, structural characterization and optical study.
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Figure 1. Process for preparing Bi12NiO19.

2.3. Characterization

X-ray diffraction (XRD) was conducted using a Phillips PW 1730. With the MAUD
software (version 2.9.3), the Rietveld technique was used to measure structural properties,
refinement and crystallinity. VESTA (version 3.4.0) was used to create the structure illustra-
tion. With an electron scanning microscope FEI Quanta 650, crystal pictures were captured.
The sample’s UV-visible diffuse reflection (DRS) was measured using a Cary 5000 UV-Vis
spectrophotometer.

2.4. Photocatalysis Test

The photocatalytic degradation of Basic Blue 41 was carried out in a double-walled
reactor with a magnetic stirring and cooling system. A 1 g/L dose of catalyst was suspended
in a solution of BB41 aqueous solution with a concentration of 15 mg/L and pH ~9, which
was found to be optimal conditions. The pH was modified by adding small amounts of
HCl and NaOH. The adsorption experiment was performed in the absence of irradiation
for 120 min before the photocatalysis test to reach the adsorption equilibrium. After the
adsorption equilibrium, the reactor was exposed to visible irradiation using a tungsten
lamp supplied by Osram (200 W). The temperature of the solution was maintained at a
nearly constant 25 ◦C during the photocatalytic experiments using a thermostatic bath and
a double-walled reactor as a cooling system. The concentration of BB41 was followed by
measuring the absorbance in the wavelength (610 nm) with a UV–Vis spectrophotometer
(OPTIZEN, UV-3220UV). The degradation efficiency was calculated from the relation:

Degradation efficiency % =
absad − abs

absad
× 100 (2)

where absad and abs are the initial absorbance of BB41 and absorbance after time t, respec-
tively.

3. Results
3.1. Characterization of the Sillenite Bi12NiO19
3.1.1. Phase Identification and Structural Investigation

To explore the formation of sillenite crystals Bi12NiO19, X-ray diffraction (XRD) was
used (Figure 2). All diffraction peaks are attributed to the sillenite phase of Bi12NiO19
(JCPDS card, PDF No. 43-0448) [33]. This indicates good crystallization at 800 ◦C. The
XRD data and I23 cubic structure were used to conduct Rietveld refinement, experimental
findings and theoretical data determined by Maud are shown in Figure 2 as points and
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red lines, respectively. According to the results, the findings estimated using the Rietveld
technique matched well with the experimental X-ray diffraction pattern. The Rietveld
refinement results gave identical results compared to other known methods of structural
properties. [34,35]. Figure 1 also showed the purity and good crystallinity of our sillenite
phase through the great congruence between the results of the experiment and the theoreti-
cal data. It was determined that the refined values represented a cubic form with a space
group of I23 and a lattice parameter of a = 10.24 Å. The Rietveld refined parameters such
as reliability factors Rp, Rexp, Rwp and Sig with the cell parameter (a) and atomic position
(x,y,z) are presented in Table 1.
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Table 1. Structural and lattice parameters.

Phase Bi12NiO19

Groupe
Space I 2 3

a (Å) 10.244759

Atoms

Atom x y z Biso
Ni1 0.000000 0.000000 0.000000 0.077
Ni2 0.8216535 0.68130636 0.9814812 0.077
Bi1 0.000000 0.000000 0.000000 0.923
Bi2 0.9814812 0.68130636 0.8216535 0.923
O1 0.83216524 0.6798176 0.459461 1
O2 0.729963 0.729963 0.729963 1
O3 0.123646714 0.123646714 0.123646714 0.75

V (Å3) 1083.4283
D (nm) 59.46

R Factors

Rb 9.5436
Rexp 4.0007
Rwp 14.3421
Sig 3.58
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The structural representation of the sillenite BNO was illustrated in Figure 3 by Vesta
using the structural parameters in Table 1. The atoms′ colors for Ni, Bi and O are green,
yellow and red, respectively. As can be seen, the phase is a cubic structure (space group
I23). The atoms in the crystal structure show shared occupancy between bismuth and
nickel while bismuth atoms are dominant at around 92% due to the ratio of atoms being
12:1 for bismuth and nickel.
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The crystallite size, X-ray density, and special surface area were calculated from the
following equations [36]:

D =
Kλ

β cos (θ)
(3)

ρ =
ZM

NA V
(4)

S =
6× 103

D× ρ
(5)

where D is the regular phase crystallite, K is the Scherener constant, β is the full width at
the highest half of the phase, θ is the angle Braggs, NA is Avogadro’s number, M is the
Molecular mass of BNO (2870.45 g·mol−1), ρ is the density of X-ray, Z is the count of model
units in a cell (Z = 2 for sillenites [26]) and V is the unit cell volume (1083.428335 A 3) and
S is the specific surface area.

The crystallite size was calculated from the main peaks of the XRD diffractogram, and
it was found in the range between 33.20 and 33.20 nm. The density of X-rays was found
to be 8.79 g·cm−3. The special surface area (SSA) of the particular BNO was estimated by
the Brunauer–Emmett–Teller (BET) method in Equation (4), and it was found in the range
between 14.56 and 20.56 cm2·g−1.

3.1.2. Morphology Investigation

In order to analyze the morphology of the BNO crystals, a Scanning Electron Mi-
croscopy (SEM) was used. Figure 4 shows typical SEM images of the BNO crystals. A
small agglomeration can be seen due to the ultrafine nature of the sample [37]. This leads
to a non-uniform distribution of crystals of different shapes and a noticeable porosity in
the sample [28]. The viscosity of the suspension in the synthesis route plays an important
role in the development of the porous structure [1,38]. The viscosity of suspension during
synthesis causes the porous structure to get compacted. The sol-gel method is well-known
for its great viscosity because it forms a gel during the synthesis. Due to this, we have
significant porosity in our sample.
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3.1.3. Optical Study

To determine the catalyst’s performance, knowledge about the gap is highly necessary.
The optical properties of BNO crystals were investigated using UV-vis diffuse reflectance
spectroscopy (DRS). The bandgap energy (Eg) is determined by plotting the Tauc plot
(Figure 5), which is the dependence of the absorption coefficient (α) on the photon energy
(hv). It is expressed in the following relationship [37,39]:

(αhv)
1
n = K

(
hv− Eg

)
(6)

where α is the absorption coefficient, K is a proportionality constant, and the exponent
n= 2 or 1/2 refers to the nature of the transition. The direct bandgap was estimated by
the interception of the linear plot (αhv)2 and the hv axis. The band-gap energy (Eg) of
NBO crystals was about 2.1 ± 0.1 eV which is a smaller bandgap than of TiO2 and ZnO
(3.2 eV) [40,41]. This shows that BNO has a significant absorption level for both UV and
visible light from wavelength 200 to 800 nm where the fraction of the light irradiance is
converted into electrical and/or chemical energy. This tends to be more effective than
the photocatalysts ZnO and TiO2 and leads in visible light irradiation to an increase in
the formation of pairs of electron holes. This sillenite’s narrow bandgap makes it a new
promising catalyst for photocatalysis applications for environmental aquatic pollution.
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3.2. Photocatalytic Activity

To test the photocatalytic activity of this catalyst, BB41 was selected as a topical
example of organic pollutants. The photolysis effect of irradiation must be taken into
account. An irradiation test for the elimination of the effects of photolysis was carried
without the Catalyst BNO. Photolysis showed only a small percentage of BB41 degradation,
not even above 5% percent. The effects of photolysis could consequently be overlooked.
After that, the test was performed in the presence of the catalyst BNO. Before illumination
of the photocatalytic reactor, it is important to eliminate the adsorption effect in a dark
condition, the adsorption has not a significant removal for BB41.

After that, photocatalysis tests were started by the effect of pH, as the pH played
a major role in the degradation. The tests were done in different pH mediums with a
concentration of 15 mg/L and a catalyst dose of 1 g/L for 3 h, the results are shown in
Figure 6. As can be seen, pH 9 was the optimal pH condition, because BB41 is a cationic
dye, its photodegradation is favored in the basic medium, and the photodegradation
performance of BNO for BB41 is boosted in the basic condition.
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After selecting the optimal pH, a test with a kinetic study was carried out under
optimal conditions. The results are illustrated in Figure 7; Figure 7a shows the evolution
of BB41 degradation as a function of time, where Figure 7b shows the associated UV-
vis spectra for each point and the absorption peaks of BB41 at 610 nm can be observed
decreasing with time. As can be observed, the degradation efficiency of BB41 achieved 98%
within just 180 min at pH ~9 and 25 ◦C. This result can be explained by the gap energy of
the catalyst (2.1 eV), which offers a higher absorption in both UV and visible areas from
200 to 800 mm [42].

It was already demonstrated in our previous works [13,14] that the degradation
of the dye as an organic compound in the photocatalytic process is mainly due to the
reactive oxidative species (ROS) such as superoxide radicals (O2

•−) and hydroxyl radicals
(•OH), where the electrons of Bi12NiO19 conduction band are degraded the Basic Blue
41 by reducing the absorbed O2 to the super-radical anion O2

•−. The oxidation occurs
concomitantly by radicals •OH through a valence band that reacts with H2O [43]. In order
to investigate the active species for the degradation of BB41, isopropanol and benzoquinone
were chosen as scavenger agents to capture •OH and O2

•−, respectively. Figure 8 shows
the degradation efficiency with and without the presence of scavengers.
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As can be seen, adding benzoquinone and isopropanol to the solution reduced
the BB41 degradation efficiency, indicating that both O2

•− and •OH were important ac-
tive species in the photocatalytic activity. The photocatalytic reactions that occur at the
solid/liquid interface can be bonded according to the following reaction mechanism:

Bi12NiO19 + hv→ e− CB + h+
VB (7)

h+
VB + H2O→ •OH + H+ (8)

e− CB + O2 → O2
•− (9)

Dye + •OH / O2
•− → Degradation products (10)

4. Conclusions

The main objective of this work was devoted to the study of the structural and optical
properties of Bi12NiO19 and its application as a photocatalyst for the disposal of the basic
blue 41 dye, used in the textile industry, under visible irradiation. BNO nanoparticles were
synthesized using the combustion method using Polyvinylpyrrolidone as a combustion
reagent. Different approaches were used to characterize the resulting catalyst. Starting
with X-ray diffraction (XRD), the Rietveld method was used to refine the structure based
on XRD data. which showed the purity and good crystallinity of our sillenite phase. Then,
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the structural form of this sillenite was illustrated for the first time. This catalyst has a
space group of I23 with a lattice parameter of (a = 10.24 Å) for this catalyst. The special
surface area (SSA) of BNO was determined by the Brunauer–Emmett–Teller (BET) method,
it was found in the range between 14.56 and 20.56 cm2·g−1. Then, the morphology of the
nanoparticles was visualized by Scanning Electron Microscope (SEM). Finally, the optical
properties of BNO were determined by UV-VIS diffusion reflectance spectroscopy (DRS), a
2.1 eV optical bandgap was discovered. This narrow bandgap and the good crystallinity
allow this sillenite to be a promising and effective catalyst for photocatalytic applications in
the environmental field such as the treatment of polluted water under visible light radiation.
That was confirmed by the application of this sillenite by performing the decomposition of
the basic blue 41 dye under visible irradiation where a total degradation was obtained at
pH ~9 and 25 ◦C in less than 180 min. For future research, we will test the effects of this
sillenite on the degradation and reduction of organic and inorganic pollutants, as they are
both hazardous contaminants to the environment.
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