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Abstract: Recently, the move from cost-tied to open-access data has led to the mushrooming of
research in pursuit of algorithms for estimating the aboveground grass biomass (AGGB). Nevertheless,
a comprehensive synthesis or direction on the milestones achieved or an overview of how these
models perform is lacking. This study synthesises the research from decades of experiments in order
to point researchers in the direction of what was achieved, the challenges faced, as well as how
the models perform. A pool of findings from 108 remote sensing-based AGGB studies published
from 1972 to 2020 show that about 19% of the remote sensing-based algorithms were tested in the
savannah grasslands. An uneven annual publication yield was observed with approximately 36% of
the research output from Asia, whereas countries in the global south yielded few publications (<10%).
Optical sensors, particularly MODIS, remain a major source of satellite data for AGGB studies, whilst
studies in the global south rarely use active sensors such as Sentinel-1. Optical data tend to produce
low regression accuracies that are highly inconsistent across the studies compared to radar. The
vegetation indices, particularly the Normalised Difference Vegetation Index (NDVI), remain as the
most frequently used predictor variable. The predictor variables such as the sward height, red
edge position and backscatter coefficients produced consistent accuracies. Deciding on the optimal
algorithm for estimating the AGGB is daunting due to the lack of overlap in the grassland type,
location, sensor types, and predictor variables, signalling the need for standardised remote sensing
techniques, including data collection methods to ensure the transferability of remote sensing-based
AGGB models across multiple locations.
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1. Introduction

The Savannah grassland is one of the world’s most extensive biomes, covering ap-
proximately 25% of the Earth’s surface [1]. These grasslands house C4 grass species [2],
which are capable of storing large amounts of carbon, contributing roughly 10% of the
global terrestrial carbon stock [3]. In addition, this biological configuration renders the
Savannah grasslands essential role-players in regulating the world’s carbon cycle. In Africa,
the savannah grasslands serve as grazing and browsing grounds for domesticated and wild
animals, and further consist of a distinctive biodiversity with scenic views and wildlife that
attracts tourism [2].

Nevertheless, the proliferation of natural and human-induced degradation such as
grass sward removal and climate change jeopardises the services that the savannah grass-
lands provide [4]. Degraded savannah grasslands tend to sequester and store carbon
at a slower rate than normal [5], a process which is being intensified by climate change.
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Consequently, high levels of greenhouse gases such as carbon dioxide (CO2) accumulate in
the atmosphere at a faster rate than normal. For example, the literature indicates that global
CO2 levels have accrued from 278 ppm six decades ago to 420.54 ppm by April 2023 [6].

Savannah grasslands sequester and store carbon mostly in their above-ground plant
matter as well as in above-ground litter and to a limited extent in below-ground matter [7].
Fifty percent (50%) of the above-ground grass biomass (AGGB) comprises carbon. There-
fore, the development and implementation of grass biomass quantification methods and
ultimately monitoring operations in savannahs are needed to preserve and sustain the
ecosystem’s capacity to sequester carbon, and other services it renders, thus contributing to
slowing down the current rise in greenhouse gases and subsequently, the resultant global
warming effects.

Estimates of the AGGB have for decades been obtained from plot-based surveys
(i.e., visual assessments) [8] involving clipping and weighing [9–12]. Nevertheless, studies
have indicated that walking the fields and demarcating baseline plots for making estimates
is unfeasible in terms of money, time, and manpower over extensive, remote, and inaccessi-
ble geographical areas [13,14]. However, the immediate need to update AGGB estimates
timeously across larger geographical footprints has triggered the need for scientists to
seek alternative methods to achieve this goal in an economical and repeatable manner at
various spatial scales. Remote sensing in combination with machine learning and artificial
intelligence holds great potential as an alternative method, and is gaining traction in many
biomass quantification studies.

A plethora of studies were undertaken in the pursuit of a suitable algorithm for
deriving the AGGB from satellite-based data [14–18]. As indicated by Joshi et al. [19] the
development of an appropriate method for quantifying carbon stocks remains a continuing
field of exploration. As such, systematically reviewing the volume of published literature
will not only provide a rigorous assessment of how remote sensing techniques best estimate
AGGB carbon stocks but will also serve as a guideline for future researchers to promptly
identify the research needs and direction in this area of study.

Several authors have reviewed and summarised findings of remote sensing-based
grass biomass estimations [11,13,14,19–28]. While some authors performed a wall-to-
wall review that covered broad vegetation classes [16,19,22,23], others have focused on
studies that tested remote sensing in forest ecosystems [20,21]. A few authors [11,24,25]
have reviewed remote sensing-based biomass estimation studies in grassland ecosystems.
Kumar et al. [23], and Shoko et al. [11] provided a qualitative summary of the studies, while
Masenyama et al. [24] provided a quantitative summary of the broad grassland ecosystem
services in the context of water. As far as we are aware, this is the first quantitative review
of the studies that have developed remote sensing-based algorithms for biomass estimation
in grassland ecosystems, with special focus on the application of Synthetic Aperture
Radar (SAR) data in savannah ecosystems. The purpose of this review is to summarise the
findings from remote sensing-based studies on the AGGB estimation with an emphasis
on savannah ecosystems and provide clarity regarding the direction of techniques that
this type of research is taking. The review comprehensibly combines both qualitative
and quantitative techniques to track rigorously the milestones, challenges, and research
outlooks, and further assesses which remote sensing technique best estimates the AGGB.

2. Materials and Methods

Electronic databases such as Scopus and Web of Science are essential sources of
scientific publications for peer-reviewed journals suitable for systematic reviews. For
this review, we utilised Web of Science, IEEE Explorer Scopus, and Google Scholar to
search for relevant peer-reviewed publications. A broad mixture of systematically gen-
erated search words was used, including “remote sensing” and “grassland biomass”, to
yield a widespread list of publications. A search with these keywords returned a num-
ber of peer-reviewed publications with 466 from Web of Science, 78 from IEEE Explorer,
537; from, Scopus and 1000 from Google Scholar (Figure 1). We then applied a search



Geomatics 2023, 3 480

filter to select the studies that achieved the following criteria: (1) attempted to develop
remote sensing-based AGGB models; (2) were published in English from 1972 to 2020,
following the launch of the first space-borne satellite; and (3) were peer-reviewed and
published in scientific journals. Figure 1 portrays the PRISMA flow of the publication re-
trieval procedure. Based on the titles and abstracts, we performed a high-level screening
of the articles to check if they met the stated filtering condition. We then downloaded
the articles that met the filtering criteria, were available in a portable document format
(pdf), were accessible in full length for further reading and analysis, and excluded those
that were outside the scope of the above-mentioned filtering criteria. The publication
that met the selection criteria summed to 108 and were subjected to data extraction and
analysis. Table S1 (Supplementary Materials) provides a full list of the publications anal-
ysed in this review.
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Figure 1. The PRISMA workflow of literature search and selection used for the review.

We used the built-in export function in the Web of Science, Scopus, IEEE Explorer,
and Google Scholar databases to export the metadata of the searched publications to a
Microsoft Excel spreadsheet (Microsoft Corporation, Redmond, WA, USA). Basic pub-
lication attributes such as the author, title, journal name, and year were extracted and
exported. We then manually extracted additional publication attributes including the
study site, geographic coordinates, sampling procedure, platform and sensor type, and
spatial resolution, as well as predictor variables and methods through reading to expand
and design a comprehensive database to achieve the intended goal of our review. As in
Zolkos et al. [28], we also extracted the coefficient of determination statistic (R2) per data
type, sensor as well as grassland types for the best remote sensing-based AGGB algorithm.
For the purpose of this review, we only considered the coefficient of determination of the
models developed using the training data.

To track the milestones of the remote sensing-based AGGB estimations, statistical
frequencies were computed using MS Excel and SPSS. This assisted in observing and
identifying trends in terms of the grassland type, geo-location and publications, platforms
and sensors, predictor variables and algorithms, as well as the sampling procedure used
in the literature. For the geographical trends, we imported the extracted geographical
coordinates of where the studies were conducted into a Geographical Information System
(GIS) software (Version 10.10) and created a proportional symbol map to visualise the
frequency per country. As in Ma et al. [29], we also computed the mean measure and
standard deviation of the coefficient of determination for sensor type and grassland type.
We did this to compare the accuracies of the models across data types, sensor and grassland
types using the coefficient of determination (R2) statistic as a measure. To do this, we
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grouped the multiple R statistics data per sensor and grassland types and plotted box
plots. Furthermore, based on the range of spatial resolution found, we categorised the
spatial resolution into six subcategories to be able to detect the trends in the use of spatial
resolution in the images utilised. The studies reported a mix of findings and necessitated
the need to omit some studies that did not report the required attributes. As a result, the
number of collected statistics depends on whether the reviewed studies reported it or not.
To identify the gaps and challenges, we manually extracted the text through reading, and
grouped them into themes.

3. Results
3.1. Milestones of Remote Sensing-Based AGGB Retrieval
3.1.1. Sampling and Analysis Protocol for Training and Validation Purposes

Grasslands store carbon in the form of living and dead biomass [13]. Grass biomass is
the organic material from both below and above the ground (either living or dead). Above-
ground grass biomass encompasses all organic matter living above the ground [30]. While
direct measurements of AGGB are obtainable through unfeasible and costly ground surveys,
remotely sensed methods serve as an indirect means of retrieving AGGB [31]. With this
approach, the grass biomass is indirectly inferred from satellite imagery where the relation-
ships between satellite-derived indices and field biomass samples are established [14,32].
According to Chave et al. [31] “Remote sensing missions are dependent on accurate and
representative in situ datasets for the training of their algorithms and product validation”.

Ali et al. [27] listed several methods used to collect AGGB samples for training and
validating remote sensing data including visual, cut and dry, rising plate meter, and
field spectroscopy. Within the reviewed literature, the harvesting (cut and dry) method
remains the most heavily utilised destructive method to collect in situ AGGB samples
for training and validating remote sensing algorithms (Figure 2A). A small number of
studies utilised the rising plate meter, followed by the visual technique. For studies that
adopted the clipping approach, the next step was to dry and weigh the clipped grass
biomass samples in the laboratory at specific time frames and temperatures. As shown
in Figure 2B, 65 degrees Celsius was the most frequently used temperature to dry the
grass samples, followed by 80 and 70 ◦C. A few studies dried the grass biomass samples
at 95 ◦C. Figure 2C shows that most studies dried the clipped grass samples over 48 h,
followed by 72 and 24 h. Figure 2D shows the sizes of the subplots (n = 74) used when
clipping the grass biomass samples. Of the 74 studies, 52% used 1 m2 subplots, followed
by 0.25 m2.
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3.1.2. Grassland Types Covered in the Reviewed Studies

In order to identify the trends in grassland types, we grouped them based on their
geographical location. The trends from the surveyed literature show that four types of
grasslands were studied (Figure 3). Of the publications reviewed (n = 108), 62% of the
remote sensing-based algorithms were developed and tested in the steppe grasslands,
followed by the savannah grasslands (19%) and the prairie grasslands (13%), while the
Pampas grasslands were rarely investigated (6%).
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Figure 3. A depiction of (A) grassland types investigated in the reviewed studies, and (B) box plots
showing median R2 for the distribution of grassland type investigated in the selected literature.

Figure 3B shows a box plot of the coefficient of determination of the remote sensing-based
AGGB retrieval algorithm categorised by the grassland type. The grassland retrieval algorithms
from the selected studies have medians that are in close range across the grassland type.
Specifically, the savannah grasslands show more variability of R2 values (0.28–0.94), followed
by the Pampas (0.33–0.97) and the steppe, while the prairie grasslands show the least variability.
The prairie grasslands had a marginally higher mean (0.75) R2 compared to the savannah
grasslands. The models developed in the savannah grasslands show high variability compared
to the prairie grasslands.

3.1.3. Geographical and Temporal Gradients Covered

The results from a geographical trend analysis show that remote sensing-based algo-
rithms for estimating the AGGB were tested in 24 countries. However, an alarming gap
was observed in terms of the regions studied (Figure 4A). Specifically, the top five countries
in which the algorithms were tested the most were China, South Africa, Germany, the
United States of America, and Italy. China yielded the highest proportion of studies (36%)
that developed remote sensing-based algorithms for grass biomass retrieval. South Africa
had the second largest number of studies (12%) while the USA and Germany contributed
small percentages (8 and 6%, respectively). The remaining countries such as Australia,
Ireland, and Japan contributed the least (1%).

There are four geographical climate zones worldwide, viz. the frigid, temperate,
sub-tropical, and tropical zones [33]. The results from a further assessment of the geo-
graphical zones in which the studies were undertaken shows that the biomass retrieval
algorithms were developed mostly in the temperate zone. Fewer studies (<20) were con-
ducted in the tropical and subtropical zones while no studies were conducted in the frigid
zone (Figure 4B).

Our findings show that Prince and Tucker made the first attempt to develop remote
sensing-based algorithms to retrieve the AGGB in 1986. As shown in Figure 5, based
on the surveyed literature, two studies on AGGB estimation were conducted between
1986 and 2005, followed by a gradual increase between 2006 and 2009. Subsequently, a
decrease in the number of publications occurred between 2010 and 2013. The number of
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remote sensing-based AGGB studies gradually increased from 2014, with more than six
publications per year. The largest number of studies were carried out in 2019 (13 studies).
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We observed an inconsistent trend in the number of publications across the years of
the survey. In particular, the years 1986–2005 accumulated the lowest yield in the number
of publications, followed by a steady increase in the period 2006–2009. Another drop in the
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number of publications was observed in the period 2010–2013 and a gradual increase in the
period 2014–2020.

3.1.4. Platform and Sensor Configurations

The findings from the investigated literature (n = 108) show that a variety of platforms
and sensors were used. From a platform perspective, the majority of the studies used sen-
sors from space-borne platforms (69%), followed by sensors from ground-based platforms
(20%), and lastly air-borne (11%) (Figure 6A). The images from optical sensors are the most
heavily utilised amongst those selected for developing grass biomass retrieval models,
followed by those from radar sensors. Light detecting and ranging (lidar) sensors were
rarely utilised (Figure 6B).

Geomatics 2023, 3, FOR PEER REVIEW 7 
 

 

 
Figure 5. A depiction of the number of publications on remote sensing-based AGGB retrieval by 
year. 

We observed an inconsistent trend in the number of publications across the years of 
the survey. In particular, the years 1986–2005 accumulated the lowest yield in the number 
of publications, followed by a steady increase in the period 2006–2009. Another drop in 
the number of publications was observed in the period 2010–2013 and a gradual increase 
in the period 2014–2020. 

3.1.4. Platform and Sensor Configurations 
The findings from the investigated literature (n = 108) show that a variety of platforms 

and sensors were used. From a platform perspective, the majority of the studies used sen-
sors from space-borne platforms (69%), followed by sensors from ground-based platforms 
(20%), and lastly air-borne (11%) (Figure 6A). The images from optical sensors are the most 
heavily utilised amongst those selected for developing grass biomass retrieval models, 
followed by those from radar sensors. Light detecting and ranging (lidar) sensors were 
rarely utilised (Figure 6B). 

 
Figure 6. A depiction of (A) remote sensing platform, and (B) type of data used in the selected liter-
ature for AGGB retrieval. 

We further assessed if the remote sensing data type utilised had an impact on the 
performance of the AGGB algorithm by plotting boxplots using the coefficient of determi-
nation (R2) as presented in Figure 7. The median overall coefficient of determination for 
all the remote sensing data types was above 0.6. Radar-based AGGB retrieval algorithms 
achieved the highest median R2 compared to optical data. As shown in Figure 7, the 

Figure 6. A depiction of (A) remote sensing platform, and (B) type of data used in the selected
literature for AGGB retrieval.

We further assessed if the remote sensing data type utilised had an impact on the
performance of the AGGB algorithm by plotting boxplots using the coefficient of determina-
tion (R2) as presented in Figure 7. The median overall coefficient of determination for all the
remote sensing data types was above 0.6. Radar-based AGGB retrieval algorithms achieved
the highest median R2 compared to optical data. As shown in Figure 7, the accuracies
reported for the optical data in the surveyed literature show a large variability compared to
the accuracies of radar. The graph also indicates that there are no significant differences
between data types although there is much variability in the accuracies of the algorithm
derived using passive data.
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Table 1. Number of publications per individual sensor. 

Sensor Number of Studies 
MODIS 23 

Spectroradiometer 23 
Landsat 8 18 
Sentinel-2 13 
AVHRR 4 

Landsat-5 4 
Landsat-7 ETM+ 4 

SPOT-5 4 
SPOT VGT 4 

WorldView-2 4 
ENVISAT ASAR 4 

UAV 4 
WorldView-3 3 

PROBA-V 3 

Figure 7. Box plots showing median R2 by remote sensing data type. The dot shows outlier R2 values.
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From an individual sensor perspective, Table 1 shows a variety of sensors that were
applied in the AGGB estimation studies. Of the 33 types of sensors applied in the literature
under investigation, 72% were optical, 22% were radar and 6% were lidar. The top four
sensors that were employed the most were in the optical range and included MODIS, spec-
trometers, Landsat-8, and Sentinel-2. MODIS and spectroradiometers were the overall most
frequently used sensors for AGGB estimation. Within the radar sensor range, ENVISAT
ASAR was the most frequently used followed by Sentinel-1 (Table 1). Unlike optical sensors,
radar sensors such as TerraSAR, CosmoSkyMed, AlosPal-SAR, and Quikscat were utilised
in fewer studies. Table 2 shows the studies that applied radar in relation to the grassland
type. The savannah grasslands were investigated in three of the studies listed in the table.

Table 1. Number of publications per individual sensor.

Sensor Number of Studies

MODIS 23
Spectroradiometer 23

Landsat 8 18
Sentinel-2 13
AVHRR 4

Landsat-5 4
Landsat-7 ETM+ 4

SPOT-5 4
SPOT VGT 4

WorldView-2 4
ENVISAT ASAR 4

UAV 4
WorldView-3 3

PROBA-V 3
Lidar 3

Sentinel-1 3
TerraSAR-X 2

European Remote-Sensing (ERS-1) 2
ALOS PALSAR 2

HJ1B-CCD2 2
RADARSAT 2

COSMO-SkyMed (CSK) 1
Hyperion 1

Indian Remote Sensing 1
MERIS 1
HyMap 1

Apex 1
SSMI 1

Ultrasonic distance sensor 1
QuikScat 1
SPOT-4 1

Digital camera 1
SEA WIND 1

Studies that applied more than one sensor were counted several times, SSMI = Special Sensor Microwave Imager.

A further quantitative analysis of the spatial resolution of sensors used in the selected
literature shows that the spatial resolution of the sensor utilised in the reviewed literature
varied considerably. The majority of the studies employed sensors with spatial resolution
>30 m and 5–30 m and lastly 0–5 m (Figure 8). The most widely used sensors were
MODIS in the >30 m spatial resolution range and Spectroradiometer in the 0–5 m spatial
resolution range.
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Table 2. An overview of the studies that used radar sensors to estimate AGGB.

Authors Sensors Country Grassland Type

Sang et al. [34] ENVISAT-ASAR China Steppe
Moreau and Le Toan [35] ERS-1 Bolivia Savannah

Wang et al. [36] ENVISAT-ASAR and
ALOS POLSAR Australia Pampas

Svoray and Shoshany [15] ERS-1 Israel Steppe

Hajj et al. [37] TERRASAR-X-and
COSMO SKYMED France Steppe

Schmidt et al. [38] TERRASAR-X- Australia Savannah
[26] TERRASAR-X Ireland Steppe

Bao et al. [39] Sentinel-1 China Pampas
Naidoo et al. [40] Sentinel-1 South Africa Savannah

Braun et al. [41] ENVISAT-ASAR, ALOS
POLSAR and SSMI Senegal Savannah

Frolking et al. [42] SEA WIND United States Prairie
Wang et al. [43] Sentinel-1 United States Prairie

Li and Guo, 2017 [44] RADARSAT Canada Prairie
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Figure 8. Spatial resolution range associated with the sensors utilised in the reviewed literature.
Sensors that were utilised in less than three studies were excluded.

We then assessed if the spatial resolution influenced the accuracies obtained in these
studies. To do this, we grouped the sensors based on their spatial resolution and classified
them as high (≤5 m), medium (6–30 m), and low (>30 m). As shown in Figure 9A, there
is a relationship between the spatial resolution and the performance of the model. At a
higher spatial resolution, the studies consulted achieved high accuracies, with a mean
prediction accuracy of 0.75, while at a lower spatial resolution, low prediction accuracies
were reported. In addition, at the medium spatial resolution, the studies obtained highly
variable accuracies ranging from 0.28 to 0.75.

Figure 9B shows the median R2 per sensor. Unmanned aerial vehicle (UAV)-based sen-
sors had the highest median coefficient of determination, followed by lidar and Sentinel-3.
Generally, sensors with low spatial resolution seem to perform poorly, as also shown in this
analysis. Furthermore, the findings from the literature revealed an insignificant variability
across the estimates from each sensor class which had similar minimum RSE values.
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Figure 9. A depiction of (A) box plots showing R2 values for the categories of sensor spatial resolution
utilised in the surveyed literature (high ≤ 5 m, medium = 6–30 m and low ≥ 30 m), and (B) box plots
showing R2 values for the sensors utilised in the studies. Sensors utilised in less than three studies
are excluded. Studies that did not report the R2 value were also excluded from this analysis. The dot
shows outlier R2 values.

3.1.5. Predictor Variables Commonly Used in AGGB Studies

Several predictor variables (Table 3), such as raw spectral bands (SB), vegetation
indices (VI), backscatter coefficients (BC), sward height (SH), fraction of photosyntheti-
cally active radiation (FAPAR), agrometeorological variables (rainfall and temperature),
topographical variables and a combination of multiple variables (VC) have been widely
utilised in remote sensing AGGB. Of the predictor variables (n = 78) (Figure 10A), 48%
of the studies used vegetation indices as inputs in the developed models for estimat-
ing the AGGB, followed by a combination of two or more of the variables mentioned
above (e.g., spectral bands + vegetation indices + climate variables). Furthermore, 12% of
the studies used spectral bands while 11% of the studies used backscatter coefficients.
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Figure 10. A depiction of (A) predictor variable commonly used for estimating AGGB (SB = spectral
bands, VI = vegetation indices, BC = backscatter coefficients, SH = sward height, FAPAR = fraction
of photosynthetically active radiation, VC = variable composite, F = fusion); (B) vegetation indices
commonly used for estimating AGGB; and (C) box plots showing the R2 values per predictor variable
utilised. Variables utilised in less than three studies are excluded. The dot shows outlier R2 values.
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Table 3. A summary of the predictor variables that used in the surveyed literature.

Variable Name Expression/Spectral Bands Example Study

Backscatter HH Ali et al. [27]
Canopy Sward Height N/A Wijesingha et al. [45]

Enhanced Vegetation Index (EVI) (R851 − R655)/(R851 + 6R655 − 7.8R482 + 1) Meng et al. [12]
Fraction of Photosynthetically Active

Radiation (FAPAR) FAPAR = 1 − t − r + trs Schmidt et al. [38]

Modified Soil-Adjusted Vegetation
Index (MSAVI)

[2NIR + 1 − ((2NIR + 1)2 − 8(NIR − R))
0.5]/2 Jiang et al. [46]

Normalised Difference Vegetation
Index (NDVI)

NDVI = − (infrared band − red
band)/(infrared band + red band) Ikeda et al. [47]

Normalised Band Depth Index (NBDI) NBDI = BD − Dc/BD + D Ullah et al. [48]
Ratio Vegetation Index (RVI) RVI = NIR/Red Ding et al. [49]

Red Edge-Based NDVI (R750 − R705)/(R750 + R705) Li and Guo [50]
Red Edge-Based Simple Ratio (R708 − R755)/(R708 + R755) Mutanga and Skidmore [16]

Simple Ratio (SR) SR = NIR/Red Ren and Feng [51]
Soil-Adjusted Vegetation Index (SAVI) 1 + L × (RNIR − RRED)/(RNIR + RRED) + L Ren and Feng [51]

RNIR is the reflectance in the Near Infrared band, RRed is the reflectance in the Red band.

The results also revealed nine types of vegetation indices identified in the reviewed
literature (Figure 10B). Of the vegetation indices, the Normalised Difference Vegetation
Index (NDVI) was applied in half of the studies (n = 49), the red edge-based NDVI was the
second largest, followed by the Enhanced Vegetation Index (EVI) (8%) and the Modified
Soil-Adjusted Vegetation Index (MSAVI) (6%). Although the vegetation indices remain
the most widely used input variables in remote sensing-based AGGB retrieval models, the
accuracies obtained using these variables in the studies reviewed strongly vary compared
to those obtained using backscatter coefficients, sward height and red edge-based NDVI
variables (Figure 10C).

3.2. Algorithms Commonly Used in Remote Sensing-Based AGGB Studies

We detected nine regression (9) algorithms in the surveyed literature used to predict
AGGB in 82 studies (Figure 11A). Fifty-two percent (52%) of the studies used linear re-
gression methods. Only a few studies (8%) used machine learning algorithms such as
Random Forest (RF) and 4% used a production efficiency model such as PROSAIL. These
models yielded a median R2 value above 60% showing considerable prediction accuracies
in estimating the AGGB (Figure 11B). SPLRS had the highest average prediction accuracy
(85%) followed by RF andOLSR.
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Figure 11. A depiction of (A) models commonly used to retrieve AGGB within the reviewed studies,
and (B) box plots portraying the R2 values per model used in the surveyed studies (GLM = General
Linear Model, LR = Linear regression, MLR = Multiple linear regression, OLSR = Ordinary least square
regression, RF = Random Forest, SPLSR = Sparse Partial Least Square Regression, SMLR = stepwise
multiple linear regression). Models utilised in less than three studies are excluded. The dot shows
outlier R2 values.

4. Discussion
4.1. Milestones of Remote Sensing-Based AGGB Retrieval
4.1.1. Sampling and Analysis Protocol for Training and Validation Purposes

The ability of remote sensing-based algorithms to accurately measure biomass varies
with the type of grassland [52]. The evidence from the surveyed literature indicates that few
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studies developed remote sensing-based AGGB models in the savannah grasslands com-
pared to the steppe grasslands. This could be because the steppe is the world’s biggest and
most extensive grassland biome of the temperate climatic zone (i.e., the Eurasian Steppe)
spreading from Hungary to China. However, the savannah ecosystem is characterised
by a grass layer that co-exists with scattered trees and shrubs [53]. Surprisingly, savan-
nahs and steppes seem to yield regression qualities that are in close range. The prairie
and the Pampas grasslands showed similar trends, implying that the grassland type has
little effect on the accuracies of estimates derived from remote sensing data. This is an
intriguing observation given that the ecosystems are geographically located in different
climate zones (temperate vs. subtropical). On the other hand, accuracies obtained from
the Pampas grasslands seem less variable, suggesting some level of consistency across
these studies. This could be attributed to the fact that the Pampas grasslands are less
heterogeneous and consist of little to no trees [54] compared to savannahs, with a highly
variable vegetation structure and species. The co-existence of grasses, trees, and shrubs in
savannahs, specifically those on the African continent, present a different set of challenges
for remote sensing approaches to retrieve AGGB, hence the inconsistent results detected in
the reviewed literature. For example, savannahs in Sudan consist of scattered trees, which
form a transition with the Sahara Desert vegetation whereas the savannahs found in Guinea
consist of moist semi-deciduous woodlands which form a transition to the evergreen moist
forests [53]. Furthermore, fire and herbivory activities pose a further challenge for the
remote sensing-based AGGB estimation.

4.1.2. Geographical and Temporal Gradients Covered

A country-based analysis showed China as the highest contributor in terms of the
output of AGGB estimation research. The dominance of China could be because it occupies
a large portion of one of the most extensive Eurasian steppes in the world. Contrarily, de-
veloping countries contributed less, specifically those on the African continent. Compared
to most developing countries, China strengthened its satellite surveillance capabilities for
environmental monitoring with the launch of the HJ 1A/B optical imaging constellations
in 2008 [55] as well as the HJ 1C radar satellite. Further improvements followed with
the launch of the GaoFen-1 and 6 as well as Huanjing-2/A&B (HJ-2/A&B) [56]. Some
countries in the global south also followed; for example, Egypt launched the Nilesat 101
in 1998 and South Africa launched the SumbadilaSat in 1999 which was only in orbit for
2 years [57]. Many developing nations find it difficult to maintain their own satellites
due to the exorbitant expense of space rocket manufacturing and maintenance [57]. As a
result, there is a lack of sufficient and sustainable access to satellite imagery for this region.
Consequently, African countries still outsource remote sensing data from continents in the
global north such as North America and Europe. Nevertheless, the dawn of open access
policies to data and the Google Earth Engine (GEE) should stimulate the generation of new
knowledge in these regions in the near future.

The findings also show a significant uneven trend in the annual production of AGGB
retrieval studies across the years during the review period, particularly between the eras
1986–2005 and 2014–2020. The low research yields in the period 1986–2005 could be
because fewer sensors (e.g., Landsat and MODIS) were operational. The steady increase
in studies on AGGB after 2014 could be because of the gradual increase in sensor choice.
For example, the Sentinel-2 constellation was launched in 2015 and made available at
no cost. Nevertheless, an output of fewer than 20 articles per annum is inadequate to
conclude on the optimal data, sensors, variables and algorithm for retrieving the AGGB
in savannahs. Due to more available sensors (e.g., Landsat-9 and Sentinel-3), the rise is
predicted to accelerate exponentially in the next few years. The improved capacity of
computer hardware and software such as Google Earth Engine (GEE) that are designed
to provide high-performing cloud-based computing, pre-processing algorithms as well as
cloud-based storage should further increase the research outputs [22].
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4.1.3. Platform and Sensor Configurations

The variability in remote sensing data types and sensors and their associated spatial
resolution contributes to some level of uncertainty in the resulting AGGB estimates [58].
Optical sensors remain the most widely used, particularly from the MODIS and Landsat
missions. MODIS and Landsat boast of long-term operations, and the free access policy
associated with these constellations [59] further paved research methods to quantify the
AGGB. The pool of studies utilising these sensors in comparison to others provides proof
of this. The range of quality checked ready-to-use products [60] such as the MOD13Q1
from the MODIS constellation provide further benefits.

However, optical sensors such as MODIS have limitations [61–63], including their
failure to collect data on days that are overcast, smoky, or misty [64]. The inability of optical
sensors to capture data during these ad verse weather conditions impedes consistent
monitoring, resulting in the omission of useful information for AGGB estimation. The
selected studies show that optical sensors have a wide range of accuracies, implying
inconsistent predictions.

In contrast, active sensors such as radar and lidar offer alternative datasets for estimat-
ing AGGB. These sensors boast about their ability to penetrate clouds and therefore provide
data across all weather conditions. Despite this, radar was used in only 13 of the 108 stud-
ies reviewed. The low radar usage could be due to the cost tied to the data, therefore,
limiting its widespread usage. Furthermore, radar-derived imagery is difficult to interpret
for researchers with no prior knowledge and the processing is complex [65]. Nevertheless,
studies reported improved accuracies in AGGB estimates from radar-based models, which
were less variable, suggesting some level of consistency and dependable predictions. How-
ever, when considering the low-resolution sensors, it is evident that their accuracies might
be comparatively lower. However, what is interesting is the remarkably narrower spread
of values, excluding a notable outlier. This could indicate a higher level of consistency in
accuracy across the low-resolution sensors. Contrarily, the high-resolution sensor shows
a diverse range of accuracy values, which is further emphasized by the presence of an
outlier. Thus, the concept that a higher resolution guarantees superior results is not a
straightforward one. Nevertheless, the higher accuracies obtained for lidar and radar
could have been influenced by the smaller number publications that were analysed in this
review. The European Space Agency (ESA) currently distributes SAR data (i.e., Sentinel-1)
at no cost, to help deal with the access issue. However, few of the reviewed studies tested
Sentinel-1, signalling the need for further research.

For grass biomass studies, lidar metrics have also been used [66]. Unlike the popular
optical data which views the two-dimensional (2D) attributes of grasses, lidar can detect
three-dimensional (3D) attributes such as canopy height that can be used as proxies when
quantifying the AGGB [67,68]. Despite this strength, few of the reviewed studies used lidar.
This could be attributed to the fact that they cover small geographical footprints [69], which
could be expensive to extend in the extensive tropical savannahs.

The review also identified the application of UAVs to a lesser extent in the surveyed
studies. For example, only eight studies tested the utility of UAVs for deriving the AGGB.
While higher accuracies were observed at the higher spatial resolution, the use of UAVs is
limited to field scale [70] and their application in larger areas is restricted by their reliance
on batteries. Furthermore, UAVs require several continuous flights for complete coverage
in larger areas, which results in a large mosaic of tiles that need many hours to process [71].

While the use of a single sensor has individual shortfalls, combining sensors pro-
vides complimentary strength and fills in missing observations while ensuring data
continuity [66]. For example, combining Sentinel-1, Landsat-8, and Sentinel-2 showed
promising results, with Wang et al. [72] concluding that the estimation of the AGGB im-
proved by more than 30% relative to the performance of Sentinel-1 alone at low vegetation
cover and the optical data of Landsat-8 and Sentinel-2 at high vegetation cover. When com-
bining spectroscopy and small-footprint waveform light detection and ranging (wLidar)
data, Sarrazin et al. [67] concluded that fine-scale wLidar may not be able to provide
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accurate measurement of the herbaceous biomass and highlighted the need for further
investigation during the peak growing season. However, in their review, Calleja et al. [71]
found that the fusion of optical and UAV data was tested mostly in the ecology and preci-
sion agriculture. Few of the reviewed studies pursued fused optical and radar, lidar, UAV
or vice versa, and as such, this remains an open field of research.

Few studies used several spatial resolutions associated with sensors to develop AGGB
estimation models. Sensors with spatial resolution of 30 m and above were frequently used.
This could be due to data accessibility and costs at specific spatial resolution intervals. Sen-
sors with spatial resolution at 15 m and above (AVHRR, SPOT VEGT, MODIS, and Landsat)
have been freely accessible for decades compared to their counterparts (Worldview-1/2,
TerraSAR, lidar, or UAV-based sensors). Furthermore, earlier missions that piloted the use
of remote sensing for monitoring vegetation attributes started with sensors at a spatial
resolution of 15 m and above. For example, the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) Mission at 15–30 m spatial resolution, the vegetation
programme using SPOT VEGETATION at 1100 m, and the MODIS Land Group at 250, 500,
and 1000 m spatial resolutions [58,72].

Sensors with spatial resolution ranging from 250 to >1000 m are suitable for studies at
the national, continental, and global scale. Furthermore, sensors at 250 to >1000 m spatial
resolution provide the balance between spatial resolution, surface area coverage and high
frequency in data acquisition [13]. However, land surfaces are naturally heterogeneous
and at this scale, the probability of detecting and capturing minute objects is quite low [12].
In addition, collecting ground-truthing samples at a 1000 m scale is not time- and cost-
effective. This presents a large discrepancy between the size of the ground data and the
spatial resolution of the image. Spectral mixture techniques were explored as an alternative
to overcome the challenge of each pixel being a physical mixture of the multiple components
weighted by the dominant area and the mixture spectrum is a linear combination of the end-
member reflectance spectra [73]. On the bright side, the newly launched Sentinel-3 satellite
presents a new dawn of opportunities in estimating and monitoring the AGGB at a larger
scale. Compared to its predecessor (MERIS), Sentinel-3, specifically the Operational Land
Imager (OLI), consists of six added spectral bands, a large swath width and offers improved
signal-to-noise ratio (SNR) for monitoring vegetation condition [74]. Furthermore, while
other constellations are freely available for academic and research purposes, but limited for
commercial users, Sentinel-3 is anticipated to be freely available for both academic research
and commercial uses.

Fewer studies explored sensors with spatial resolution ranging between 0 and 5 m
and below. Although the spectral differences of grasslands can be captured accurately
at a resolution ranging between 0 and 5 m, datasets at this scale are usually not readily
accessible. The need for computers with large hard drives for storage further exacerbates
the application limitation already associated with such datasets. Furthermore, 0–5 m pixel
size is only applicable in localised areas of approximately 100 km2 and the processing time
necessary to cover wider geographical areas is large [36].

4.1.4. Predictor Variables

The surveyed literature used several predictor variables as input into the AGGB es-
timation models. Broadband vegetation indices, particular NDVI, were the most widely
used amongst the many variables. The frequent usage of NDVI could be because the
index was pioneered specifically to monitor the vegetation conditions, and ultimately
the AGGB. Nevertheless, NDVI is sensitive to the soil brightness and cloud shadow [75],
rendering it unfit, especially in areas with low grass cover. To reduce the effects of the
soil brightness, researchers pioneered the SR, EVI, and SAVI, although only a handful
of studies have applied them for estimating the AGGB in the surveyed studies. Fur-
thermore, NDVI is prone to saturation issues [16]. For example, in areas with high
grass cover, NDVI tends to lose sensitivity and therefore produces inaccurate AGGB
estimates. Narrowband widths (e.g., red edge position) from hyperspectral data are not
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prone to saturation issues [16]. Nevertheless, hyperspectral-derived predictor variables
have “The curse of dimensionality” [76], a condition that occurs when analysing high-
dimensional data that does not occur in low-dimensional spaces.

Other predictor variables including sward height [45], FAPAR [31,38], and backscatter
coefficients [32], along with a combination of multiple variables (spectral bands + VI) [77]
were developed. For example, FAPAR has been proven to improve prediction accuracies [61].
However, few of the studies reviewed applied these attributes. From a performance
perspective, NDVI is prone to obtaining low accuracies. Studies also show that the qualities
of NDVI-based regressions as measured by the R2 vary widely, suggesting inconsistent
and unreliable results. These findings are consistent with those of Zhao et al. [61] and
could stem from the fact that most of the studies computed the NDVI from the broadband
channels of optical sensors. According to Zhao et al. [78] “Broadband use the mean values
of spectral information over broadband widths resulting in the loss of critical information
that is available in specific narrow bands”. On the other hand, vegetation indices computed
from narrow bands such as red edge-based NDVI show better performance. In particular,
narrowband vegetation indices can maximise the contrast between grasslands and other
land cover categories, therefore providing improved estimations.

The use of radar-derived metrics such as backscatter in savannah grasslands performed
better in some studies [36,67]. For example, Wang et al. [36] demonstrated the capabilities
of ENVISAT-ASAR and ALOS POLSAR to measure pasture biomass in Western Australia
and obtained good results (i.e., R2 = 0.92). The low usage of radar-based metrics could be
that in addition to the extreme cost, they require some sophisticated software and expert
knowledge to interpret both the input and output results. Nevertheless, the launch of
Sentinel-1 should extend the predictor variables outside the broadband optical channel to
the microwave channels. Furthermore, while the highly priced hyperspectral-based narrow
bandwidths provided improved AGGB estimates, Sentinel-2 MSI is also affordable and has
robust spectral settings covering the red edge section of the electromagnetic spectrum. For
example, Shoko et al. [77] demonstrated the abilities of the red edge-based NDVI derived
from Sentinel-2 imagery.

4.1.5. Algorithms Developed

An analysis of the studies selected for the review showed that linear regression (LR)
techniques were widely applied. This could be because linear equations are inherently sim-
ple and so are easy to operate and interpret [79]. The computation of linear equations is less
time-efficient when compared to other retrieval algorithms. However, LR techniques are
parametric and have normality assumptions, a condition that is not always representative
of grass biomass on the ground.

Machine learning (ML) algorithms such as Random Forest have been developed and
favoured for their non-reliance on assumptions. Furthermore, ML can handle a large
number of datasets from heterogeneous landscapes, such as those in savannah ecosystems,
which consist of trees, shrubs, and a layer of grasses, making them complex landscapes.
However, in this review, fewer studies (8%) tested ML algorithms. Specifically, studies
coupling ML algorithms with radar data to estimate the AGGB in savannah landscapes.
Compared to conventional algorithms, ML algorithms are non-parametric and therefore
independent of assumptions [80]. Nevertheless, the low usage of these algorithms could be
because they are complex and not easily interpretable [81]. In fact, the majority of the ML
algorithms have been categorised as a “black box”, meaning that they do not show the user
the underlying process behind the prediction or provide features of importance [81].

To a smaller extent, Radiative Transfer models, specifically PROSAIL, have also been
applied in the reviewed studies. PROSAIL is a physical-based model that depends on
light absorption and scattering to compute vegetation properties. Compared to other
statistical-based algorithms and ML models, radiation efficiency models are more robust
and transferable as they use physical laws to express the transfer of light within grassland
canopies. However, physical-based models lag since different combinations of plant traits
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can produce the same reflectance spectra. In parallel, physical models tend to perform
better in retrieving some vegetation variables (e.g., chlorophyll content and leaf area index),
but perform poorly with others (e.g., biomass). Furthermore, if one variable in the model is
inaccurate, the whole model gets affected [24].

Today, although in its infancy, deep learning (DL) is emerging as the new genera-
tion of algorithms. DL algorithms have successfully delineated agricultural fields [82],
classified satellite imagery [83] and mapped soil organic carbon [84]. In parallel, DL algo-
rithms can handle “high dimensional data” and nonlinear relationships compared to their
counterparts [70]. DL algorithms require intensive computation and programming skills
to run them, hence their low application. However, there is a need for more experiments
and observations, especially for regional and global biomass estimation studies, given the
advent of “big data”.

From a performance perspective, the ML models yielded median R2 above 60%, show-
ing considerable prediction accuracies across all the algorithms used in estimating the
AGGB. Comparatively, linear regressions were observed to have a wide distribution of ac-
curacies (40% to >80%) in the reviewed studies compared to ML algorithms, which seem to
have a narrower distribution of R2 values. These results support those of Verrelst et al. [85]
who found that the choice of a model for estimating biophysical parameters of grasses has
an underlying impact on the accuracy of the results.

4.1.6. Sampling and Analysis Protocols

In situ data collection remains the most precise method of gathering representative
biomass samples [13]. Remotely sensed AGGB estimates require a set of ground-truthing
data to train and validate the models to be credible and reliable [14]. Scientists collect
in situ grass biomass samples to ensure consistency between what they observe on the
satellite image and the ground. Studies frequently harvest (cut and weigh) grass samples
for testing and validating remote sensing-based AGGB estimates using 1 m2 quadrats. They
then dry the collected samples mostly for 48 h at 65 degrees Celsius. However, the 1 m2

plot size does not match the spatial resolution of sensors mostly employed to extrapolate
these plot-based measurements, producing some uncertainty in the resulting estimates [14].
Furthermore, [13] pointed that the time-to-time administration and execution of fieldwork
activities is costly and tedious. He also observed that fieldwork costs are inversely pro-
portional to the quantity and quality of the validation samples. In order to overcome the
mismatch between the pixel size and in situ plot sizes and to compensate for the spatial
resolution of the chosen sensors, studies often demarcate sampling plots equal to the spa-
tial resolution of the sensor in less heterogeneous grasslands [17]. Nevertheless, UAVs
are emerging as alternatives for validating remote sensing-based AGGB estimates [86].
Recently, portable spectrometers such as Field Spec 3 Max have also served as alternatives
for ground-truthing of satellite images.

4.2. Research Challenges and Outlook
4.2.1. Research Challenges

The use of remote sensing to estimate the AGGB has shown considerable progress.
However, from the reviewed studies, some degree of inconsistency in accuracy exists
across the grassland types investigated, the predictor variables used, sensors, algorithms,
as well as the sampling protocols adopted. Furthermore, researchers have encountered a
myriad of obstacles in the pursuit of these estimates. From a grassland-type perspective,
especially those consisting of sparse vegetation, the major concern was the influence of
soil background [49], shadow from both clouds and topography, species diversity, and
vegetation litter, which obscured the spectral response of the grasses [87]. In addition,
grasslands in semi-arid areas such as the savannah consist of complex phenological stages,
canopy structures, and species, compelling the need for sensors with a high temporal
resolution. However, most readily available data covering the savannah have very low
temporal resolutions. For example, MODIS offers coarse resolution (1000 m) at high
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temporal resolution (daily) for consistent monitoring purposes and is accessible freely, yet
its application to localised studies is limited by its low spatial resolution. In areas with
abundant rainfall, vegetation density increases at a faster rate, requiring more frequent
observations [88].

As mentioned above, optical data remains the most widely used data type. However,
clouds, topographic shadow, fire smoke, and haze, especially in the tropics and subtropics,
with frequent cloud coverage, obscure the spectral response of the targeted vegetation using
optical data. This constantly results in observation cut-offs, and consequently the loss of
essential information. Radar sensors serve as alternative sources of datasets. Radar data has
an important role in AGGB estimation, especially in areas such as the savannah ecosystem
with its frequent cloudy conditions. While access to radar data is on the rise, some degree
of limitation was reported in the literature, including its sensitivity to vegetation water
content, soil moisture, winds, and humidity [89]. Furthermore, radar data analyses involved
in pre-processing, removal of noise, and image processing require specialised software,
knowledge, and skills to operate the software and ultimately interpret the results. Although
radar datasets are available at no cost lately, there is still a relative lack of studies from
which to draw concrete conclusions regarding their potential. The same observation can be
made about lidar. However, lidar is expensive for applications in the savannah ecosystem.

Another pressing concern in the use of remote sensing to derive AGGB estimates is
the issue of resolution (spatial, temporal, or spectral) [88]. Generally, landscapes across the
globe are a collage consisting of a diverse range of vegetation classes configured differently
(i.e., physiology and morphology), and savannah ecosystems are no exception. Sensors
with a high spatial resolution were reported to address the issues around heterogeneity,
which usually confuses pixels [13]. The major shortcoming associated with higher spatial
resolution sensors is their price tag, but observations at lower spatial resolution risk the
possibility of having more than one vegetation class in a single pixel [13]. The temporal
resolution also presents further challenges. For example, monitoring vegetation variables
frequently requires sensors with higher temporal resolutions. However, there is a lack of
balance between the sensor’s spatial and temporal resolution. For example, an increase in
the sensor’s pixel size implies a decrease in the temporal resolution [89]. In other words,
gaining very precise estimates comes at the cost of omitting the time information associated
with the observed vegetation variable [89]. Although high-resolution sensors have been
proven to provide accurate estimates of the AGGB, they are, however, limited in scope
because they do not capture images on a global scale, but rather at small footprints.

Several researchers reported saturation as an issue when retrieving the AGGB using
remote sensing data [16]. For optical data, predictor variables such as the widely used
NDVI tend to saturate at dense vegetation. A possible reason for this could be that when
the density of vegetation reaches full coverage, the amount of red light that can be absorbed
by leaves reaches a peak and, therefore, the sensitivity of reflectance starts diminishing with
a rise in biomass [16]. The red edge position seems capable of overcoming the saturation
encountered when using broadband-derived spectra and indices [16]. For radar data,
saturation was obtained above 200 Mg ha−1 [89].

The most notable algorithm used in the consulted studies was statistical regression,
specifically the linear function. However, statistical regression algorithms fail to detect
the complex relationships that may be associated with the predicted variable without
overfitting the models. Furthermore, these models seem to be limited to the specific sites in
which they were developed, hence lacking both temporal and spatial transferability [14].
Researchers have attempted to transfer the models across sites with no luck in terms of
accuracy, and encountering inconsistencies when transferring the models across temporal
scales. Other studies highlighted the mismatch between the estimation and in situ mea-
surement scale as a major concern [83]. For example, 1 m2 size subplots are normally used
to collect samples for tuning the AGGB models and then scaled up to the selected sensor
(e.g., 30 m) spatial resolution resulting in uncertain estimates [39].
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4.2.2. Limitations of the Study

While a large number of studies pursuing optimal AGGB algorithms were conducted
in the steppe ecosystems in the temperate climate zone, studies conducted in the tropical
and subtropical grasslands, particularly the savannah ecosystem, are few, yet their differ-
ent physiology and morphology may affect the models’ accuracies. Thus, the savannah
ecosystem is open for further research. Furthermore, some publications were available in
the abstract, while others were published in their native languages. We only considered
publications that were published in English. In addition, we only considered articles that
were available in PDF files. Furthermore, certain institutions subscribe to certain journals,
resulting in limited access. All of this may have an impact on the number of publications as
well as the geographical distribution of studies. Most remote sensing-based algorithms are
subjected to a rigorous quality assessment to check for the fitness-for-purpose as well as the
accuracy. While the latter is of great importance as it checks how close or far the predicted
values are from the actual data modelled, the common model assessment index across all
the studies was the R2. As such, for this review, we considered the commonly reported R2

index as a measure of the model performance.

4.2.3. Research Outlook

While considerable milestones have been realised in terms of the spatial distribution,
sensors, development of predictor variables, and the engineering of extracting models,
considerable research opportunities also exist. We provide the following summary:

• Developed countries contributed more research on remote sensing-based AGGB com-
pared to developing countries. As such, more research should be performed in the
global south in order to promote an all-inclusive regional reporting.

• Few studies applied remote sensors operating outside the optical channel of the
electromagnetic spectrum (i.e., microwave) for retrieving the AGGB. Specifically, radar-
derived metrics could add tangible value to the performance of biomass estimation
models. The freely available Sentinel-1 offers an opportunity to quantify the AGGB in
savannah ecosystems.

• The integration of radar images shows promising results and a further exploration of
the complimentary aspect of these sensors should improve the baseline models.

• Although costly, lidar datasets seem promising in terms of accuracy and further studies
should explore their full potential in AGGB estimation.

• Despite their limitation, the vegetation indices remain the major predictor variables.
Thus, improved accuracies of estimating the AGGB may be realised with the incorpo-
ration of supplementary variables such as sward height, FAPAR, agro-meteorological,
and topographical variables.

• From a radar perspective, the soil moisture and soil roughness should be taken into
consideration during modelling since they contaminate the backscattering processes.

• Many researchers have relied on the less transferable linear regression while machine
learning approaches have not been fully explored. However, deep learning algorithms
are emerging as the new dawn of algorithms and their utility in AGGB estimation is
in its infancy, thereby leaving a gap for further research.

• The mismatch between the estimating and validation scale reduces the accuracy of
estimating the AGGB. The lack of consistency between the in situ measurement and
sampling protocol further hinders the comparability across the studies. This signals
the need to benchmark the sampling process.

• It is also of interest to explore the use of the newly launched Sentinel-3 and Landsat-9
OLI in quantifying the AGGB in savannah ecosystems.

• Future research on AGGB estimation should focus on the application of multi-source
data and multi-temporal data available via cloud-based applications, including GEE,
Microsoft Azure and Amazon Web Services (AWS).
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5. Conclusions

This study synthesised findings of AGGB studies published in the literature to map
the current state of the art and provide guidelines for model performance derived from
decades of research. Authors have explored remote sensing-based models in steppes, while
the African savannah ecosystems have not been fully explored. Savannahs consist of a
grass layer that co-exists with scattered trees and shrubs, which may affect the results
differently compared to the less heterogeneous steppe landscape. In optical remote sensing,
particularly, MODIS and Landsat remain the main source of remotely sensed data for AGGB
estimation even though they are affected by soil background and clouds, and are prone to
saturation issues. Studies using SAR data, especially Sentinel-1, are scarce on a global scale,
but the scarcity is more pronounced on the African continent despite being freely available.
Vegetation indices, particularly NDVI, are a major AGGB predictor variable. However, the
red edge position was pioneered to enhance the estimation of the AGGB and to reduce the
saturation effects associated with broad bands. The existence of advanced machine learning
algorithms dates back a while, yet researchers still rely on linear regression techniques. The
newly developed deep learning algorithms should be explored further. Our results strongly
suggest that the remote sensing-based AGGB findings are inconsistent across the consulted
studies, making it difficult to draw conclusions on the optimal and universal model that can
be used for estimating the AGGB in grasslands. There is, therefore, a need for standardising
the remote sensing techniques, including the in situ data collection methods to ensure
transferability of remote sensing-based AGGB models across multiple locations. Overall,
this study has comprehensibly mapped the potential of remote sensing in retrieving AGGB
estimates on a global scale.
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