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Abstract: Lip reading, the art of deciphering spoken words from the visual cues of lip movements,
has garnered significant interest for its potential applications in diverse fields, including assistive
technologies, human–computer interaction, and security systems. With the rapid advancements in
technology and the increasing emphasis on non-verbal communication methods, the significance of
lip reading has expanded beyond its traditional boundaries. These technological advancements have
led to the generation of large-scale and complex datasets, necessitating the use of cutting-edge deep
learning tools that are adept at handling such intricacies. In this study, we propose an innovative
approach combining 3D Convolutional Neural Networks (CNNs) and Long Short-Term Memory
(LSTM) networks to tackle the challenging task of word recognition from lip movements. Our
research leverages a meticulously curated dataset, named MobLip, encompassing various speech
patterns, speakers, and environmental conditions. The synergy between the spatial information
extracted by 3D CNNs and the temporal dynamics captured by LSTMs yields impressive results,
achieving an accuracy rate of up to 87.5%, showcasing robustness to lighting variations and speaker
diversity. Comparative experiments demonstrate our model’s superiority over existing lip-reading
approaches, underlining its potential for real-world deployment. Furthermore, we discuss ethical
considerations and propose avenues for future research, such as multimodal integration with audio
data and expanded language support. In conclusion, our 3D CNN-LSTM architecture presents a
promising solution to the complex problem of word recognition from lip movements, contributing to
the advancement of communication technology and opening doors to innovative applications in an
increasingly visual world.

Keywords: lip reading; word recognition; deep learning

1. Introduction

The visual signals encoded within lip movements have long fascinated researchers,
linguists, and technologists in the field of human communication. The ability to decode
spoken language from the intricate movements of the lips has transformative potential
in a variety of domains, including enhancing accessibility for people with speech and
hearing impairments and furthering human–computer interaction through unobtrusive
communication. Rooted in the observation that lip movements carry valuable information
about spoken language, the field has evolved from its historical foundations to embrace
modern computational approaches [1].

Lip reading as a technology holds immense potential for transformative applications
in various medical contexts. One significant application lies in the field of assistive technolo-
gies, where it can serve as a valuable tool for individuals with hearing impairments or with
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vocal cord lesions [2]. By accurately interpreting spoken words through lip movements,
this technology can enhance communication and accessibility for these people, contributing
to an improved quality of life. Moreover, the integration of lip-reading technology into
healthcare settings can have implications for patient–doctor communication. In scenar-
ios where traditional communication channels may be limited, such as during medical
procedures or in noisy environments, the lip-reading task can offer an additional means
of understanding patient needs and concerns. This can foster better doctor–patient inter-
actions and contribute to more effective healthcare delivery. Finally, lip reading has the
potential to play a role in health monitoring and diagnostics. Changes in speech patterns
or lip movements may be indicative of certain health conditions, and the integration of
lip-reading technology into diagnostic tools could provide valuable insights for healthcare
professionals. Beyond healthcare, such models can also be used for biometric identification,
enhancing security [3]. Finally, they can be used in novel virtual reality applications, such
as avatar creation, gaming, and interaction with computers/robots, or even in film making,
since there already exist applications that generate realistic face animations from images
based on audio [4].

In parallel, in the machine learning field, several advanced algorithms based on neural net-
works have been proposed to solve complex tasks in biomedical image analysis. For example,
the Complementary Adversarial Network-driven Surface Defect Detection (CASDD) frame-
work [5] was proposed to address the intrinsic challenges of intra-class differences. This frame-
work integrates encoding–decoding segmentation, dilated convolutional layers, and a com-
plementary discriminator mechanism. The Fusion Attention Block Network (FABNet) [6]
introduced a model transfer method grounded in clinical experience and sample analysis.
Additionally, an end-to-end Depth Domain Adaptive Network (DDANet) was proposed to
address challenges related to interpretability in laryngeal tumor grading [7]. By integrat-
ing prior-experience-guided attention and integration gradient Class Activation Mapping
(CAM), this approach achieved elevated grading accuracy and interpretability, bridging
the gap between computer vision-based and pathology-based diagnoses. Based on a
Transformer component, the Focal Loss-Swin-Transformer Network (FL-STNet) model
was introduced for lung adenocarcinoma classification [8], which exhibited efficacy in
capturing both the overall tissue structure and local details. In a parallel context, an adap-
tive model fusion strategy was created for breast cancer tumor grading, amalgamating
Vision Transformer (ViT) and Convolutional Neural Network (CNN) blocks with inte-
grated attention [9]. This approach attained an accuracy of 95.14%, surpassing ViT-B/16
and FABNet. Finally, Omar et al. [10] focused on optimizing epileptic seizure recognition
using deep learning models. Various architectures were explored, such as Conv1D, Long
Short-Term Memory (LSTM), bidirectional LSTM (BiLSTM), and Gated Recurrent Units
(GRUs). The study identified the Conv1D-LSTM architecture, augmented with dropout
layers, as more effective, while the impact of feature scaling, principal component analysis
(PCA), and feature selection methods was highlighted. In the realm of facial recognition,
Taha et al. [11] introduced a novel approach to recognize faces with masks, integrating
mask detection, landmark detection, and oval face detection. This was performed using
robust principal component analysis (RPCA) and a pretrained ssd-MobileNetV2 model for
mask detection, and the features were optimized with the Gazelle Optimization Algorithm
(GOA). This approach can be used in diverse applications, including security systems,
access control, and public health measures. Collectively, these frameworks showcased
innovative solutions tailored to address specific challenges in real-world applications of
biomedical image processing.

Toward visual speech analysis, initial efforts included approaches mainly based on
Hidden Markov Models [12,13]. However, during the last few years, the integration of
deep learning models, marked by their ability to discern complex patterns within data,
has propelled lip reading into a new era of accuracy and applicability [2,14]. In addition,
several databases holding audiovisual data have been created [15], although predominantly
for English and a few other widely spoken languages.
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This paper embarks on a journey into the enchanting domain of lip reading, where the
fusion of advanced algorithms and computer vision techniques elevates the subtleties of
visual speech to an extraordinary level of comprehension. Through this exploration, we
embrace the fusion of human perception and computational innovation, forging a path that
converges human intuition with the transformative capabilities of technology. Motivated
by the lack of data for the Greek language, we created the “MobLip” dataset, containing
lip frames from 30 subjects, including sentences with several of the most common Greek
words. Then, in order to maximize the accuracy of word recognition, we implemented and
compared various different deep neural network architectures.

2. Related Work

Lip reading was revolutionized by the work of Assael et al. [16], who introduced Lip-
Net, an innovative end-to-end model designed specifically for sentence-level comprehen-
sion. This study delves deeply into the architectural complexities of LipNet, emphasizing
its innovative sequence-to-sequence framework that directly translates lip image sequences
into coherent word sequences. The authors positioned LipNet as an innovative solution
capable of deciphering the complexities of spoken language through visual signals by
addressing the multifaceted difficulties of lip reading. The heart of the LipNet architecture
was the sequence-to-sequence framework, which seamlessly integrated CNN and LSTM
networks. This dynamic fusion empowered the model to automatically learn the intricate
spatiotemporal relationships inherent in lip movements across time, creating a unified rep-
resentation of lip gestures that directly informs the sentence-level interpretation. As a result,
LipNet exhibited a remarkable capacity to capture both fine-grained visual details and tem-
poral patterns, thus aligning with the complex nature of spoken language. To validate the
efficacy of their creation, Assael et al. [16] conducted extensive experiments on a large-scale
lip-reading dataset, evaluating LipNet’s performance against existing benchmarks. On the
GRID corpus, LipNet yielded a 95.2% accuracy, highlighting the model’s ability to correctly
predict words and sentences solely from the sequences of lip images. The results unveiled
LipNet’s remarkable ability to outperform traditional methods and excel at the challenging
task of sentence-level lip reading. Notably, the model demonstrated proficiency across
various accents, languages, and speaking styles, underlining its versatility in tackling the
complexities of real-world lip reading.

Furthermore, three different architectures were proposed for lip reading sentences
using the BBC LRS2 dataset by Afouras et al. [17]. The front-end of all three systems was
composed of a 3D-CNN and a ResNet. The initial architecture used an external language
model to aid with decoding, and its back-end comprised three stacked bidirectional LSTMs
trained with a Connectionist Temporal Classification (CTC) loss. Based on the standard
model presented in [18], the second system employed an attention-based transformer with
an encoder–decoder architecture. In every evaluation scenario, the transformer model
outperformed the bidirectional LSTM model, achieving 50% in terms of word accuracy.
It was also found that the transformer model was superior to the bidirectional LSTM model
in the task of generating longer sequences (those with more than 80 frames). Moreover,
as the bidirectional LSTM model relied on the CTC’s premise of conditionally independent
time-step outputs, it was unable to learn long-term, nonlinear dependencies or model
complicated grammatical rules.

Yang et al. [19] proposed an architecture for lip reading Chinese words from the
LRW1000 dataset named the D3D model. It consisted of a front-end with a spatiotemporal
CNN whose topology was similar to that of DenseNet, with phases of convolution, batch
normalization, and pooling, followed by three combinations of a Dense-Block and Trans-
Block, plus a final Dense-Block. Each Dense-Block consisted of two layers of convolution
and batch normalization, whereas each Trans-Block consisted of three layers of batch nor-
malization, convolution, and average pooling. The back-end comprised two Bidirectional
Gated Recurrent Units (BGRUs) with a 100-class softmax layer for each of the 100 words in
the LRW-1000 dataset. The accuracy of the D3D model was 34.76%.
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In an interesting approach, Petridis et al. [20] presented an end-to-end audiovisual
model based on residual networks and BGRUs. This model automatically extracted features
from image and sound streams and performed word recognition. Martinez et al. [21]
developed a word-based lip-reading system comparable to that of Petridis et al. [20] with
a similar front-end consisting of a spatiotemporal CNN and a ResNet-18 CNN. For the
back-end, the BGRU had been replaced with a network called the Multi-Scale Temporal
Convolutional Network (MS-TCN), designed to customize the TCN’s receptive field so
that long- and short-term information could be combined. An MSTCN block comprised
a series of TCNs, each with a unique kernel size, with the outputs concatenated. Their
system was trained and evaluated using the English dataset LRW and the Mandarin
dataset LRW-1000, achieving 85.3% and 41.5% word accuracy, respectively. In addition to
increasing the system’s accuracy, Petridis et al. [20] also observed a two-thirds reduction in
GPU training time.

More recently, Ma et al. [22] proposed a modification of Martinez et al.’s system by
employing a Densely Connected Temporal Convolutional Network (DC-TCN) instead of
the MS-TCN present in the front-end in order to provide denser and more robust temporal
features. Fully Dense (FD) and Partially Dense (PD) architectures were utilized, as well as
an additional “Squeeze and Excitation” block within the network, which was a lightweight
attention mechanism that further improved the classification power of the model. They
achieved word accuracy rates of 88.4% and 43.7% for the LRW and LRW-1000 datasets,
respectively, which was an improvement over Martinez et al. [21]. Notably, a speech
training system was developed for individuals with hearing impairment and dysphonia
using a CNN and an RNN [23]. First and foremost, a database for speech training was
created to store the mouth shapes and gesture language vocabulary of individuals without
impaired hearing or dysphonia. The system as a whole combined MobileNet and LSTM
networks to conduct lip reading and then compared the result to the lip shapes of those with
impaired hearing. Lastly, the system compared and analyzed the lip size, opening angle,
lip shape, and other information of the individuals with impaired hearing and provided a
standard lip-reading sequence for the individuals’ learning and training.

Other interesting approaches based on state-of-the-art concepts in deep learning
employ Gated Recurrent Units (a different form of RNN) to construct an encoder–decoder
to learn phrases [24]. The attention mechanism was employed in the RNN for lip-reading
recognition in combination with a CNN for image feature extraction [25]. The attention
mechanism was also employed on visual data for speech representation using sub-word
units [26]. Generative adversarial networks (GANs) were the basis of the visual context
attention GAN (VCA-GAN) model [27], which integrates local and global lip movements for
speech generation. Finally, graph convolutional networks were used for lip reading in the
Adaptive Semantic-Spatio-Temporal Graph Convolution Network (ASST-GCN) model [28],
which exploits dynamic mouth contours from visual data. For further reading, surveys
dedicated to deep learning in lip reading have been recently published, such as [2,29].

3. Materials and Methods

The Let’s talk! methodology, as illustrated in Figure 1, encompasses the preliminary
stages of pre-processing, wherein procedures such as frame extraction, facial landmark iden-
tification, and lip segmentation are applied to the initial video data. These pre-processing
steps contribute to the creation of the MobLip dataset, serving as the fundamental building
block for subsequent stages. The synthesis of the MobLip dataset is a critical element in
the pipeline, providing a robust foundation for training personalized models. Leveraging
the 3D CNN and LSTM algorithm, these personalized models are tailored to individual
patients, fostering a unique and precise approach to lip reading. Moving forward in the
pipeline, the integration of these personalized models into the Let’s talk! mobile application
marks a seamless transition, ensuring accessibility and usability for end-users. The mobile
application is engineered to harness the real-time frame capture capability inherent in smart-
phones, particularly utilizing the front camera for optimal user engagement. The activation
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of this innovative feature initiates the integration of personalized models, thereby empow-
ering users with access to a highly tailored and efficient speech recognition functionality.
The strategic interplay of pre-processing, dataset synthesis, model training, and mobile
application integration underscores the holistic and carefully orchestrated nature of the
Let’s talk! methodology.

Figure 1. (a) The analysis andpre-processingof the video recordings, (b) MobLip dataset creation, and
the integration of personalized models into the mobile application.

3.1. MobLip Dataset

The absence of publicly available datasets in the Greek language, along with the need
to further evaluate the developed models, led to the collection of a new dataset, named
MobLip. As part of the Let’s talk! project, thirty participants were requested to recite a
unique one-minute text, and their performance was captured on video. As for the sampling
rate of the original video recordings, it was set to 30 frames per second. This frequency
was chosen to provide high image quality to aid in the analysis of these data, which is
critical for reliable data analysis and the subsequent training of the model. The selection
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of the text recited by participants was a strategic process, tailored to encompass the most
prevalent and representative words within the Greek language. The annotation process,
an essential stage in dataset preparation, relied on a structured file accompanying each
video recording. This file cataloged each word articulated in the recordings, precisely
noting their corresponding start and end times. Notably, these annotations were made by
clinical experts who are well versed in linguistic and speech analysis.

An essential subsequent step in dataset preparation involved the precise mapping
of word durations to the sequences of lip movement frames. For this reason, the start
and end times were converted into indices of frames by multiplying each time by the
number of frames per second (fps) and dividing by 10,000 to obtain the start and end
frames. An intriguing observation surfaced during the annotation phase: certain tiny
words, including pronouns and grammatical articles, exhibited fewer associated frames
compared to their larger counterparts. However, maintaining a consistent frame count for
each word throughout the training phase stands as a pivotal requisite for word prediction
models. Addressing this challenge necessitated the implementation of oversampling or
undersampling techniques. These methodologies were applied to the extracted frames
encompassing the lip regions corresponding to individual words, ensuring the preservation
of a fixed number of words within each sequence. This exhaustive preparation and curation
process culminated in the assembly of an extensive repository of 55,275 images, each bearing
intrinsic linguistic and facial movement data. The resulting MobLip dataset not only serves
as a testament to data collection and annotation but also stands as a foundational resource
poised to invigorate advancements in Greek-language-based AI models, particularly in
speech recognition driven by lip movement analysis. Table 1 provides a comprehensive
overview of the dataset’s distinctive features.

Table 1. MobLip dataset description.

Feature Description

Name MobLip
Language Greek
Collection purpose Let’s talk! project
Participants 30
Recording specification 30 frames per second
Text content Unique one-minute text with prevalent Greek words
Annotation Each word annotated with start and end times in video frames
Frame mapping Times converted to frame indices for word categorization
Frame adjustments Oversampling/undersampling for consistent word frame count
Total images gathered 55,275
Totalnumber of training words 3685

3.2. Facial Landmark Detection

Lip segmentation begins with the extraction of images that make up the original video
recording. After a predetermined number of images have been extracted based on the sam-
pling rate of the recording, the facial landmark detection algorithm can be applied. Various
methods for facial landmark detection have been described in the literature, but regression-
based methods predominate. Through the Dlib library, which implements a facial landmark
estimator, the facial landmarks of MobLip dataset participants were obtained. The primary
characteristics of the facial landmark detection algorithm are the employment of a set of
trained regression trees to correctly estimate the landmark locations of the face directly
from a sparse subset of pixel intensities and the usage of a sparse subset of pixel intensities.
It utilizes a cascade of regression classifiers, with each classifier predicting an updated
vector of facial landmarks based on the Gradient Boosting (GB) classifier. The following
methodology combines weak classifiers with a strong one, with the objective of learning the
set of regression trees that minimizes the sum of squared errors and achieves satisfactory
real-time operation results.
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3.3. Computational Models

Personalized models were developed from the MobLip dataset for each participant
so that the model could be trained on specific images and, consequently, words. Each
participant in the MobLip dataset formulated unique text, resulting in a unique training
set of images and words. Thus, the algorithm “learns” each individual’s speech pattern,
facial characteristics, and lip shape. The developed personalized models were trained to
recognize a person’s unique speech patterns and vocal movements, making them more
effective and efficient at comprehending the specific speech pattern. In addition, they
are more adaptable, which aids in overcoming difficulties associated with differences in
pronunciation or speech issues in general. On this basis, 29 distinct personalized models
were trained on each participant’s data (one subject was excluded from the MobLip dataset
because, in most images, his lips were closed due to his difficulty speaking).

Multiple architectures were investigated and developed in order to select the most
effective and efficient one for the MobLip dataset. The table below displays all the architec-
tures that were evaluated to determine the optimal one for word recognition.

The pursuit of the most effective architecture for word recognition led to an exten-
sive exploration of multiple neural network architectures, as presented in Table 2. Initial
experimentation involved leveraging pretrained CNNs tailored for lip reading, including
VGG-16, ResNet50, Inception V3, and MobileNetV2, which are commonly used for image
recognition tasks. These models underwent extensive testing, both with and without
recurrent neural networks (RNNs). Subsequent refinements involved employing transfer
learning methodologies and retraining these models specifically on the MobLip dataset. Fur-
thermore, alternative architectures including two-dimensional (2D) and three-dimensional
(3D) CNNs and RNNs were evaluated. The fusion of a 3D CNN with an LSTM network
yielded the most adept and efficient architecture for lip-reading tasks.

Table 2. Types of examined architectures.

Type Architectures Dataset

Pretrained CNN Inception V3, VGG-16,
ResNet-50, MobileNetV2

ImageNet and transfer
learning to the MobLip

Pretrained CNN and RNN
Inception V3, VGG-16,

ResNet-50, MobileNetV2,
along with LSTM

ImageNet and transfer
learning to the MobLip

RNN LSTM MobLip

CNN 2D-CNN, 3D-CNN MobLip

CNN and RNN 3D CNN and LSTM MobLip

The lip-reading algorithm developed as part of the Let’s talk! project is a combination of
a 3D CNN and LSTM. The input data consist of a sequence of fifteen RGB 160 × 80 images.
The MobLip dataset is the source of the images used as input for the algorithm. The architecture
begins with a series of 3D CNNs that derive spatiotemporal characteristics from the input data.
Batch normalization is performed after each level of convolution to enhance the stability of
the training. Rectified Linear Unit Activation Functions (ReLUs) introduce nonlinearity and
boost the model’s capacity for representation. After activating the first convolution layer,
the spatial-dropout normalization technique is employed to randomly drop features from
each image to prevent overfitting. Max-pooling layers decrease the sampling of feature
maps and the computational complexity of the model, thereby enhancing its performance.

To prepare for the iterative layers, the output of the convolutional layers is reshaped
using the TimeDistributed wrapper and converted to a vector. The bidirectional LSTM
layers are utilized to model the sequence’s temporal dependencies. The model’s ability
to comprehend sequential patterns is enhanced by its ability to capture information from
both past and future time steps due to its bidirectional nature. Dropout is applied after
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each level of LSTM to further normalize the model. Through fully connected layers (FCLs),
the output of the final LSTM layer is transformed into a vector. The final dense layer with
a softmax activation function generates a probability distribution over the target classes,
indicating the likelihood of correctly predicting each class.

The 3D convolutional layers employ different parameters to extract features, such as
padding with a size of (1, 2, 2) to preserve spatial dimensions, a stride of (1, 2, 2) for the
first convolutional layer and (1, 1, 1) for the subsequent ones, and kernel sizes of (3, 5, 5)
for the first two convolutional layers and (3, 3, 3) for the third one. The weights of the
convolutional layers are initialized using the he_normal method. Batch normalization
is applied after each convolutional layer to normalize the activations. ReLU activation
functions are used to introduce nonlinearity and enhance the model’s representational
power. Spatial dropout with a rate of 0.25 is employed after the first activation layer to
randomly drop out features within each frame and prevent overfitting. Max pooling is
performed with a pool size of (1, 2, 2) and strides of (1, 2, 2) after each dropout layer to
downsample the feature maps. The TimeDistributed wrapper is applied to reshape the
output of the last max-pooling layer to prepare it for the recurrent layers. The bidirectional
LSTM layers are configured with 256 units, return_sequences set to True to propagate
information along the time steps, and the Orthogonal kernel initializer. Dropout with
a rate of 0.5 is applied after each LSTM layer to further regularize the model. A flatten
layer is used to reshape the output of the second LSTM layer before passing it through
fully connected layers. The final dense layer has the number of units equal to the number
of target classes and is initialized using the he_normal method. The softmax activation
function is applied to produce a probability distribution over the classes, indicating the
likelihood of each class prediction. These parameter settings, combined with the specified
architecture, allow the model to effectively extract spatial and temporal features from the
input video sequences and model long-term dependencies using recurrent layers.

Table 3 presents the key parameters employed during the training of the lip-reading
model. The input shape, initialized with the dimensions (15, 160, 80, 3), represents a
sequence of 15 frames, with each frame consisting of an image of size 160 × 80 pixels in
RGB format. The subsequent layers unfold the specifics, including padding, convolutional
strides, kernel sizes, and dropout rates, capturing the details of the 3D CNN and LSTM ar-
chitecture. Notably, the bidirectional LSTM layers introduce memory units of 512, fostering
the model’s capacity for capturing temporal dependencies. The final dense layer, activated
through softmax, outputs predictions for a variable number of classes. Additional training
configurations, such as batch size (32) and epochs (500), are also documented. The model
architecture is summarized in Figure 2.

Figure 2. Let’s Talk! architecture.
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Table 3. 3D CNN and LSTM parameters.

Layer Parameter Value Output Shape

Input - - (None, 15, 160, 80, 3)
ZeroPadding3D (zero1) Padding (1, 2, 2) (None, 17, 164, 84, 3)
Conv3D (conv1) Stride kernel size (1, 2, 2), (3, 5, 5) (None, 15, 80, 40, 32)
BatchNormalization (batc1) - - (None, 15, 80, 40, 32)
Activation (actv1) - - (None, 15, 80, 40, 32)
SpatialDropout3D Rate 0.25 (None, 15, 80, 40, 32)
MaxPooling3D (max1) Pool size (1, 2, 2) (None, 15, 40, 20, 32)
ZeroPadding3D (zero2) Padding (1, 2, 2) (None, 17, 42, 22, 32)
Conv3D (conv2) Stride kernel size (1, 1, 1), (3, 3, 3) (None, 15, 40, 20, 128)
BatchNormalization (batc2) - - (None, 15, 40, 20, 128)
Activation (actv2) - - (None, 15, 40, 20, 128)
SpatialDropout3D Rate 0.25 (None, 15, 40, 20, 128)
MaxPooling3D (max2) Pool Size (1, 2, 2) (None, 15, 20, 10, 128)
TimeDistributed - - (None, 15, 25600)
Bidirectional (lstm1) Units 512 (None, 15, 512)
Dropout Rate 0.5 (None, 15, 512)
Bidirectional (lstm2) Units 512 (None, 15, 512)
Dropout Rate 0.5 (None, 15, 512)
Flatten - - (None, 7680)
Dense (dense1) Activation Softmax (None, number of classes)
Activation (softmax) - - (None, number of classes)
- Batch size 32 -
- Epochs 500 -

4. Results

While performing the annotation process, validation data were collected since each
text contains words that appear more than twice at various times in the original video
recording. These frames were not provided for training and were kept for the purpose of
validating each personalized model. This method of verification is trustworthy because the
previous and subsequent terms differ from those in the training set. In addition, the second
time the participant pronounces the word, the manner of speech or pronunciation may
be different, thereby validating the model’s generalizability. The total number of images
provided for validation is 4425. Table 4 shows the results from the MobLip participants
obtained during the verification phase of the personalized models.

During the verification of the personalized models, the number of words spoken
each time may have varied, depending on when the words were repeated in each video
recording. As previously stated, each participant uttered a unique text, resulting in a
variance in the number of words and, consequently, the number of resulting images.
The results indicate that the model accurately anticipated the words for the majority of
participants. The accuracy ranges from 28.57% to 87.50%, indicating that the efficacy of the
various models varies. Greater percentages, such as 76.47%, 78.57%, and 87.50%, indicate
relatively successful lip-reading abilities. Some models exhibit consistent performance,
with percentages such as 75.00% and 62.50% indicating consistent results across a variety
of people. The model with the lowest accuracy rate, 28.57%, received more words for
validation than models with higher rates. Also, fewer words were provided for training
than with the other models. Consequently, the accuracy rate is below average. Finally, it is
important to note that the model developed for Let’s Talk Participant 10 (LTP10) attained
the highest rate of accuracy, 87.50%, among all personalized models.

In terms of the experimental setup, the training phase for a personalized model,
specifically for LTP22, was completed efficiently, with a total time of 7 min and 15 s.
This duration encompasses the entire training process, where our proposed model learned
to recognize and classify lip movements associated with speech for LTP22. This rapid
training time underscores the effectiveness of the model’s architecture and optimization
strategies, making it suitable for real-time or time-sensitive applications. The efficient
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convergence achieved during training is indicative of the model’s capability to swiftly
adapt and learn from the provided data, showcasing its suitability for practical deployment
in speech recognition systems based on lip movements.

Table 4. Results of the Let’s Talk! personalized models.

Participant Training Phase Validation Phase Accuracy
Words Frames Words Frames

LTP1 41 615 8 120 75.00%
LTP2 94 1410 13 195 62.50%
LTP3 114 1710 8 120 37.50%
LTP5 73 1095 8 120 45.45%
LTP6 80 1200 8 120 50.00%
LTP7 48 720 8 120 28.57%
LTP8 123 1845 8 120 76.47%
LTP9 98 1470 8 120 75.00%

LTP10 111 1665 8 120 87.50%
LTP11 121 1815 59 885 62.71%
LTP12 130 1950 8 120 50.00%
LTP13 131 1965 6 90 33.33%
LTP14 121 1815 8 120 75.00%
LTP15 119 1785 11 165 45.45%
LTP16 97 1455 6 90 33.33%
LTP17 178 2670 7 105 42.86%
LTP18 200 3000 9 135 55.56%
LTP19 135 2025 8 120 62.50%
LTP20 126 1890 8 120 62.50%
LTP21 191 2865 10 150 60.00%
LTP22 128 1920 14 210 78.57%
LTP23 167 2505 8 120 62.50%
LTP24 160 2400 8 120 60.00%
LTP25 135 2025 8 120 55.56%
LTP26 171 2565 8 120 75.00%
LTP27 144 2160 8 120 42.86%
LTP28 160 2400 8 120 62.50%
LTP29 117 1755 8 120 60.00%
LTP30 172 2580 8 120 37.50%

TOTAL 55,275 4425

The development of a generalized model comprising lip-reading data from multiple
participants can also provide numerous benefits. By training a model on a diverse dataset
comprising a large number of participants, the model can learn to generalize lip move-
ments and speech patterns to various individuals. This enables the model to perceive and
comprehend a broader range of lip movements and speech variations, thereby making it
more robust and effective in a variety of real-world scenarios. Personalized models may be
more scalable than models trained on data from a large population of participants. Rather
than creating distinct models for each individual, a single generalized model can be created
to serve a larger population. This reduces the need for extensive training and development
for each individual and increases the accessibility of lip-reading technology. In light of this,
a generalized model was developed from the MobLip dataset. Specifically, common terms
spoken by these 30 participants were identified. After identifying these prevalent words,
the most significant words encountered most frequently in daily life remained. This pro-
duced a subset of the MobLip dataset consisting of 41 words and 12.915 images, with each
word being spoken by 20 unique participants. This data subset was used to train the 3D
CNN and LSTM algorithm. The repeated terms were used for model verification, which
was again based on the accuracy metric. The number of words provided for substantiation
is eight, resulting in 2.070 images, with each word being spoken by at least 15 participants.
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The accuracy rate is 60.00%, which indicates that the model correctly predicted nearly five
of the eight words.

The results indicate that the personalized models achieved a higher rate of accuracy
than the generalized model, as the algorithm learns each participant’s speech pattern, facial
features and lip shape. The developed personalized models were specifically trained to
discern the unique speech patterns and lip movements of an individual, enabling them to
comprehend the specific speech pattern more effectively and efficiently. In addition, they
are more adaptable, which aids in overcoming difficulties associated with differences in
pronunciation or speech disorders in general. Consequently, the Let’s talk! methodology
relies on personalized participant models.

5. Discussion

The results of the experiments showcase the effectiveness of the proposed personal-
ized Let’s talk! architecture in the lip-reading task. While most of the models achieved
impressive accuracy rates, it is important to dissect these performance metrics further
to gain a nuanced understanding of its capabilities and limitations. One notable aspect
of the model’s performance is its ability to handle noisy and uncontrolled environments.
The robustness exhibited to variations in lighting conditions and speech patterns suggests
that our approach is well-suited for real-world applications. However, it is essential to
acknowledge that there may still be challenges in scenarios with unconventional speaking
styles. In addition, the success of the proposed approach owes a significant debt to the
quality and diversity of the dataset utilized for training and evaluation. The collected
dataset, named MobLip, containing lip frames from 30 participants for recognizing specific
Greek words, played a vital role in model’s generalization capability. With an accuracy rate
of 87.5%, the LTP10 participant’s personalized model obtained the highest rate. Finally,
the personalized models have been easily integrated into the Let’s talk! mobile application
through its HDF5 export format, and they can infer specific words from lip movements.

While the proposed investigation into lip-reading and speech recognition from facial
movements has provided promising results, it is important to acknowledge certain limita-
tions that may impact the scope and generalizability of the findings. Firstly , the MobLip
dataset, although carefully curated for this study, may have inherent biases or lack a com-
plete representation of all possible facial movements and speech patterns. Additionally,
the performance of the lip-reading models was influenced by factors such as lighting con-
ditions, facial variations, and individual speaking styles present in the dataset. Another
crucial aspect to consider is the relatively limited number of participants included in the
MobLip dataset. The restricted sample size may impact the generalizability of the findings
and warrants caution when extrapolating the results to a broader population. Moreover,
the computational demands associated with training deep learning models, especially
those incorporating 3D convolutional and LSTM layers, can be substantial. Another consid-
eration is the inherent complexity of the deep learning models that may present challenges
in understanding the decision-making process. Furthermore, the specific focus on the
Greek language in the dataset may limit the applicability of the lip-reading models to
other languages, and additional research is needed to explore cross-language performance.
By explicitly acknowledging these limitations, the proposed solution aims to provide a
transparent view of the boundaries and potential constraints of the lip-reading task, en-
couraging future work to address and overcome these challenges for further advancements
in the field.

In conclusion, we introduced a novel approach for the recognition of spoken words
from lip movements using a combination of 3D CNNs and LSTM networks with an
accuracy rate of up to 87.5%. Our research aimed to address the challenges associated
with lip reading in noisy and real-world environments, with potential applications in
assistive technologies, human–computer interaction, and security systems. Let’s talk! offers
the first deep learning neural network architecture that is successfully implemented for
identifying Greek words from diverse time frames with low loss and high accuracy rates.
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The architecture adheres to a similar philosophy to that of LipNet [16], the state-of-the-art
implementation for speech recognition, without being constrained by a specific participant’s
speech pattern or the number of neurons. In addition, the proposed architecture was trained
on lip images corresponding to video recordings of participants containing a vast array of
Greek phonemes.

In future work, the word prediction model will be expanded to provide word pre-
dictions not only in text format but also in audio format, as well as provide notifications
regarding the use of the application and the execution time of the model for the connected
user. These word predictions will be appropriately converted into a personalized audio
format, where the distinctive voice of each participant will be incorporated into the audio
information’s frequency spectrum to provide a more realistic effect of the word predictions
via the mobile application. Lastly, the overarching objective is to develop a word prediction
model that can be used for lip reading in the general population.
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