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1. Introduction

Artificial intelligence (AI), a branch of computer science, involves developing intelli-
gent computer programs to mimic human intelligence and automate various processes. AI
has various applications in healthcare, robotics, speech recognition, data analytics, biomed-
ical research and in many more fields. Machine learning (ML) and deep learning (DL) are
subsets of AI that can be utilized to analyze vast biological datasets, and play a pivotal
role in identifying complex genetic patterns, understanding disease outcomes, developing
personalized medicine, accelerating drug discovery, and enhancing our understanding of
biological processes. In supervised machine learning, the classifier is trained using already
labelled or known datasets to predict the classes of unknown datasets. Unsupervised
learning, another type of machine learning, does not require already known class labels
and it tries to learn by itself by recognizing patterns in the given datasets and it uses
clustering to group the samples based on their similarities [1,2]. These machine learning
algorithms include Random Forest, Decision Tree, Nearest Neighbour, Neural Network and
Support Vector Machine (SVM). Deep learning consists of multiple layers called neurons,
which mimic the human brain. The DL architecture includes the input layer, output layer
and multiple hidden layers. Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN) and Stochastic Neural Networks (SNN) are some of the common types of
DL [1].

2. Applications of Machine Learning and Deep Learning

Machine-learning and deep-learning-based models have increased applications in the
field of biology, including genomics, proteomics, drug discovery and development, disease
diagnostics and prediction, and biological text mining. ML-based models can be used in
the study of protein structures such as AlphaFold and AlphaMissense [3,4], which use
an AI-based approach to determine the tertiary structure of a protein and to identify the
mutational status of a protein, which may be the cause of various diseases, and in drug
discovery. With the advancements in next-generation sequencing, models trained using
these data can also assist the researchers in an accurate diagnosis of the disease and in
devising a treatment strategy according to the individual’s genetic status. ML and DL
models are being developed to help in the early detection of diseases such as cancer, cardiac
arrest [5], childhood obesity [6] and many more.

Drug discovery is a complex process and it takes around 10 to 15 years for a drug to be
developed and to reach the end users. AI models can be applied in various stages of drug
discovery and development processes, such as target identification and structure prediction,
drug design and their property prediction, drug activity and toxicity prediction, virtual
screening, etc. Bai et al. [7] developed a software, MolAICal (version 1.3), for designing
3D drug molecules based on the binding pockets of the target protein using deep learning
models and classical programming. Chemprop [8] and Deep Docking [9] are used for
predicting the chemical properties of the drug and to perform virtual screening by docking,
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respectively, based on machine learning models. Figure 1 illustrates the workflow for
developing AI-based algorithms in healthcare. It includes a construction of datasets, the
development of models and the retrieval of important features and prediction.
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Figure 1. Workflow and application of AI in healthcare. The input data for training the ML/DL model
can be obtained from databases and hospitals. These data may include next generation sequencing
data, sequence and structural information of proteins, scan images, ECG, histopathology images
and electronic health records of the patients. The model trained using these datasets may be able to
identify or diagnose a disease condition for an unknown sample. Further, explainable AI techniques
including SHAP analysis are used to identify the features responsible for the prediction.

2.1. ML and DL in Cancer

Egwom et al. [10] developed an LDA-SVM-based machine learning model for the
classification of breast cancer. They showed that using median values of the attributes,
instead of mean, for filling the missing values and applying linear discriminant analysis
(LDA) for feature extraction, increases the prediction accuracy. Carreras et al. [11] developed
a multilayer perceptron analysis model to predict the prognosis of follicular lymphoma
using random number generation, which produces multiple unique neural networks to
identify the pathogenic marker genes for the disease. A deep learning model, Sturgeon,
was developed using methylation profiles for classifying Central Nervous System (CNS)
tumours, and is capable of classifying the tumour subtype with a turnaround time of
60–90 min [12]. Further, a predictive analytic model was developed to predict the Caspase-
8 levels in B-cell lymphoma based on the patterns observed in the expression of other
genes [13].

CanProSite [14] and MutBLESS [15] web servers were developed to predict the suscep-
tible sites in cancer based on deep learning models. CanProSite [14] was used to identify
the driver mutations in lung cancer, whereas MutBLESS [15] was developed to identify
mutations in 22 different types of cancer, which were classified into 6 classes, namely
breast cancer, endometrial carcinoma, acute myeloid leukaemia, stomach cancer, skin can-
cer and other types. These models showed high accuracy in predicting the cancer-prone
regions, which will aid in the development of therapeutic strategies. GBMDriver [16] is a
brain-tumour-specific machine-learning method that utilizes the information of predicted
secondary structures of amino acid residues present in protein sequences and identifies
driver and passenger mutations. On the other hand, for the prediction of the functional im-
pact of mutations, several methods, including AlphaMisssense [4], FATHMM [17], Mutation
Assessor [18], SIFT [19], PROVEAN [20] and CADD [21], have been developed.

2.2. Application in COVID-19 and Neurodegenerative Diseases

Deep learning architectures have also been used for the early detection of pneumonia
using computed tomography [22] and X-ray [23] in COVID-19 patients. Such a system helps
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in the identification of important clinical markers as well as accurate clinical prognosis.
Montazeri et al. [24] manually curated data from the reported literature and showed that
machine-learning-based models developed for the detection of COVID-19 using clinical
images have excellent discriminative performance; however, these models are sometimes at
a high risk of bias. Further, machine learning models have been developed to identify the
regions that are prone to mutation (either high or low) in the SARS-CoV-2 virus as well as
classifying high and low escape mutations using sequence and structure-based properties
such as interaction energy, inter-residue contacts, predicted binding free energy change,
surface accessibility, stability and sequence conservation [25,26].

Prado and Rojas [27] developed an SVM-based classifier for the early detection of
Alzheimer’s disease using Principal Component Analysis (PCA) for feature selection and
showed that the performance is better than the CNN model. The VEPAD webserver
was developed using a Random Forest classifier for the prediction of deleterious and
neutral variants in Alzheimer’s disease [28]. Kulandaisamy et al. [29] proposed a method
for identifying disease-causing mutations in proteins which are involved in Alzheimer’s
disease using conservation scores, the position-specific scoring matrix (PSSM) profile,
hydrophobicity, amino acid substitution matrices and neighbouring residue information.
Keles et al. [30] developed a DL-based model for COVID-19 diagnosis and retrained
the same for detecting Parkinson’s diseases (PD) using SPECT (Single Photon Emission
Computed Tomography) images.

2.3. Applications in Omics

The advancements in sequencing techniques have resulted in the generation of a huge
volume of data, which requires machine learning models for interpretation and prediction.
These omics data include transcriptomics, proteomics, metabolomics and genomics, which
are widely used in the healthcare sector for the early diagnosis of the diseases, biomarker
identification, understanding of the molecular mechanism of diseases and in drug discovery.
Further, they play an important role for personalised medicine.

DEGnext, a CNN-based machine-learning model, was developed to classify the differ-
entially expressed genes obtained from the RNA sequence data into up- and downregulated
genes. They adopted the transfer learning technique to overcome the limitations of the ML
model for processing RNA-Seq data, such as low sample size [31]. Bostanci et al. [32] used
RNA sequence data of extracellular vesicles to develop machine-learning and deep-learning
models to classify colorectal cancer based on the disease condition (presence/absence) and
stage of the cancer. They compared different ML and DL models and showed that the
performance of the model depends on features used for the classification.

Filho et al. [33] developed a web server using artificial intelligence to generate pre-
dictive models using omics data. The models were generated based on an evolutionary
algorithm, which produces a list of biomarkers for the given input dataset, which is then
used to predict the prognosis for the unknown samples. Li et al. [34] used radiomics fea-
tures obtained from CT images to differentiate epithelial ovarian cancer types and showed
that models developed using these features combined with clinical and radiological features
had better performance than other models.

Further, machine learning is extensively applied in the field of metagenomics [1].
Metagenomics involves sequencing and the study of the entire genome of microorganisms
in the natural environment to understand how the microbial community in the host influ-
ences various biological processes. Metagenomics involves many pre-processing steps and
machine learning is commonly used in the classification and clustering steps [35]. Shen
et al. [36] developed MEGMA (microbial embedding, grouping, and mapping algorithm),
an unsupervised learning method, to convert high-dimensional metagenomic data into
a two-dimensional microbiome map for each sample, which can be used as input for the
subsequent analysis, such as biomarker identification and disease prediction.
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3. Challenges in ML and DL

Although ML and DL models are used extensively in various domains, there are
various drawbacks associated with them. DL models require large amounts of data and
the quantity and quality of data play an important role in influencing the performance of a
model. Another important drawback of these models is interpretability and transparency.
It is difficult to identify the feature which explains the model’s outcome due to complex
mathematical calculations. Hence, these models are referred to as ‘Black Box’ models [2,37].
Also, it is very important to check the model overfitting and underfitting as the data
imbalance is profound in biological datasets. Machine-learning and deep-learning models
also need a high computing cost during model training. To improve the interpretability
and transparency of these black box models, explainable AI models are currently used in
various studies [38–47]. The collaboration of experts from biology, computer science and
different fields can improve the transparency of such methods.

4. Explainable AI

Explainable AI models aim to provide reasons for a particular decision made by an AI
model. It provides transparency, which is very important in the biomedical field where a
decision (e.g., diagnosis) based on an AI model is understandable by the physician, along
with the features that are responsible for arriving at the decision. These explainable AI
models provide a means of visualization of the model’s output [48]. Such methods use local
and global explanations by illustrating predictions of individual instances or entire datasets
that provide insights on general patterns learnt by the model. SHAP (SHapley Additive
exPlanations) [49] and LIME (Local Interpretable Model-Agnostic Explanations) [50] are
the most popular methods to represent feature importance.

Several explainable AI models have been developed for biomedical applications such
as MRI scan images to predict the survival of brain tumours [38], ECG data to predict cardio-
vascular disorders [39] and risk factor identification of diabetic retinopathy [40]. In these
studies, SHAP analysis has been incorporated to the AI models to interpret the outcome of
the classifier. OncoNPC is an XGBoost-based classifier to predict cancer of unknown origin
using features such as single nucleotide variant and copy number variation [41]. Ultsch
et al. [42] developed an explainable AI-based method, ALPODS (algorithmic population
descriptions), to classify high-dimensional biomedical data.

Explainable AI-based models were applied with different machine learning algorithms
like Random Forest classifiers, and were developed to identify biomarkers for prostate
cancer based on the gene expression values. They identified genes such as DLX1, MYL9,
FGFR, CAV2 and MYLK, which can be used for prostate cancer screening [43]. Kumar
et al. [44] developed an XGBoost model combined with Explainable AI to identify blood-
based markers for the early detection of breast cancer. In both studies, the SHAP method
was used to explain the outcome of the model.

Healthy individuals with no underlying heart conditions have been affected by heart-
related issues after COVID-19. Hence, Agrawal et al. [45] developed an ECG-iCOVIDNet, a
shallow CNN-based deep-learning model to differentiate the raw ECG data of the healthy
and post-COVID-19-affected individuals to identify the variations in the ECG, and SHAP
method was used to identify the ECG segment which was responsible for the model
prediction. Kırboğa et al. [46] used the risk factor data such as cholesterol, age, blood
pressure, etc., to train the machine-learning models for the early detection of cardiovascular
diseases and showed that the XGBoost model combined with the SHAP method showed
high accuracy in the prediction of the disease.

For the early detection of Alzheimer’s disease (AD), Kamal et al. [47] developed
machine-learning models using MRI images and gene expression microarray data. They
showed that the Convolutional Neural Network (CNN) model and Support Vector Classifier
(SVM) models showed better performance in AD classification using MRI images and
expression data, respectively. The LIME method was used for interpreting the model’s
prediction.
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5. Conclusions

Artificial Intelligence (AI) is widely applied in various domains of biology, including
healthcare, and it holds immense promise for advancing complex biological systems and is
shown to perform more efficiently than the existing methods. The ability of these methods
to identify specific patterns, make predictions, and analyse large biological datasets using
genomic information, protein sequences and structures, physicochemical properties, and
histopathological images from patients has contributed significantly to various biological
domains. Currently, significant importance is given to focusing on improving the explain-
able AI to fulfil the requirements of confidentiality, robustness, ethics, transparency, fairness
and accountability of the developed methods. This will help in ensuring that the insights
generated are understandable and actionable by healthcare professionals and clinicians.
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46. Kırboğa, K.K.; Küçüksille, E.U. Identifying Cardiovascular Disease Risk Factors in Adults with Explainable Artificial Intelligence.
Anatol. J. Cardiol. 2023, 27, 657–663. [CrossRef] [PubMed]

47. Kamal, M.S.; Northcote, A.; Chowdhury, L.; Dey, N.; Crespo, R.G.; Herrera-Viedma, E. Alzheimer’s patient analysis using image
and gene expression data and explainable-AI to present associated genes. IEEE Trans. Instrum. Meas. 2021, 70, 1–7. [CrossRef]

48. Lötsch, J.; Kringel, D.; Ultsch, A. Explainable Artificial Intelligence (XAI) in Biomedicine: Making AI Decisions Trustworthy for
Physicians and Patients. BioMedInformatics 2022, 2, 1–17. [CrossRef]

49. Lundberg, S.M.; Lee, S. A Unified Approach to Interpreting Model Predictions. Neural Inf. Process. Syst. 2017, 30, 1–10.
50. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should I trust you?” Explaining the predictions of any classifier. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; pp. 1135–1144.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cmpb.2023.107719
https://www.ncbi.nlm.nih.gov/pubmed/37453366
https://doi.org/10.1016/j.compbiolchem.2023.107867
https://www.ncbi.nlm.nih.gov/pubmed/37030103
https://doi.org/10.1016/j.compbiomed.2022.105540
https://www.ncbi.nlm.nih.gov/pubmed/35533456
https://doi.org/10.14744/AnatolJCardiol.2023.3214
https://www.ncbi.nlm.nih.gov/pubmed/37624075
https://doi.org/10.1109/TIM.2021.3107056
https://doi.org/10.3390/biomedinformatics2010001

	Introduction 
	Applications of Machine Learning and Deep Learning 
	ML and DL in Cancer 
	Application in COVID-19 and Neurodegenerative Diseases 
	Applications in Omics 

	Challenges in ML and DL 
	Explainable AI 
	Conclusions 
	References

