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Abstract: Fabrication imperfections strongly influence the functioning of Micro-Electro-Mechanical
Systems (MEMS) if not taken into account during the design process. They must be indeed identified
or precisely predicted to guarantee a proper compensation during the calibration phase or directly
in operation. In this work, we propose an efficient approach for the identification of geometric
uncertainties of MEMS, exploiting the asymptotic homogenization technique. In particular, the
proposed strategy is experimentally validated on a MEMS filter, a device constituted by a complex
periodic geometry, which would require high computational costs if simulated through full-order
models. The complex periodic structure is replaced by an equivalent homogeneous medium, allowing
a fast optimization procedure to identify imperfections by comparing a simplified analytical model
with the experimental data available for the MEMS filter. The actual over-etch, obtained after the
release phase, and the electrode offset of a fabricated MEMS filter are effectively identified through
the proposed strategy.
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1. Introduction

The rapid spread of high-performance Micro-Electro-Mechanical Systems (MEMS) in
consumer applications, in the automotive industry, in virtual/augmented reality and in the
internet of things [1–3] requires improved design methods, new fabrication strategies and
efficient control procedures.

In particular, a lot of work has been devoted to improving MEMS fabrication pro-
cesses [4] and to controlling imperfections that are inevitably present [5–8]. Despite the
increasing effort in such topics, MEMS fabrication process imperfections still represent
unknowns for MEMS designers and a significant limitation for devices’ performance and
reliability. In [6,9], for example, the effect of process-induced uncertainties on the perfor-
mance of MEMS devices is addressed, while in [10], it is demonstrated how fabrication
imperfections impact energy loss through mechanical mode coupling. In [11], the imper-
fections coming from both the fabrication and assembly/packaging of Radio-Frequency
MEMS devices are studied and categorized, while in [12], sensitivity analyses are pro-
posed to study the effect of geometric and material uncertainties on the performance of
MEMS resonators.

The direct experimental measurement of fabrication imperfections is very complex and
time-consuming due to the scale of the devices. For this purpose, optical/scanning electron
microscopy [13] or laser interferometry [14] is usually employed. However, these optical
techniques cannot provide significant information on the fabrication imperfections of the
final geometry of the device since MEMS are typically encapsulated and consequently not
directly accessible through visual inspection. On the other hand, electrostatic measurements
represent a very powerful experimental technique, but, while affected by uncertainties,
they do not allow for the direct quantification of fabrication process imperfections.
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Analytical or numerical models able to predict the correct functioning of MEMS
devices also in the presence of fabrication process imperfections are fundamental for
design, as evidenced in [15] for a tuning-fork gyroscope or in [16] for an electrostatically
actuated microbeam resonator.

In [17], a theory to predict the strength of microstructures in the presence of defects is
proposed and good agreement with experimental results is demonstrated; in [18], the effect
of etch holes on ferromagnetic MEMS is modelled, while in [19], Monte Carlo analyses
are combined with finite element method (FEM) simulations to investigate the effect of
the grain morphology and orientation on the effective elastic properties of polysilicon
structures usually employed in MEMS.

Inverse identification of the unknown mechanical, geometric and material parameters
through the combination of experiments and finite element models seems a promising
strategy, but its huge computational cost arising from the use of full-order FEM simulations
makes it hardly applicable to the complex structures typical of MEMS devices. To overcome
such limitations, parametric model order reduction techniques based on the combination
of the proper orthogonal decomposition and the kriging metamodeling have been recently
proposed in [20,21].

An alternative, new and promising strategy is proposed and applied in this work to
reduce the computational cost of the inverse identification of fabrication imperfections in
geometrically complex MEMS. Our proposal makes use of asymptotic homogenization. The
two-scale homogenization is a mathematical tool that provides explicit expressions of the
effective properties of periodically heterogeneous materials, under the hypothesis of linear-
ity and scale separation [22,23]. The method has been widely employed in solid mechanics
to study the static and dynamic behavior of composite materials and metamaterials [24–27],
but seldom applied to MEMS, to the best of authors’ knowledge. In this work, we combine
an analytical model with the asymptotic homogenization technique to identify two typical
geometric unknowns of capacitive devices: the electrode offset and the over-etch. The
electrode offset is here defined as the discrepancy between nominal and after-fabrication
gaps between movable components, i.e., rotor, and fixed electrodes, i.e., stators. The over-
etch is instead defined as the deviation from the nominal geometric dimensions of the
fabricated mechanical structure. Such discrepancy is an inevitable consequence of the acid
attack exploited during the MEMS fabrication to selectively remove the oxide deposited
below the polysilicon and to consequently obtain suspended mechanical structures able to
move with respect to the substrate. The acid indeed penetrates in the polysilicon structure
from the free edges and reduces their in-plane dimensions by a quantity that is referred to
as over-etch. Its actual value is unknown and strongly affects the behavior of the device,
especially when elements with small in-plane dimensions are present, e.g., suspension
springs. In the present work, we implement a proper optimization procedure based on
the minimization of the difference between modeling predictions (analytical model plus
homogenization) and experimental data coming from electro-mechanical tests.

The paper is organized as follows. The asymptotic homogenization technique is
introduced in Section 2 and applied to a MEMS electrically tunable mechanical filter in
Section 3 to identify an equivalent continuum. In Section 4, the new identification procedure
of over-etch and electrode offset is detailed and then applied to the MEMS filter previously
studied; conclusions are finally summarized in Section 5.

2. Asymptotic Homogenization

Numerical analyses of periodic media often represent a huge computational burden,
especially when the size ` of the microstructure is very small with respect to the macroscopic
dimension L of the body. In such a case, i.e., when ε = `/L� 1, the problem can be studied
by employing two-scale asymptotic homogenization, which is a mathematical tool that
provides the effective homogenized properties of a periodic medium.

We consider a single-phase linear-elastic body Ω, such as the one shown in Figure 1a,
which is constructed by a periodic repetition of a unit cell Yε, shown in Figure 1b, in which
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only a subset Yε
m ⊂ Yε is filled by the material. The geometry of the unit cell is completely

free at this stage; a specific example will be provided in the following section (Figure 2,
right panel).

Ω

L

(a)

ℓ

Y

Ym

ϵ

ϵ

(b)

Figure 1. (a) Single-phase heterogeneous medium with periodic structure. (b) Close-up view of its
unit cell.

In the small strains and displacements hypothesis, the static equilibrium of the periodic
media is governed by the differential equations

div(Dε : ε(uε)) + Fε = 0, (1)

where Fε are the body forces, uε is the displacement field, ε(�) is the symmetric part of the
gradient of (�) and Dε is the fourth-order elastic stiffness tensor of the constituent material.

Using the standard argument of asymptotic homogenization [22,23], we denote by x
the macroscopic variable and by y = x/ε the microscopic one, which lives in the re-scaled
unit cell Y = Yε/ε. The assumed material periodicity gives

Dε(x) = D
(x

ε

)
, (2)

while body forces can be non-uniform and read

Fε(x) = F
(

x,
x
ε

)
. (3)

The solution of (1) is searched by developing the displacement with respect to ε in the form

uε(x) = u0
(

x,
x
ε

)
+ εu1

(
x,

x
ε

)
+ o(ε), (4)

where all the fields on the right-hand side of Equation (4) are defined on Ω×Ym and are
periodic with respect to y. For any vector function of x and y, we will denote by a subscript
x and y the partial derivative with respect to x and y; for instance, εx and εy will denote the
symmetric gradients of u with respect to x and y, respectively.

It is possible to prove—see [23] for the full derivation—that the 0-th order displacement
only depends on the macroscopic variable, i.e., u0(x, y) = U0(x), and that the effective
equilibrium equation is given by

divx

(
D0 : εx(U0)

)
+ F0 = 0. (5)

In Equation (5), D0 is the homogenized stiffness tensor of the periodic media, whose
components are evaluated as

D0
ijhk =

1
|Y|

∫
Ym

(
ei � ej + εy(χ

ij)
)

: D :
(

eh � ek + εy(χ
hk)
)

dy, (6)
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ei being the unit vector in the i-th direction, � the symmetric tensorial product and χij(y)
the solution of the cell problem

divy
(
D : εy(χij)

)
= 0 in Ym

χij periodic on ∂Ym ∩ ∂Y[
D : (εy(χij) + ei � ej)

]
· n anti-periodic on ∂Ym ∩ ∂Y[

D : (εy(χij) + ei � ej)
]
· n = 0 on ∂Ym \ ∂Y

. (7)

The field χij(y) represents the elastic displacement of the re-scaled unit cell, up to a rigid
body motion, when it is subjected to periodic boundary conditions and the uniform eigen-
strain ei � ej.

As can be seen from (6), the effective stiffness tensor possesses all the minor and major
symmetries, i.e., D0

ijhk = D0
hkij = D0

jihk = D0
ijkh. However, it should be noticed that, in

general, D0 is anisotropic even if the constituent material is isotropic.
Finally, in Equation (5), F0 are the homogenized body forces, which are given by

F0(x) =
1
|Y|

∫
Ym

F(x, y) dy. (8)

3. MEMS Filter
3.1. Mechanical Design

The innovative MEMS electrically tunable mechanical filter recently proposed in [28,29]
is here employed to demonstrate the efficiency of the proposed fabrication imperfection
identification procedure.

A scanning electron microscopy (SEM) image of the MEMS filter, fabricated through
surface micromachining by the STMicroelctronics Thelma© (Thick Epitaxial Layer for
Micro-Gyroscopes and Accelerometers) process [3], is shown in Figure 2. The device
consists of a central structure Ω made by a 5 × 5 periodic repetition of the auxetic unit cell
reported in the right-hand close-up schematic view of Figure 2, and four external frames Tu,
Td, S and D rigidly connected to the central structure through thick beams and suspended
to the substrate through folded springs.

Td

Tu

D S

300 m

S1

S2

R

Figure 2. SEM immage of the MEMS structure (left) with a close-up view of the stators S1, S2 (mid)
and the auxetic unit cell (right).

Electrodes for the electrostatic push–pull actuation and differential readout are located
inside the four frames according to the scheme shown in Figure 2 (middle panel). The
central part of the device represents an example of a two-dimensional periodic medium, as
studied in Section 2; hence, homogenization will be applied to this part. The four external
frames are also “quasi-periodic” (i.e., the constituent cells slightly vary in space), but they
will not be homogenized as their geometry is simple and their deformation in operation
is negligible. A coarse mesh can be then employed to discretize external frames without
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losing accuracy and simultaneously not affecting the overall computational cost of the
FEM simulation.

3.2. Homogenization of the Auxetic Core

The inner core of the MEMS structure is here analyzed through the asymptotic ho-
mogenization. In particular, after solving the cell problems (7), the effective properties
of the media are computed from Equation (6). Figure 3 shows the solution of the three
cell problems in which uniform eigenstrains are applied within the unit cell: (a) normal
horizontal, (b) normal vertical and (c) angular eigenstrain.

(a) eigenstrain e1 � e1 (b) eigenstrain e2 � e2 (c) eigenstrain e1 � e2

|u|max

0

Figure 3. Contour of the displacement magnitude over the (magnified) deformed shape of the
solution of cell problems (a) χ11, (b) χ22 and (c) χ12.

The in-plane anisotropy of the auxetic core can be visualized by computing the effective
in-plane Young’s modulus E0 and Poisson’s ratio ν0 as a function of the stretching direction
d = cos ϑe1 + sin ϑe2, being ϑ the angle with respect to the horizontal direction. Introducing
the transversal direction t = sin ϑe1 − cos ϑe2—see [30] for further details—one has

E0(ϑ) =
1

d⊗ d : C0 : d⊗ d
and ν0(ϑ) = − d⊗ d : C0 : t⊗ t

d⊗ d : C0 : d⊗ d
, (9)

where C0 is the effective compliance of the periodic media, i.e., the inverse tensor of D0.
The homogenized properties are shown in the polar plots of Figure 4 as a function

of ϑ ∈ [0, π/2] for different values of the over-etch. As expected, for increasing values
of the over-etch, the auxetic core of the MEMS filter becomes more and more compliant
since E0 monotonically decreases. When the direction of stretching is mainly horizontal or
vertical, the inner core exhibits an auxetic behavior (ν0 < 0), which is quite independent of
the over-etch.

0
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Figure 4. Polar plots of the homogenized Young’s modulus (a) and Poisson’s ratio (b) as a function
of ϑ for different values of the over-etch. Negative values of ν0 are indicated with dashed lines.
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3.3. Validation of Effective Properties

The asymptotic homogenization technique can be employed to reduce the compu-
tational burden of numerical analyses involving periodic linear-elastic media, without a
significant loss in terms of accuracy.

To validate the homogenized properties of the auxetic core of the MEMS structure
of Figure 2, we compare the result of finite element analyses (FEA) obtained in the case
of the real geometry and those obtained by replacing the inner core with an equivalent
homogeneous medium.

We simulate the case in which the left and the right frames of the MEMS structure
are displaced outwards of Ū in the horizontal direction. The FEA are carried out in
the case of the MEMS nominal geometry with the commercial finite element software
COMSOL Multiphysics.

As discussed in [31], a fine discretization is required to correctly reproduce the bending
of the thin elements constituting the auxetic unit cells and the anchoring springs. The mesh
employed for the real geometry is composed of 1,600,000 quadratic serendipity tetrahedral
elements. When the inner core is replaced by the effective homogenized medium, a coarser
mesh can be used and the number of elements is reduced to 600,000.

Figure 5 shows the contours of the horizontal (a,b) and vertical (c,d) displacement
fields of the inner core of the MEMS structure for the real and the homogenized model. The
fields are non-uniform due to the fact that only the three central cells are attached to the
frames. Due to the auxetic behavior, the structure expands in the vertical direction. The
homogenization approach allows a reduction in the computational time of 90% and a 4%
error (V̄ = 0.669Ū FEM with actual geometry and V̄ = 0.696Ū FEM with homogenized
medium) in terms of vertical displacement of the top/bottom frame.

(a) (b) (c) (d)

0

+U
_

-U
_

Figure 5. Contours of the horizontal (a,b) and vertical (c,d) displacement of the MEMS auxetic core
(a,c) and the corresponding homogenized medium (b,d).

4. Identification of Geometric Uncertainties
4.1. Experimental Results

To experimentally validate the hybrid modeling reduction strategy, an electrical char-
acterization in the static regime of the push–pull parallel-plate capacitors located in the
external frames of the auxetic MEMS device is performed. Figure 6a shows the block
diagram of the experimental setup implemented to perform the electrical characterization
of the MEMS device.

The capacitance between each distinctive stator terminal, S1, S2, D1, D2, Tu1, Tu2,
Td1 and Td2, and the common rotor terminal R is measured by exploiting the impedance
meter HP4194A by applying a proper sinusoidal probing signal vp(t) = Ap sin(2π fpt) and
a tunable DC-bias voltage Vb. Specifically, Figure 6a reports the experimental configuration
used to measure the capacitance CS1−R, i.e., the capacitance between terminals S1 and
R. In the reported configuration, the probing signal vp(t) and the DC-bias voltage Vb is
applied between terminals S1 and R while keeping all other terminals grounded to avoid
unwanted induced electrostatic forces. The bias voltage Vb is tuned within the range 0–12 V
with a step size of 0.5 V to induce a tunable electrostatic force between the parallel plates
S1− R. We suitably set the maximum value of Vb to prevent the pull-in effect and the
root mean square value of the amplitude Ap to 50 mV to produce a negligible electrostatic
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force compared to the one induced by Vb. The frequency fp is chosen equal to 200 kHz to
avoid mechanical resonances of the MEMS structure. The first translational/auxetic modes
actuable through the electrodes located on the D (or S) frame are indeed in the frequency
range 16 kHz–60 kHz.

A similar experimental configuration is implemented to measure all other capacitances,
i.e., CS2−R, CD1−R, CD2−R, CTu1−R, CTu2−R, CTd1−R and CTd2−R. The top view of the tailored
printed circuit board (PCB) developed for the static characterization of the auxetic MEMS
device bonded in the 68-pin plastic-leaded-chip-carrier (PLCC68) package is reported in
Figure 6b.

(a) (b)

Figure 6. (a) Block diagram of the experimental setup employed for the static characterization of the
auxetic MEMS device; (b) image of tailored printed circuit board (PCB) containing the MEMS device
housed in a PLCC68 package.

The experimental capacitance–voltage curves between the rotor and each one of
the stators of the MEMS structure are reported in Figure 7 with dots, having defined
∆Cexp

α−R(Vb) = Cexp
α−R(Vb)− Cexp

α−R(0).
Due to the symmetries of the MEMS nominal geometry, in the absence of any non-

symmetric imperfection, the experimental curves in Figure 7a,c should be identical to those
of Figure 7b,d (respectively). As can be seen, this is not the case for Figure 7a,b, since,
at a given bias voltage, the experimental values of ∆Cexp

D1−R and ∆Cexp
S2−R are lower with

respect to ∆Cexp
D2−R and ∆Cexp

S1−R. This effect can be explained by an initial gap between the
rotor and the stators D1, S2 that is larger than the one between the rotor and the stators
D2, S1, i.e., arguing that the rotor is rigidly shifted in the horizontal direction with respect
to the substrate. This shift can actually occur due to geometric imperfection and/or to the
presence of pre-stresses in the suspension springs.
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Figure 7. Cont.
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Figure 7. Capacitance–voltage curves, between the rotor and the different stators (a) Exp. ∆CD1−R;
Exp. ∆CS2−R, (b) Exp. ∆CD2−R; Exp. ∆CS1−R, (c) Exp. ∆CTu1−R; Exp. ∆CTd2−R, (d) Exp. ∆CTu2−R; Exp.
∆CTd1−R, obtained experimentally (dotted), and the optimal analytical ones (black continuos).

4.2. Optimization Procedure

In this work, we focus on the identification of only two possible geometric uncertainties
of a MEMS device, but the same approach can be applied also in the case of more fabrication
imperfections. The first one is the over-etch oe, which significantly modifies the MEMS
geometry and the stiffness of its components. The second parameter is a possible rigid
horizontal shift XS of the rotor R with respect to the substrate, which leads to asymmetric
gaps between the stators of the left and right frames.

When measuring the capacitance–voltage relationship between the rotor R and a stator
α, with α = D1, D2, S1, S2, Tu1, Tu2, Td1 or Td2, the functioning of the MEMS structure
can be described by the simplified scheme shown in Figure 8a. The left plate represents
the stators α fixed on the substrate, while the right one represents the rotor R, which is
anchored to the substrate by means of a spring.

The stiffness kα,eq of the spring represents the linear-elastic equivalent stiffness of the
MEMS frame where the stators α are located. These values can be evaluated by FEA, as
a function of the over-etch oe, exploiting the homogenization of the inner auxetic core;
see [31] for details. For example, the equivalent stiffness of the D frame is evaluated as
the ratio of the applied uniform horizontal force on the frame and its (average) horizontal
displacement, while the stiffness of the Tu frame is evaluated as the ratio between the
uniform vertical force on the frame and the corresponding vertical displacement.
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Figure 8. (a) Schematic representation of the analytical model; (b) contour of the error as a function
of the over-etch and horizontal shift.
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In the hypothesis that all capacitors in the MEMS device act as parallel plates, which
is quite reasonable since the dimensions of the capacitors are far larger than their distance,
the capacitance between α and R can be evaluated as

Can
α−R =

ε0 Aα

gα − x
, (10)

where ε0 is the vacuum permittivity, Aα is the total surface of the plates, x is the displace-
ment of the rotor and gα is the initial gap between the plates. This latter can be expressed
as a function of the fabrication imperfections here under investigation as

gα(oe, XS) =


gα,0 + 2oe + XS if α = D1, S2
gα,0 + 2oe− XS if α = D2, S1
gα,0 + 2oe if α = Tu1, Tu2, Td1, Td2

, (11)

where gα,0 is the nominal initial gap between the plates. The attractive electrostatic force
acting on the rotor can be evaluated as

F =
1
2

V2 dC
dx
' 1

2
V2

b
ε0 Aα

(gα − x)2 , (12)

where the simplification V2 ' V2
b is justified by the small amplitude of the probing signal

vp(t) employed in the experimental tests.
Enforcing the balance between the electrostatic force (12) and the restoring elastic force

kα,eqx, one obtains

V2
b

(
∆Can

α−R +
ε0 Aα

gα

)3
− 2ε0 Aαkα,eqgα∆Can

α−R = 0, (13)

which defines implicitly the analytical capacitance–voltage relation between the stators α
and the rotor R, as a function of oe and XS, where ∆Can

α−R = Can
α−R − ε0 Aα/gα.

Once the analytical and experimental capacitances are obtained from Equation (13)
and measurements, respectively, the optimal over-etch oe and horizontal shift XS are chosen
as those values that minimize the relative error

E(oe, XS) = ∑
α

||∆Cexp
α−R(Vb)− ∆Can

α−R(Vb, oe, XS)||`2

||∆Cexp
α−R(Vb)||`2

, (14)

where ||(�)||`2 is the `2-norm of (�).

4.3. Results

Considering reasonable intervals of the uncertainty parameters, e.g., oe ∈ [0, 0.5] µm
and XS ∈ [−0.1,+0.1] µm, one can evaluate the relative error (14) between the analytical
and experimental capacitance curves. Note that the error should be evaluated in a limited
voltage interval, e.g., between 0 V and 10 V, to avoid nonlinear phenomena that may occur at
high voltage and that are not taken into account in the equivalent stiffness analytical model.

Figure 8b shows the contour of the relative error as a function of the over-etch and
the horizontal shift. In particular, the yellow indicates the region where E ≥ 5, while
the red marker indicates the minimum of the error, which occurs at oe = 0.24 µm and
XS = 0.021 µm. The optimal over-etch is in good agreement with typical values available
for the fabrication process employed for the MEMS device under study [32].

The analytical capacitance–voltage curves associated with the optimal values of over-
etch and horizontal shift are shown in Figure 7 with solid black lines and are in good
agreement with the experimental curves.
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5. Conclusions

In this work, we propose a time-saving approach for the identification of geometric
uncertainties of MEMS devices having a periodic structure.

In particular, we consider a tunable MEMS mechanical filter, already proposed in
a previous work by some co-authors, and study the linear-elastic effective properties of
the periodic core by employing the two-scale asymptotic homogenization technique as a
function of over-etch. In this way, the complex geometry of the periodic media has been
replaced by an equivalent homogeneous one, allowing a strong reduction in computational
time without a significant loss in terms of accuracy, even with only 5× 5 cells.

We experimentally measure the capacitance–voltage relation between the rotor and
the different stators of the MEMS in order to characterize the real functioning of the
device. Then, we propose a simplified electro-mechanical model able to predict the MEMS
behavior and able to account for the geometric uncertainties to be identified, i.e., over-etch
and electrode offset in this work.

The optimal values of such geometric imperfections are identified as those that mini-
mize the relative error between experimental data and analytical predictions. The identified
parameters are in agreement with typical values available for the employed fabrication
process and provide analytical capacitance–voltage curves that correctly reproduce the
experimental ones.

This first contribution shows one of the potentialities of asymptotic homogenization
in the identification of geometric imperfections in fabricated MEMS. A similar approach
would be also very effective to develop efficient design tools for complex microsystems.
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