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Abstract: Micro-electromechanical systems (MEMS) have the potential to provide low-power phase
shifting in silicon photonics, but techniques for designing low-loss devices are necessary for adoption
of the technology. Based on coupled mode theory (CMT), we derive analytical expressions relating
the loss and, in particular, the phase-dependent loss, to the geometry of the MEMS phase shifters.
The analytical model explains the loss mechanisms of MEMS phase shifters and enables simple
optimization procedures. Based on that insight, we propose phase shifter geometries that minimize
coupling power out of the waveguide. Minimization of the loss is based on mode orthogonality of
a waveguide and phase shifter modes. We numerically model such geometries for a silicon nitride
MEMS phase shifter over a silicon nitride waveguide, predicting less than −0.08 dB loss over a 2π

range and −0.026 dB loss when optimized for a π range. We demonstrate this design framework
with a custom silicon nitride process and achieve −0.48 dB insertion loss and less than 0.05 dB
transmission variation over a π phase shift. Our work demonstrates the strength of the coupled
mode approach for the design and optimization of MEMS phase shifters.

Keywords: silicon photonics; integrated optics; MEMS; phase shifters

1. Introduction

Photonics integrated circuits (PICs) have shown significant improvements in architec-
ture, electronic integration, and device performance [1–3]. Given their rapid development,
these PICs have found a host of applications beyond telecommunications, including clas-
sical and quantum computing [4], sensor arrays [5], and light detection and ranging
(LIDAR) [6]. Common to most system-level photonics designs is optical phase/path length
tuning with thermo-optic phase shifters [7,8]. Unfortunately, all thermo-optic phase shifters
are dissipative, exhibiting large static power consumption and strong cross-talk, leading to
the need for better phase shifter technologies.

Alternatives to the thermo-optic phase shift include the plasma effect [9], electro-
optic effects [10], phase change [11], and micro-electromechanical systems (MEMS) [12,13].
MEMS phase shifters are typically configured with a perturbing element that interacts
with the evanescent field of the waveguide. By placing the perturbing element in different
positions relative to the waveguide, the propagation constant of the waveguide mode is
changed, leading to a phase shift for the interaction length. Positioning of the phase shifting
element can be achieved through any micromechanical actuation mechanism [12]. Electro-
static actuation is the most common mechanism because it leads to small switching energies
and negligible static power consumption. As a switching technology, MEMS have shown
great performance with low optical losses [14–19], but there are fewer demonstrations
of MEMS phase shifters with low optical loss [20–24] because of a phase-dependent loss
caused by optical coupling in the phase shifting block. This paper details a coupled mode
analysis of MEMS phase shifters. The theory clarifies the loss mechanisms, pinpoints the
sources of phase-dependent loss, provides design guidelines for low loss, and allows for
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analytical verification of proposed designs. To demonstrate the practicality of our analysis,
we design, simulate, and test a low-loss MEMS phase shifter in a custom silicon nitride
photonics stack.

2. Coupled Mode Analysis

The mode of operation of MEMS phase shifters is typically to introduce or remove
an element in a waveguide system to change the propagation constant of the guide [12].
The shape and material of the perturbing element is crucial to the optical performance, so a
method of analyzing those parameters is of practical importance. As shown in Figure 1a,
we define a system of two arbitrary guides A and B that represent the original waveguide
and the phase shifter, respectively. If we assume the real modes of the system can be
well-represented as a linear superposition of the guided modes of guides A and B, we
can apply coupled mode theory (CMT) to estimate the phase shift per unit length and
transmission of the system [25].
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Figure 1. (a) An abstraction of a MEMS phase shifter as two guides A and B. (b) A TE-like phase
shifter with identical dimensions to the single mode waveguide it affects. (c) A TM-like phase shifter
with the same dimensions as the waveguide, but rotated 90°. (d) A phase shifter parameterized by
height, base width, and sidewall angle.

Following the multi-waveguide formalism presented in [26], we define the full coupled
mode system consisting of (n + m) modes where a(z) is a vector of n modes from the guide
A, and b(z) is a vector of m modes from guide B.

d
dz

[
a(z)
b(z)

]
= j(B + C̄−1K)

[
a(z)
b(z)

]
(1)

An exact formalism can include the continuum of radiation modes as mentioned in
the work of Hardy and Streifer [27], but we restrict the analysis to only the guided modes,
as that captures the majority of the energy transfer. The evolution matrix (B + C̄−1K) in
Equation (1) consists of a diagonal matrix, B, of propagation constants; a square matrix, C̄,
of interaction strength integrals; and a square matrix, K, of induced polarization integrals.
The elements of the K and C̄ matrices are K̃bjak

and (Cbjak
+ Cakbj

)/2, respectively.

K̃bjak
=

ω

4

∫∫ +∞

−∞
∆ϵ(ak)(E

(bj)
t · E(ak)

t − ϵ(bj)

ϵ
E
(bj)
z E(ak)

z )dxdy (2a)

Cbjak
=

1
2

∫∫ +∞

−∞
(E(ak)

t × H
(bj)
t ) · ẑ dxdy (2b)

The terms K̃bjak
and Cbjak

are overlap integrals that describe induced polarization and
interaction strength, respectively. We calculate the integrals at a fixed frequency ω, and
we define the full permittivity distribution as ϵ and the individual guide distribution as
ϵ(i). The induced polarization and interaction strength interactions depend strongly on
the transverse electric fields E(i)

t = (E(i)
x , E(i)

y ) and perturbation ∆ϵ(i). The perturbation to
waveguide A is the material that constitutes waveguide B, and the perturbation to waveg-
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uide B is the material that constitutes waveguide A. The longitudinal electric field, E(i)
z , is

typically orders of magnitude smaller than the transverse fields, so it can be negligible.
The general solution to Equation (1) is given by the projection of the starting vector of

modes to a set of super-modes whose phases evolve over the propagation distance z and
are then projected back onto the original vector of modes.[

a(z)
b(z)

]
= A exp(jΓz)A−1

[
a(0)
b(0)

]
(3)

In Equation (3), the matrix A has columns that are the eigenvectors of (B + C̄−1K).
These eigenvectors describe the mix of individual modes that compose the super-modes,
such that A−1 is the projection operation from the individual modes to the super-modes.
The super-modes themselves evolve according to exp(jΓz), where Γ is a diagonal matrix
of the super-mode propagation constants. Considering this general solution, a potential
design methodology to achieve low loss is to construct a particular projection operation.
Starting with a single mode of interest, we can design the coupled system to project that
mode onto a single super-mode and then back after a distance z. This methodology lends
itself well to numerical methods that we can frame into an optimization problem later.

If we limit the number of modes to one for guide A and one for guide B, we can use the
familiar coupled mode solutions to the 2 × 2 evolution equation. This form gives insight
into how to bound the loss based on the off-diagonal elements of K, which are the coupling
constants of the system. We define the coupled mode system consisting of the perturbed
fundamental modes as follows:

d
dz

[
a(z)
b(z)

]
= j

[
γa κab
κba γb

][
a(z)
b(z)

]
. (4)

The propagation constants γa and γb relate the phase evolution of the perturbed
guided modes of A and B to their respective modal amplitudes a(z) and b(z). The coupling
constant κba relates the evolution of b(z) to the modal amplitude a(z), and vice versa for
κab. These constants can be derived from the polarization integrals of Equation (2a,b) using
the following forms.

γa = βa +
K̃aa − K̃baC̄

1 − C̄2 (5a)

κba =
K̃ba − K̃aaC̄

1 − C̄2 (5b)

C̄ =
Cab + Cba

2
(6)

The exact relation of the propagation and coupling constants is derived from the
Lorentz reciprocity of this lossless system [25].

(κba − κab) = δ(Cba + Cab) (7a)

δ =
γb − γa

2
(7b)

The constants Cba and Cab are the modal overlap integrals that describe the strength of
the interaction between guides A and B. Usually for coupled waveguides, we assume weak
interactions of the individual guides, Cba → 0 and Cab → 0, such that κba = κab = κ. In our
analysis, we cannot make the standard simplifications because the interaction strength is
large and the detuning, δ, of the propagation constants of the asymmetric guides does not
tend to zero in general. Under these conditions, the maximum fractional power coupled
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out of guide A is κbaκab
κbaκab+δ2 . To minimize coupling loss in guide A, we should minimize the

coupling constants, κba and κab, or maximize the detuning δ.
The induced polarization integrals, as defined in Equation (2a), are the dominant

terms in the coupling constants that drive the power exchange. The vector nature of the
fields in Equation (2a) is a key consideration in reducing this power exchange. To proceed,
we impose practical constraints and analyze three geometries for guide B while fixing
waveguide A to be a rectangular cross-section that supports a single TE-like mode, which
is the situation in most photonic integrated circuits.

The first geometry for guide B has a rectangular cross-section of similar dimensions to
waveguide A, as shown in Figure 1b. If chosen to be exactly like A, the familiar directional
coupler is formed. In this case, the coupling constant is large, and the two fundamental
modes exchange power periodically. The effective phase shift from changing the separation
of the guides would be large, as would the lost power from waveguide A.

Figure 1c shows a perturbation that carries a fundamental mode with parity, or
polarization, orthogonal to waveguide A. Here, guide B is identical to guide A, but rotated
90° about the direction of propagation. The transverse fields of the mode of guide B
would be identical to guide A, but with the Ex and Ey fields exchanged. If we substitute

this mapping, E(b)
x (x − xb, y − yb) = −E(a)

y (x − xa, y − ya) and E(b)
y (x − xb, y − yb) =

E(a)
x (x − xa, y − ya), into Equation (2a) and set xb, yb = xa, ya, we see that K̃ba is minimized

with respect to the transverse fields and only scales with the negligible longitudinal fields.
If guide A has a symmetry axis across the vertical line x = xa and supports a TE-like mode,
the rotated guide B would be directly overhead and support a TM-like mode. The simple,
intuitive, and powerful design rule that follows is that the mode of the waveguide and the
phase shifter should be orthogonal!

For simulation purposes, we introduce a third geometry for guide B, that of a sym-
metric trapezoid parameterized by the base width, height, and sidewall angle shown
in Figure 1d. These three parameters can be chosen to recreate the first two geometries.
The trapezoidal structure is a generalization of shapes that often results in practical
microfabrication.

3. Optimization

Using the three parameters of base width, height, and sidewall angle, we optimize
the trapezoidal geometry and show how CMT insights simplify the optimization. In our
analysis, we chose the length of the interaction region, lint, as the critical dimension that
constrains the size. We continue to assume that the phase shifting structure has translational
symmetry in the direction of propagation, so that the change in phase shift, ∆ϕ, is equal to
the product of the length of the interaction region and ∆γa0, where ∆γa0 is the change in
propagation constant of the perturbed fundamental mode in waveguide A. This leads to
the form of the minimum phase shift, ∆ϕmin, constraint

lint∆γa0 ≥ ∆ϕmin. (8)

The change in the propagation constant, ∆γa0, for the MEMS phase shifter is calculated as
the difference in the propagation constant, γa0, when the perturbation B is in the initial and
final positions.

A straightforward quantity to maximize would be Tmin, the minimum transmission of
the MEMS phase shifter across the operational range. This quantity can be most accurately
calculated from a full 3D finite-difference time-domain (FDTD) simulation, but capturing
the minimum in the operational range would require sampling with many FDTD simula-
tions for each design iteration. This computation quickly becomes prohibitively expensive
for an optimization. Instead, it would be advantageous to use the insights from CMT to
define optimization problems that require less simulation time. The evolution Equation (1)
and the general solution Equation (3) of the higher-order coupled mode system lead us to
two optimization formulations for the trapezoidal geometry.
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The first optimization is based on the coupling terms in Equation (1). The two-mode
CMT shows that the maximum loss for a coupling interaction is bound by the coupling
constants. Further, Equation (2a,b) show that the coupling strength increases as the two
modes are brought closer together. For the first order, we assume that the pairwise coupling
to the fundamental mode of waveguide A dominates the loss for the higher-order coupled
mode system. Consequently, the objective is to minimize the coupling constants, measured
at the minimum separation in the MEMS phase shifter geometry, between the fundamental
mode of waveguide A to the remaining (n + m − 1) modes, such that (s.t.) the phase shift
is greater than the required minimum phase shift, ∆ϕmin. At the minimum separation, the
optimization is as follows:

min
w,h,θ

n+m−1

∑
j=1

|κj,0|2

s.t. lint∆γa0 ≥ ∆ϕmin.

(9)

The coupling constant, κj,0, is the jth row and 0th column element of the matrix

(B + C̄−1K) from the coupled mode evolution Equation (1).
The second optimization is based on Equation (3), the general solution to the coupled

mode equations. If we can maximize the projection from the fundamental waveguide mode
into a single super-mode, the projection back after the full interaction length should lead to
minimal loss. To quantify this metric, we define the projection vectors as follows:[

u0 . . . un+m−1
]
= A−1. (10)

The projection vector for the fundamental mode of waveguide A is u0. We want u0 to
be a single element vector. The optimization to achieve this can be defined as follows:

min
w,h,θ

(|u0|2 − max(u0,0
2, . . . , u0,n+m−1

2))

s.t. lint∆γa0 ≥ ∆ϕmin.
(11)

The minimum value of the optimization is zero. That is achieved when the square
magnitude of the vector u0 is equal to the square magnitude of its largest element,
max(u0,0

2, . . . , u0,n+m−1
2)). This condition is met when the coupled mode system has

an exact projection from the fundamental mode of waveguide A to one super-mode of the
coupled system.

4. Simulation

Using the CMT-guided strategy described above, we simulate all three proposed phase
shifter geometries. Our model system consists of an air-clad silicon nitride waveguide
with width 1.4 µm, height 280 nm, and refractive index 1.95, carrying 1.55 µm light. This
structure satisfies the earlier description of a waveguide A with a TE-like fundamental
mode. The three proposed MEMS phase shifter geometries also have a refractive index of
1.95, an interaction length of 100 µm, and starting and final positions of 300 nm and 0 nm
as measured from the top of the waveguide to the bottom of the perturbation B, as shown
in Figure 1.

The TE-like phase shifter block shares the same dimensions as the waveguide: a width
of 1.4 µm and a height of 280 nm. The TM-like phase shifter block is a rotated version of
the waveguide, with width 280 nm and height 1.4 µm. Finally, the exact dimension of the
trapezoidal geometry was determined by calculating optimal width, height, and sidewall
angle from the optimizations described in Equations (9) and (11).

The optimizations for the trapezoidal silicon nitride geometries require a mode solver
and an optimization algorithm to solve. We use MIT Photonic Bands (MPB) [28] to simulate
the modes and NLopt to implement the DIRECT algorithm for global optimizations [29,30].
The modal simulations were done in a 4λ × 4λ cell with resolution λ/31, where λ is
the wavelength of light set to 1.55 µm. Based on the simulation cell, we set the bounds
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for the width as 0 ≤ w ≤ 2λ and the bounds for the height as 0 ≤ w ≤ (4/3)λ. The
height is more constrained than the width because of the waveguide height and starting
separation. The theta bounds depend on the chosen width and height. The maximum
sidewall angle allowed corresponds to the top of the trapezoid not exceeding the maximum
width, tan θ ≤ (2λ − w)/2h. The minimum sidewall angle corresponds to a triangle,
tan θ ≥ −w/2h. Finally, we specify the phase shift as at least π because that is the minimum
phase range needed in interferometric circuits. The first optimization found a minimum
with another TM-like structure of width 172 nm, height 1.432 µm, and 0 rad sidewall angle.
The second optimization found a minimum with a small trapezoid with width 172 nm,
height 378 nm, and a slight sidewall angle of −78 mrad.

In Figure 2, we show the modal solutions for all four geometries. Visually, the modes
of the higher-order system look like a weighted sum of the individual guided modes, which
suggests the designs discussed here are well-represented by the coupled mode analysis
from earlier.
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Figure 2. (a,b) A TE-like phase shifter and the transverse electric fields of the first four guided modes
of the system. Each column corresponds to a specific mode, and each row corresponds to an electric
field component. (c,d) A TM-like phase shifter with the transverse electric fields of the first four
guided modes of the system. (e,f) The trapezoidal structure found from the first loss optimization
condition and the transverse electric fields of its guided modes. (g,h) The trapezoidal structure found
from the second loss optimization condition and the transverse electric fields of its guided modes.
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We conducted 3D simulations of all four geometries to sample the transmission and
phase shift of the light in the fundamental mode of the waveguide as a function of the
perturbation separation. For full transmission simulations, we include a bottom substrate
of thermal silicon dioxide of refractive index 1.45.

We simulate the geometries in a generalized scattering matrix formalism using an
eigenmode expansion (EME). We discretize the phase shifter along the direction of propa-
gation and use 10 forward and 10 backward modes, including radiating solutions, in each
step [31]. This is a computationally efficient method of simulating long structures with high
index contrast. When compared to the CMT analysis that guided the design, EME more
closely models the behavior of the device, as it includes multiple modes—guiding and
radiating—at each cross-section to describe the light propagation. The transmission in this
simulation is defined by the the fraction of power in the forward propagating fundamental
mode of the waveguide after the phase shifter interaction region.

To verify the EME simulations, we additionally run FDTD simulations using
MEEP [32]. We run a full simulation for each change in separation of the phase shifter
and waveguide. The step size as the gap approaches zero and the rate of change of
the phase increase. Each FDTD simulation used an eigenmode source to excite only
the forward propagating fundamental mode of the waveguide. Additionally, an input
flux monitor and output flux monitor were placed before and after the phase shifter to
capture the transmission.

As shown in Figure 3, the EME and FDTD agree in simulated phase shift response
for all four configurations but differ in the transmission as a function of phase. The
disparity arises from the finite number of modes in the EME simulation as compared to the
continuum of radiation modes simulated in the FDTD case. The EME is more optimistic
in the fraction of power coupled back into the waveguide upon termination of the phase
shifter. This difference is most notable in the TE-like phase shifter because of the strong
coupling into the phase block. Based on the numerical models, there is a trade-off between
the phase shift range and the maximum loss. The TE-like phase shifter exhibits a 17π
range, and the TM-like phase shifter exhibits a 2π range. The two optimal trapezoidal
structures achieve the minimum phase shift of π. The maximum loss is highest with the
TE-like structure, which had a starting insertion loss of −0.92 dB and a maximum loss of
−2.15 dB. The TM-like phase shifter had an insertion loss of −0.02 dB and a maximum
loss of −0.08 dB. Finally, the two optimal trapezoidal structures had an insertion loss of
−0.015 dB and maximum losses of −0.026 dB and −0.022 dB, respectively. Differences in
simulated insertion losses at such small values can be dominated by numerical accuracy, so
it is not very meaningful to compare these two optimal solutions against each other. All
four simulations are ideal structures that do not account for surface roughness or other
fabrication errors.
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Figure 3. (a,d,g,j) All four simulated phase shifter geometries. (b,e,h,k) The simulated phase shift
as a function of separation starting at a gap of 300 nm for each geometry. (c,f,i,l) The simulated
transmission as a function of phase shift for each geometry.

5. Fabrication

For experimental verification, we create a TM-like MEMS phase shifter in silicon nitride
following the process presented in [33]. The silicon nitride photonic stack begins with a
lightly n-doped <100> silicon handle wafers that undergo wet oxidation at 1000 °C to form
2.16 µm of thermal silicon dioxide (Figure 4a) as the substrate. The waveguide core layer is
280 nm of low-pressure chemical vapor deposition (LPCVD) stoichiometric silicon nitride
deposited at 800 °C. This core layer is patterned to form 1.4 µm wide single-mode channel
waveguides (Figure 4b). The waveguides are capped with 1.25 µm of plasma-enhanced
chemical vapor deposition (PECVD) silicon dioxide deposited at 350 °C (Figure 4c).

The TM-like phase shifter concept requires a high aspect ratio, so we developed a
trench-filling approach inspired by the Damascene process [34] used in metal interconnects.
As shown in Figure 4d, we open a trench in the oxide cladding that defines the shape of
the phase block, partially fill the trench with a conformal sacrificial layer (Figure 4e), and
finally completely fill the trench with a conformal silicon nitride layer for the phase block
(Figure 4f).
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Figure 4. (a–i) Fabrication process for creating a TM-like MEMS phase shifter in silicon nitride.
(j) Optical micrograph of a 100 µm long MEMS phase shifter with drive voltage, Vdrive, relative to the
ground electrodes.

The initial trench width of 1.3 µm is designed to be the target final width—in this
case, 300 nm—plus twice the sacrificial layer thickness. Next, 500 nm of a sacrificial layer
of LPCVD amorphous silicon is deposited at 580 °C. Amorphous silicon can be removed
with a vapor xenon difluoride etch without attacking the photonic or MEMS layers or
exerting destructive capillary forces like a wet etchant [33,35]. The high selectivity also
eliminates the need for a timed isotropic etch often used in single-layer MEMS photonic
designs [24,36,37].

Anchoring points and the bottom electrode are opened by patterning the sacrificial
layer (Figure 4e). Next, 200 nm of LPCVD silicon nitride is deposited at 770 °C to fill the
trench forming the phase block (Figure 4f). The electrodes and support for the actuator are
formed by sputtering 100 nm of aluminum on the mechanical nitride layer and subsequently
etching both layers (Figure 4g). Finally, the structure is released with a xenon difluoride
isotropic etch of the amorphous silicon (Figure 4h,i). An optical micrograph of the phase
shifter is shown in Figure 4j.

6. Phase Shifter Performance

The electrostatic micro-bridge that controls the gap between the phase shifting block
and the waveguide is actuated by applying a voltage difference, Vdrive, between the center
electrode and the grounded side electrodes. To measure the induced phase shift, the MEMS
phase shifter was embedded in only one arm of an integrated Mach–Zhender Interferometer
(MZI). We used a fiber-coupled tunable laser centered at 1549 nm as the source, grating
couplers as the inputs and outputs of the MZI, and an InGaAs photodetector to measure
output power. Figure 5a shows the test setup.

Each grating output was collected separately to recover the phase shift as a function of
drive voltage. First, the fiber input was aligned to input one, I1, and the cross-state output
power was measured at output two, O2. Then, the fiber was moved to input two, I2, and
the power was measured out of output one, O1. The cross-state measured powers, I1 to O2
and I2 to O1, were each fit to a unit amplitude cosine function, and the phase was extracted
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from that fit. The I1 to O2 and I2 to O1 fits had a starting phase of −0.23π and −0.13π,
respectively, with a total phase range of 1.23π and 1.18π each.
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Figure 5. (a) The measurement setup for the fabricated MEMS phase shifter. A fiber-coupled tunable
laser with an external polarization controller is used to couple light into one of the two input grating
couplers, I1 or I2. The phase shifter is part of the upper arm of the integrated MZI and driven by a
DC voltage source, Vdrive. The outputs of the MZI are measured independently using a beam block
between the output grating couplers, O1 and O2, and the collection lens and photodetector. (b) The
measured phase shift as a function of applied voltage. (c) The scaled response of the cross-states of
the MZI for positive and negative voltages. The fitted functions used to calculate the transmission of
the phase shifter. (d) The cutback measurements fitted to find the average insertion loss of −0.63 dB
and the best insertion loss of −0.48 dB. (e) The normalized transmission of the fabricated MEMS
phase shifter, found from the roots of the quadratic form of the cross-state transmission. The shaded
region is ± 0.025 dB, showing the low additional phase-dependent loss. Uncertainty in the phase in
(b) results in erroneous transmission variation in the fourth plot of (e). (f) The measurement setup for
the insertion loss is similar to (a) but has a single input and output grating coupler for each device
and does not need a beam block.



Micro 2024, 4 344

The MEMS phase shifter was actuated in ambient temperature and humidity, which
led to charging affecting measurements. To mitigate this effect, we applied alternating
positive and negative voltages while flowing dry nitrogen over the structure. As shown
in Figure 5b, the fabricated MEMS phase shifter achieves a 1.2π phase shift over the
full ±200 V range of the high-voltage driver. The phase shift as a function of voltage is
approximately quadratic up to ±40 V. At this voltage, the micro-bridge touches down, so
further voltage increase results in reduced increase in phase shift.

To measure the loss over the entire phase shift range, we found the insertion loss of
our device with no applied voltage, which is the zero phase shift state, and the relative
change in transmission as a function of applied phase shift.

The insertion loss is found by cutback measurements through 0, 1, 2, and 4 phase
shifters, as shown in the schematic Figure 5f. The reflections from the input and output
grating couplers form Fabry–Perot cavities on top of the measurement. To compensate,
each measurement was averaged over four free-spectral ranges from 1548.9 to 1549.1 nm.
As shown in Figure 5d, the insertion loss per phase shifter is found by fitting the slope of
the measurements. Over the four dies tested, the insertion loss was −0.63 dB per device.
The best die exhibited an insertion loss as low as −0.48 dB per device. Our design focus is
on the phase shifter loss and less on average loss due to reflections at transitions. Also, the
presence of the aluminum electrode on the phase shifter could be a source of additional
loss in the structure. Still, our insertion loss is on par with that of other reported silicon
nitride phase shifters that focus on reducing losses at transitions [24].

To calculate the phase-dependent loss, we first fit the cross-state measured response as
a function of phase and solve for the transmission from the resulting quadratic form. The
measured cross-state response of MZI with a phase shifter on one arm is

Pmeasured = Pin(α
2β2)(1 + t2 + 2tcos(∆ϕ + ϕ0)), (12)

where Pin is the input power coupled into the MZI from the input, α2 and β2 are the cross-
and straight-through transmission of the directional coupler, and t2 is the transmission of
our phase shifter. If the measurement is scaled relative to the zero phase shift state, you can
obtain a form independent of the directional coupler characteristics and the input power.

Pmeasured
Pmeasured,0

(1 + t2
0 + 2t0cos(ϕ0)) = (1 + t2 + 2tcos(∆ϕ + ϕ0)) (13)

Using Equation (13), we do a least-squares fit of the scaled measurement to determine
t0 and ϕ0 for each cross-state measurement described earlier. For this least squares fit,
we arrive at the same ϕ0 values, −0.23π and −0.13π, as we did for the cosine fit earlier.
The resulting fits are plotted in Figure 5c. The difference in the measured transmission of
the two cross-states is affected by the fiber realignment between measurements and the
charge instability of the MEMS structure when run outside of a packaged environment. The
resulting absolute starting phase uncertainty leads to a slightly different normalization—the
zero voltage power output—for each curve and thus a different scaled response.

Using the fitted starting points, t0 and ϕ0, we solve for the roots of the quadratic form
to get t2, relative to t2

0, for each value of ∆ϕ. The solutions to the quadratic are plotted in
Figure 5e, with a shaded region bounding ± 0.025 dB. The quadratic solution goes through a
crossing, and it avoids a crossing that is an artifact of the numerical technique. The fourth
plot in Figure 5e suffers from the phase uncertainty of a negative voltage sweep of one
cross-state. This phase uncertainty results in an erratic avoided crossing of the quadratic
solutions despite the continuity of the measurement and fit in Figure 5c. Combined with the
cutback measurement, we demonstrate that our TM-like phase shifter design can achieve
an insertion loss of −0.48 dB and a phase-dependent loss of less than −0.05 dB over a 1.2π
phase shift range.
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7. Discussion and Conclusions

We have described two approaches based on CMT for the modal design of MEMS
phase shifters with low insertion loss. The first approach is to minimize the coupling of
power from the waveguide fundamental mode to the modes of the perturbation, leading to
a coupled-mode system with analytical solutions. By designing the perturbation to carry
an orthogonal fundamental mode, the coupling, and consequently the insertion loss, is
reduced. For a TE-like silicon nitride waveguide, we simulated a 100 µm long TM-like
silicon nitride MEMS phase shifter with an insertion loss of −0.08 dB and a 2π phase
shift. Further optimization yielded a 100 µm long π phase shifter with an insertion loss of
−0.026 dB.

Our second approach is to consider the phase shifter as the complete coupled system
and design the perturbation to maximize the projection operation from the fundamental
mode of the waveguide to a single super-mode predicted by CMT. Whereas the first
approach minimizes the off-diagonal elements of the evolution matrix, the second approach
focuses on designing the eigenvectors. The shape of the perturbation is found numerically.
Using the same parameterization and constraints as the first approach, a different design
optimum composed of a small trapezoidal perturbation is found. This optimized structure
has an insertion loss of −0.022 dB and a π phase shift. These optimizations were limited to
three parameters but provide a framework for reaching arbitrarily low insertion loss under
prescribed length and phase shift constraints.

To demonstrate the practicality of the first design approach, we fabricated a TM-like
MEMS phase shifter design with a process flow that allows for high aspect ratio MEMS
to be integrated with the photonics. We tested the TM-like design and achieved −0.48 dB
insertion loss and less than 0.05 dB variation in transmission over a π phase shift range.
In terms of total loss, our demonstration is comparable to other MEMS phase shifters in
silicon nitride [21,24] that use tapering of the MEMS phase shifters to achieve low loss.
Additionally, we explicitly demonstrate a low phase-dependent loss similar to [36].

The proposed modal design of phase shifters is not specific to MEMS. Our CMT
analysis is agnostic of the material system, the wavelength of light, or actuation mechanism.
We used a MEMS phase shifter based in a silicon nitride process as the model system, but
the concepts discussed in this paper can be applied to other integrated photonic platforms
to achieve low-loss designs.
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Abbreviations
The following abbreviations are used in this manuscript:

MEMS Micro-Electromechanical Systems
CMT Coupled Mode Theory
TE Transverse Electric
MZI Mach–Zehnder Interferometer
InGaAs Indium Gallium Arsenide
LPCVD Low-Pressure Chemical Vapor Deposition
EME Eigenmode Expansion
FDTD Finite-Difference Time-Domain
MBP MIT Photonic Bands
TM Transverse Magnetic
s.t. such that
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