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Definition: A solar chimney is a renewable energy system used to enhance the natural ventilation
in a building based on solar and wind energy. It is one of the most representative solar-assisted
passive ventilation systems attached to the building envelope. It performs exceptionally in enhancing
natural ventilation and improving thermal comfort under certain climate conditions. The ventilation
enhancement of solar chimneys has been widely studied numerically and experimentally. The
assessment of solar chimney systems based on buoyancy ventilation relies heavily on the natural
environment, experimental environment, and performance prediction methods, bringing great
difficulties to quantitative analysis and parameterization research. With the increase in volume and
complexity of modern building structures, current studies of solar chimneys have not yet obtained a
unified design strategy and corresponding guidance. Meanwhile, combining a solar chimney with
other passive ventilation systems has attracted much attention. The solar chimney-based integrated
passive-assisted ventilation systems prolong the service life of an independent system and strengthen
the ventilation ability for indoor cooling and heating. However, the progress is still slow regarding
expanded applications and related research of solar chimneys in large volume and multi-layer
buildings, and contradictory conclusions appear due to the inherent complexity of the system.

Keywords: natural ventilation; solar chimney; Trombe wall; renewable energy; passive ventilation;
building application

1. Introduction to Solar Chimneys

Due to the potential benefits of passive ventilation systems in economic and energy
conservation and resistance against noise and carbon dioxide emission [1–3], more research
has focused on exploring and improving passive ventilation in the past 20 years. Passive
ventilation strategies have been extensively studied over the years. According to local
climate conditions and building characteristics, passive ventilation systems show different
airflow characteristics and temperature distributions. Simultaneously, some passive venti-
lation systems also have heat dissipation and heat acquisition functions for space cooling
and heating apart from providing adequate ventilation [3–9]. Most modern buildings
rely entirely on mechanical ventilation, i.e., active ventilation systems, to satisfy indoor
comfort. The majority of the energy supply is used for those active ventilation systems,
occupying usable space due to its relatively large volume and structural complexity. Addi-
tionally, buildings with mechanical ventilation are often highly airtight to minimize energy
consumption and heat loss, resulting in an inadequate fresh air supply [2].

Passive ventilation systems are increasingly being advocated as low-energy alterna-
tives and low-cost solutions for energy conservation buildings. According to the pressure
difference sources, typical modes of passive ventilation are referred to as wind-induced,
buoyancy-driven, and hybrid ventilation [10,11]. Corresponding air movement is caused by
wind pressure, temperature difference, or both of the above, and humidity difference [12].
It has been found that natural ventilation has the potential to provide adequate capacity
for thermal regulation and satisfying indoor air quality in available climatic conditions
without reliance on mechanical systems [10,13,14].
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Passive ventilation systems rely on natural physical mechanisms, which make many
uncertainties occur during operation. Wind-induced ventilation systems are solely de-
pendent on prevailing wind speed and incident angle. The stochastics of wind direction
and wind intensity bring significant challenges to system performance evaluation and
design [15]. Buoyancy-driven ventilation builds upon the air intensity difference caused by
the internal and external temperature difference, ventilating the space even in windless
conditions. However, under extremely hot and humid climatic conditions (the temperature
difference is insignificant), the system is probably not working properly. Not every passive
ventilation system has the dual function of heating and cooling space driven by natural
forces. The natural ventilation system can remove the stale warm airflow indoors by
accelerating the air movement to provide a space cooling effect. Achieving heating usu-
ally requires collecting and storing heat gain and releasing heat when needed to increase
the indoor temperature. As the most representative buoyancy ventilation system, the
solar chimney has attracted researchers’ attention because of its simultaneous ventilation,
heating, and cooling functions.

A typical solar chimney is presented in Figure 1. It consists of an absorption wall,
a glazing wall, tuyeres/vents, and heat-insulating materials. Airflow is affected by the
air density difference between the internal and external environment and the external
wind [16–19]. Stale air escapes from the purpose-built openings by the thermo-siphoning
effect. The solar chimney components can employ direct or indirect solar energy to drive
the airflow in the space. Quesada et al. [20,21] comprehensively reviewed the research
on transparent and translucent solar facades in the past ten years based on theory and
experiment and explored its development and applicability. The solar façade absorbs and
reflects incident solar radiation and converts direct or indirect solar energy into usable heat.
Jiménez-Xamán et al. [22] verified that a roof-top solar chimney applied to a single room
for cooling purposes could increase the ventilation rate by 1.16–45.0%. The numerical code
was generated to solve the conjugate turbulent heat transfer in a single room equipped
with a solar chimney based on the coupling of CFD and global energy balances.
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Figure 1. A schematic diagram of a solar chimney.

Solar chimneys stand out among many natural ventilation systems not only because
of the convenience of their structural features when they are integrated into buildings or in
conjunction with other ventilation systems but also because the solar chimney has heating
and cooling modes through the cooperation of damping and openings, which makes the
structure more sustainable. Figure 2 presents two modes that a solar chimney can achieve
in the cooling season and heating season. In order to improve thermal comfort and enhance
the applicability of natural ventilation, Monghasemi et al. [6] summarized the existing
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combined passive ventilation system based on solar chimneys and investigated the thermal
regulation of the selected systems and their ability to improve ventilation efficiency.
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2. Current Research Methods of the Solar Chimney

According to the review of Chen et al. [24,25], the existing Computer-Aided Prediction
Models involve numerical models (usually assisted with CFD), analytical models, empirical
models, full-scale or small-scale experimental models, multizone network models, and
zonal models. A considerable part of the research on natural ventilation methods is based
on experimental methods coupled with numerical simulations. Because of their complexity
and the limitations of modeling methods, most previous studies are without detailed
parametric analysis or merely focus on validating analytical models in corresponding
experiments. According to the ref. [1], only 31% of the research used analytical methods,
10% of which used pure analytical methods, and the combination of analytical methods and
experiments accounted for 13%. The remaining part used analytical methods combined
with a numerical value. Based on simplified assumptions, different analytical models are
capable of solving a series of energy-balance equations under specific scenarios, which in
turn would limit the establishment of universal analytical models and solutions.

A prevailing method in passive ventilation uses computational fluid dynamics (CFD)
to predict the air distribution and temperature distribution. Using CFD modeling can save
time in simulating natural convection and predicting ventilation performance, allowing re-
searchers to quickly develop optimal strategies for improving ventilation performance [26].
CFD can also analyze the multiple flow regimes caused by different driving forces (such as
Laminar and turbulent) from an intuitive multi-dimensional perspective [27]. With the aids
of CFD simulation, Kong et al. [28] determined the optimal inclination angles for the single-
chamber roof solar chimney to achieve optimal ventilation performance. Sundar et al. [29]
examined eighteen cases under different heat flux intensities and geometrical parameters
with the aid of CFD and an experimental method for an inclined solar chimney. Nguyen
and Wells [30] used CFD models to predict the ventilation rate and thermal efficiency of
wall solar chimneys with four types of adjacent walls and different chimney configurations,
and the heat source location. Salari et al. [31] developed a three-dimensional quasi-steady
CFD model of a compound solar chimney with the photovoltaic module and phase change
material and verified the three types of combined system performance.

With the aid of CFD-based computational methods, previous studies tried to find
the optimal solution to enhance natural ventilation through geometric modification of the
chimney configuration and the prediction of the flow pattern in the space connected to
the solar chimney. The accuracy of CFD’s prediction of the performance of solar chimneys
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applied to natural ventilation in buildings has been widely recognized. Section 3 further
discusses the influencing parameters of solar chimney performance in previous studies.

3. Influencing Factors of Solar Chimney Performance

Researchers have conducted many parametric studies to find the influencing param-
eters directly related to the ventilation rate. Shi et al. [32] summarised four groups of
influencing factors (a total of thirteen influencing parameters) on solar chimney perfor-
mance, including the configurations of solar chimney and buildings, installation methods,
material properties, and the external environment. Changing the configuration parameters
of the system is the most convenient and effective way, which has been reflected in many
documents in detail, so this part is not presented in detail here. The influence of external
environmental factors is usually related to solar radiation intensity and wind effect. With
the continuous emergence of new materials, the properties of different materials also di-
rectly affect the performance of the solar chimney. The aggregated influencing factors are
listed in Figure 3.
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Figure 3. The influencing factors on the performance of the solar chimney.

The stack effect intensity is associated with aperture positions and the air density
difference between inlet and outlet. Solar radiation intensity as one of the external envi-
ronmental factors can result in a straight improvement in buoyancy-driven ventilation
efficiency without considering the external wind effect. Menchaca-Brandan et al. [33]
emphasized the importance of considering radiative effects in theoretical models or nu-
merical simulations and experimental setup. The correct establishment of the radiation
model will affect the accuracy of the prediction of ventilation efficiency and the accuracy of
assessing the thermal comfort of indoor residents. Due to the buoyancy effect brought by
the temperature difference, it is known that buoyancy-driven ventilation is preferable in
temperate climates [34].

Excepting solar radiation, wind plays an equally critical role in influencing airflow
patterns and thermal behavior. Some studies also compared the concurrent influences of
solar radiance and external wind on the solar chimney system, and sometimes one driving
force could be dominant under a particular condition. Additionally, the effect of wind
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factors on stack ventilation may be beneficial or unfavorable, depending on the pressure
difference caused by the combination of wind pressure and air density difference at the air
inlet, whether positive or negative. Shi et al. [35] investigated the interaction between solar
chimney performance and external wind numerically and theoretically. When considering
the influence of wind, the performance of solar chimneys depends not only on the wind
speed but also on the incident angle. Based on the theoretical model developed, the critical
wind speed was proposed. Wang et al. [36] verified that the dependence of solar chimney
performance and airflow characteristics on solar radiation was reduced when the external
wind was taken into account. It was found that keeping the vent size constant under the
influence of wind, the optimal design value of the chimney cavity is 0.4–0.5 m, which is
different from the previous optimal value of 0.2–0.3 m, which only considers the effect of
buoyancy. Even at low wind speeds, solar chimney performance has been enhanced.

The coupling effect of the thermal mass and the buoyancy effect of naturally ven-
tilated buildings has also attracted researchers’ attention. Yang and Guo [37] analyzed
the non-linearity of the coupling effect between the thermal mass and the stack effect
under an external heat source theoretically. The thermal behavior and ventilation rate
fluctuations caused by coupling effects were discussed. Thermal-mass-integrated PCM pro-
vides an effective method of thermal storage [38]. Through the phase transition, combined
with the thermal mass of PCM, naturally ventilated space maintains a relatively uniform
temperature. It can significantly reduce the cooling load of the building in mild weather.
Especially in the case of night ventilation, the role of PCM becomes more prominent [39,40].
Vargas-Lopez et al. [41] presented an extensive review of transient mathematical models
based on global energy balance models of solar chimneys with/without PCMs. It is fur-
ther developed the mathematical models for a double-channel solar chimney integrated
with PCMs.

Figure 4 shows the controlling parameters used to evaluate the performance of passive
ventilation systems. There are two main parameters used to evaluate and characterize the
efficiency of passive ventilation systems from ventilation rate perspectives: air exchange
efficiency and ventilation effectiveness [18]. Additionally, thermal efficiency is usually
related to indoor temperature regulation and humidity control. For the specific values of
each indicator, refer to ref. [42].
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Based on the analysis of the influence of control parameters, researchers have carried
out extensive research on enhancing stand-alone solar chimney performance. The perfor-
mance of the solar chimney can be significantly improved by selecting the optimal design
parameters. Khanal and Lei pointed out [1] that previous studies related to solar chimneys
aim to find optimum design solutions for enhancing natural ventilation, considering dif-
ferent design parameters. Most of the research is to optimize the system performance by
changing the configuration of the solar chimney components and room openings from the
geometric aspect. Enhancing natural ventilation will first consider changing the system’s
configuration, mainly by changing the geometric parameters to determine the design
parameters corresponding to the optimal ventilation efficiency [32]. Second, the sensitivity
of system performance to external environmental parameters is considered to verify the
applicable conditions of the system [17,32]. Thirdly, based on the analysis of the response,
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ventilation rate, and thermal behavior of the naturally ventilated building, the desired
effect can be achieved by changing the system or building envelope materials, such as
solar absorptance of the heat storage materials, heat transmittance, and solar reflectance
of glazing cover [17,43]. Shi et al. [32] comprehensively summarized the correlation be-
tween different controlling parameters and solar chimney performance. The diversity of
influencing parameters also brings variables to the design of solar chimneys according
to local conditions. Zhang and Shi [44] clarified the optimal design value to improve the
performance of the solar chimney by reviewing three factors: chimney configurations,
installation conditions (chimney installation angle), and material properties.

In addition to geometrically changing the configuration parameters of the solar chim-
ney and the ventilated room, recent studies have shown that some attempts to add compo-
nents into the chimney cavity can also improve ventilation efficiency. Sheikhnejad et al. [45]
employed a passive vortex generator (VG) in the air channel to enhance heat transfer.
The effectiveness of this configuration improvement was successfully verified by using
simulation technology. Among many studies on improving the heat storage capacity of
absorption walls, it is worth mentioning that PCM integration into the solar chimney has
been verified to affect ventilation rates and thermal comfort positively. By integrating PCM,
a solar chimney can effectively store solar energy during the day and release heat at night,
thereby improving the solar chimney performances and making the indoor temperature
uniform [46]. Dordelly et al. [47] investigate the influence of integrating a PCM on the
performance of two laboratory prototypes of solar chimneys and verified the effectiveness
of integrating solar chimney and PCM to improve ventilation efficiency.

Most previous parameterization studies have been based on predicting ventilation
rates and building response through geometric modifications. Critical considerations for
improving natural ventilation performance include introducing different configurations,
such as the inclination position of the roof-top solar chimney, window-to-wall ratio, cavity
gaps, stack height, and orifices areas. In addition, there are some studies on the influence
of thermal mass and the transmittance and reflectivity of glass materials on ventilation
performance. Some parameter analysis also focuses on developing various mathematical
models to examine the correlation between airflow or thermal performance and the design
variables.

4. Works Have Been Done at RMIT University, Australia

Figure 5 presents the contributions of RMIT University in the passive ventilation
strategies over the years. Researchers at RMIT University have explained and presented a
relationship between controlling parameters and ventilation capacity in buoyancy-driven
ventilation. Referring to the parameterization studies on the various aspects mentioned in
Section 2, researchers verified the influence of control parameters on the performance of
independent solar chimneys and extended the solar chimney practice to the field of fire
prevention and smoke control. Shi et al. [48,49] developed empirical models to predict
the airflow rate through the air inlets under natural ventilation and smoke exhaustion.
The effect of interaction mechanisms between the air inlet and the room window on the
performance of the solar chimney was investigated.

Additionally, Shi et al. [50] also promoted the practical application of solar chimneys,
which laid the conditions for future field measurement. Cheng et al. [51] identified the
factors that affect the natural ventilation efficiency and smoke suppression of a typical
solar chimney. Regarding the dual functions of the solar chimney on energy conservation
and fire safety, Shi et al. [50] developed a consistency coefficient to evaluate the correlation
between controlling parameters and the solar chimney performance under the two modes
in actual practice in Melbourne, Australia. The effectiveness of the solar chimney as a
means of ventilation and smoke extraction was confirmed. Based on this actual project,
Shi et al. [52] further conducted an optimization design of a solar chimney. Simultaneously,
the realization of solar chimney ventilation and smoke exhaust in the tunnel is related
to traffic safety and environmental impact. Cheng et al. [14] investigated four influential
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factors that govern solar chimney effectiveness in tunnel applications by developing
a numerical model. Chimney height and the cavity gap become the dominant factors
affecting the performance of solar chimneys in the two modes.
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Through different research methods, Dr. Shi has made significant contributions to
solar chimney research and promotion. Shi et al. [48] conducted the parametric analysis
considering installation methods, room/chimney configuration, and cavity materials, thus
developing the empirical models with the assistance of a fire dynamics simulator (FDS) to
predict typical solar chimney performance. In another study, aiming at roof solar chimney,
Shi et al. [19] not only summarized the previous mathematical models, the input parameters
of testing ranges, and their experimental tests but also established the empirical models
based on the experimental data of various general test rigs to predict the flow rate of roof-
top solar chimneys and pointed out the configuration parameter values required to enhance
ventilation rate. Shi et al. [53] developed theoretical models on heating and cooling modes
of the wall solar chimney to predict the volumetric flow rate and temperature. Four solar
chimney types were analyzed theoretically, considering room and chimney configurations
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and different fresh air supply methods. Consequently, the theoretical and experimental
research on applying solar chimneys in single-chamber rooms tends to be consummated.

The emergence of the double-skin façade (DSF) with an air channel as one of the strate-
gies for enhancing natural ventilation makes buoyant ventilation cater more to modern
buildings’ functional and aesthetic needs due to its excellent acoustic insulation, thermal
insulation, and transparent appearance. Solar-assisted passive ventilation systems attached
to the building envelope have similar operational mechanisms and structural composition.
Using solar-assisted thermal convection and stack effects, the buoyant airflows moving
through the openable channels interconnected flow paths can ventilate the occupant spaces.
Tao et al. [54] explored the correlation between the airflow behavior of the double-layer
façade and the room configuration, coupled with the environmental factor on buoyancy-
driven natural ventilation, by adopting experimentally validated numerical models. It
revealed the best cavity gap and exhaust port height based on the simulation results and
found the influence of the room window’s size and position on the ventilation rate. The
numerical analysis of the naturally ventilated double-skin façade (NVDSF) confirmed the
ability of NVDSF to induce indoor airflow and its energy-saving potential. Tao et al. [55]
proposed a low-emissivity glass double-skin façade to reduce the indoor heating demand,
considering solar radiation and natural convection. Additionally, the study also obtained
the optimal air channel value of 0.15–0.3 m.

Research to improve natural ventilation mechanisms in sustainable buildings is ongo-
ing. Researchers at RMIT used experiments, analysis, and simulation methods to conduct
extensive research on thermosyphon air channels represented by solar chimneys with
thermal buoyancy as the main driving force for air movement. The studies involve many
considerations in designing the essential elements of solar chimneys and similar passive
ventilation systems.

5. Potential Trends and Challenges of the Solar Chimney

The theoretical studies of solar chimneys in multiple chambers are scarce to support the
view that it is feasible to use buoyancy ventilation in buildings with more rooms. Research
on the application of independent solar chimneys in a single space has been extensively
studied. However, with the increase in volume and structural complexity of modern build-
ings, the performance of solar chimneys in the multi-chamber is insufficient. The lack of the-
oretical research has led to the limitations of the solar chimney in the practical application
of multi-chamber spaces. The studies on buoyancy-driven ventilation in a multi-chamber
building can be divided into two types: the multi-chamber of the single floor and the multi-
chamber of the multi-storey building. In recent years, only a few studies have involved
the application of solar chimneys in multi-storey buildings. Punyasompun et al. [56] estab-
lished a three-storey prototype building with a wall-integrated solar chimney and validated
the analytical model by experimental data. The optimal structure of the multi-layer solar
chimney is verified. That is, only one outlet is set at the top. It was found that the indoor
temperature of a multi-story building using solar chimneys was 4–5 ◦C lower than that of
a building without solar chimneys. By establishing an analytical model and conducting the
numerical simulation, Yang and Li [57,58] compared the ventilation efficiency of a 10-story
building prototype with/without a wall-integrated solar chimney with buoyancy venti-
lation and mixed ventilation mode and deduced a dimensionless expression and further
determined the value of control parameters.

Moreover, the necessary conditions to ensure adequate natural ventilation include
natural forces available, building characteristics, exterior envelope air infiltration and
airtightness, and occupant behaviors [59–61]. Among them, the envelope’s properties with
the most direct contact with the outside environment have become the leading research
subjects. The coupling effect between the thermal mass of building envelopes and the
stack effect has been projected from the improvement methods of the buoyancy-driven
ventilation efficiency. However, such coupling effects studies are insufficient for the
practice of solar chimneys in previous studies, whether through experimental verification
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or numerical simulation. Significantly, the practice of solar chimneys in conjunction
with different building forms and climatic conditions requires sufficient case studies and
theoretical guidance.

Although some studies draw attention to the attempts of combined systems over
the years, parameterization research and theoretical analysis are far from enough to meet
practical application needs. In a given environment, a coupling of multiple ventilation
systems can compensate for each other’s performance and increase the service life of a
single system. Figure 6 shows the independent passive systems combined with solar chim-
neys based on the selected literature review. Zhang et al. [42] categorized and reviewed
the cross-application and combination potentials between independent natural ventilation
systems. Compared to the conventional stand-alone passive ventilation system, consid-
erably less research has been conducted on the dynamics and performance of multiple
passive-assisted ventilation technologies in sustainable buildings. The study exhaustively
recorded considerable attempts in natural ventilation in the past 20 years. Researchers
mostly combined solar chimneys with other stand-alone systems and applied them to
actual structures in the previous literature.
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Based on structural superiority and economic and environmental benefits, the solar
chimney has attracted growing interest as an excellent member of passive ventilation
systems and advocated for as an auxiliary or alternative system for mechanical ventilation.
The current research trend is more focused on combine PV modules with solar chimneys
by coordinating components. Sivaram et al. [62] pointed out the commercial applicability
of building-integrated passive solar energy technology in which photovoltaic modules
and solar still are integrated into a single building configured with a solar chimney. The
research of combined systems also shows diversification: the combination of multiple
systems to maximize energy saving. Chandavar [63] explored the effectiveness of coupling
the solar chimney and PV modules by field tests. As two self-sustained systems, the two
components complement each other in their work, thus improving thermal efficiency. With
the increasing demand for energy-saving, the combination of different ventilation systems
is not only limited to double combinations, or triple combinations will get more attempts.
Sakhri et al. [64] integrated a windcatcher, solar chimney, and earth-to-air heat exchanger
into a test room and conducted a full-scale experiment. Ahmed et al. [13] suggested that a
potential solution to combat the heatwaves in warm climates is a combination of a solar
chimney, a windcatcher, and evaporative cooling. The related renewable energy systems
that could be combined with a solar chimney are listed in Figure 6.
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However, the passive ventilation system’s performance prediction depends on the
local climatic conditions, the experimental settings, and the selection of the prediction
method. Therefore, it is challenging and unpredictable to make quantitative comparisons
between different passive ventilation combinations. In order to formulate the accessible
strategy according to local conditions, not only indispensable theoretical support is needed,
but also sufficient case analysis and experimental data are ensured for well-designed com-
binations, so as to determine the correlation and dependence between different controlling
factors and weaken the unexpected correlation of different parameters.

6. Discussion and Conclusions

It is evident from extensive literature that a solar chimney is an excellent passive
ventilation strategy used to enhance natural ventilation and provide thermal comfort. The
effectiveness of the solar chimney on the improvement of ventilation rate and thermal
regulation has been studied by various researchers numerically and experimentally. Table 1
summarizes the ventilation efficiency of independent solar chimneys and passive systems
combined with a solar chimney. The indicators for characterizing ventilation efficiency
have an extensive range of changes due to different study conditions, such as local climate,
experimental settings, prediction tools, and design parameter selection (i.e., geometry
modification of solar chimneys and adjacent spaces). It can also be seen from Table 1 that
the combined system significantly improves temperature regulation and ventilation rate.

Table 1. The performance of a solar chimney and combined systems.

Performance Air Temperature
Adjustment (◦C)

Volumetric/Mass
Flow Rate (m3/s,

m3/h, or kg/s)

Air Change per
Hour (ACH)

Energy-Saving
Percentage (%)

Indoor
Relative

Humidity (%)

Stand-alone
Solar

chimney

Drop 1.0–5 ◦C
[16,29,56,65–67];

16.7 ◦C [68]

50–374 m3/h
[16,65,69];

0.019–0.033 m3/s [70];
0.55–44.44 kg/s

[22,29,71];
70.6 m3/h~1887.6 m3/h

[72];

0.16–15
[22,65,66,69,73,74];
27.11 [68]; 30 [75];

12–50% [72,76]

Integrated
systems
based on

solar
chimneys

Drop: 2.0–14 ◦C with
water spaying [66,77];

6.7–11.5 ◦C with
evaporative cooling

[78–81]; 3.2–9 ◦C with
EAHE [82,83]; 5.2 ◦C

with windcatcher [84];
10–13 ◦C with a

windcatcher and EAHE
[64]; 8 ◦C with a Trombe
wall and water spraying

system [85]; with ;
Raises: 14 ◦C with

Trombe wall and PV [86];
6.4 ◦C with EAHE [87].

1.4 kg/s with wind
tower [88];

0.0184 m3/s with
EAHE [87];

0.038–0.144 m3/s or
130.5 m3/h or
414 m3/h with

evaporative cooling
[78,80,81]

35–73 with a wind
tower [88]; 12 with
PV [89]; 2.42–4.33
with evaporative

cooling [79]; 9 with
windcatcher [84]

50% with a
windcatcher and

EAHE [64]; 75–90%
with windcatcher

[84]

Increases 17%
with Trombe

wall and water
spraying

system [85];
increases

28–45% [77]

An increasing number of studies tend to combine multiple energy-saving systems
with SCs with vertical or inclined thermosiphon air channels as an effective passive ven-
tilation enhancement strategy. The strengths of solar chimneys come from providing the
desired airflow rate economically, with a simple structure, less space requirement, and
ease of integration into existing building facades. Although the research on the application
of solar chimneys in single chambers has been going on for a long time, there is no uni-
fied theoretical basis and sufficient experimental results for its application in multi-story
buildings. Additionally, the significant differences in the research results in the literature
indicate that solar chimneys have not yet been thoroughly studied and developed. More
theoretical support and experimental verification are needed to enhance the universality
of solar chimneys to be popularized in practical applications. Simultaneously, previous
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research results have revealed the effectiveness of the multi-purpose application of solar
chimneys (i.e., heating and cooling spaces, fire prevention, and smoke control), which also
makes the research of solar chimneys very promising.

This article investigates the current development of solar chimneys used in buildings
to enhance natural ventilation. The working mechanism and typical structure of solar
chimneys are briefly presented. The influencing parameters related to ventilation efficiency,
temperature distribution, air pattern, and IAQ have been confirmed. This article explores
current research gaps of solar chimneys and the various possibilities for enhanced per-
formance. It was observed that a stand-alone solar chimney used in a single room and
ideal climatic conditions could effectively provide indoor thermal regulation and enhanced
ventilation rate, while a combined system based on solar chimneys can cope with more
diverse climatic conditions and provide buildings with functional energy-saving solutions.
Previous research has focused on achieving the optimal design strategy based on parameter
analysis, including geometrically improving the configuration of the ventilation system
and the subsequent response analysis of adjacent spaces. Some of the research hotspots
of buoyancy-driven ventilation systems represented by solar chimneys also include the
impact of building opening positions on natural ventilation and the coupling effect of the
building’s thermal mass on buoyancy-driven ventilation. However, since natural venti-
lation is heavily dependent on local climatic conditions and experimental settings under
different working conditions, this brings challenges to quantitative analysis and parallel
comparison of system performance. How to improve the stability of the system to cope
with different climatic conditions and prolong the durability of the system has become a
problem that needs to be solved. In addition, although there have been some attempts at
hybrid natural ventilation, the practical application of passive-assisted ventilation systems
in a building is limited due to the lack of a large amount of experimental and theoretical
support for the coupling system. As the population continues to increase, it is not surpris-
ing that multiple rooms have natural ventilation scenarios. At present, only a small amount
of research involves the application of solar chimneys in multi-chamber spaces, including
single-story buildings with multi-chambers and multi-storey buildings. However, due to
the increase in the amount of spaces, the dimensionality of the variables is undoubtedly
increased, thereby increasing the difficulty of theoretical derivation. So far, there is no
unified design guide for solar chimneys to enhance natural ventilation in multi-chamber
scenarios.
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