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Abstract: The scare of the ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), does not seem to fade away,
while there is a constant emergence of novel deadly variants including Alpha, Beta, Gamma, Delta
and Omicron. Until now, it has claimed approximately 276,436,619 infections, and the number of
deaths surpluses to 5,374,744 all over the world. While saving the life has been a priority during
the ongoing SARS-CoV-2 pandemic, the post-infection healing and getting back to normalcy has
been undermined. Improving general health conditions and immunity with nutritional adequacy
is currently of precedence for the government as well as frontline health workers to prevent and
assuage infections. Exploring the role of probiotics and prebiotics in managing the after-effects of
a viral outbreak could be of great significance, considering the emergence of new variants every
now and then. To enhance human immunity, the recent evidence on the connection between gut
microbiota and the broad spectrum of the clinical COVID-19 disease is the reason to look at the
benefits of probiotics in improving health conditions. This review aims to sketch out the prospective
role of probiotics and prebiotics in improving the standard of health in common people.
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1. Introduction

Various acute respiratory tract infections caused by viruses, including respiratory
syncytial virus, enterovirus, pneumonia-causing viruses, adenovirus and influenza virus,
are the main causes of debility and death worldwide [1]. The main causative agent for these
respiratory tract infections (RTIs) are DNA/RNA viruses. However, the RTIs associated
with RNA viruses are more virulent in comparison to those that are caused by DNA
viruses [2]. Specifically, coronaviruses belong to a highly significant re-emerging RNA virus
family, causing serious life-threatening respiratory infections [3]. Ever since the onset of the
infectious coronavirus disease (popularly known as COVID-19) in Wuhan city of China, the
pandemic has increased rapidly in 57 countries, with over 276 million COVID-19 cases and
over 5.37 million deaths reported as of 27 December 2021. Additionally, imposing several
socio-economic, proper feedback strategies and rigid public health measures globally,
involving social distancing, mask wearing, personal hygiene, quarantines, and lockdowns,
the number of infections and death due to SARS-CoV-2 virus are constantly rising [4].

Given the continuous evolution of the virus that leads towards SARS-CoV-2, WHO,
in collaboration with researchers, national authorities, institutions and expert networks,
monitored the emergence of variants that posed an increased risk to global public health
and prompted the characterization as Variants of Interest (VOIs) and Variants of Concern
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(VOCs). Currently, using comparative assessment strategies, WHO labeled five variants as
VOCs Alpha (United Kingdom, September-2020), Beta (South Africa, May-2020), Gamma
(Brazil, November-2020), Delta (India, October-2020)and Omicron (Multiple countries,
November-2021), while Lambda (Peru, December-2020) and Mu (Colombia, January-2021)
were labeled as VOIs.

With the continuous boost from WHO, current ongoing research trends and devel-
opmental attempts are completely focused on developing effective therapy to counter the
novel virus [5]. In this direction, anticoagulants, convalescent plasma, Hydroxychloroquine,
Remdesivir, Vasodilators, non-steroidal anti-inflammatory drugs, monoclonal antibodies
and Lopinavir/Ritonavir are in distinct phases of trials, research, or approvals. However,
none of the above treatments are completely effective against the virus [6–8]. In the absence
of potent and efficacious vaccines and medicines, the virus is severely transforming and
exhibits symptomatic, pre-symptomatic and asymptomatic forms in the affected popu-
lation. Both asymptomatic and pre-symptomatic exemplifications are certainly one of
the principal reasons for the pandemic [9]. Moreover, WHO released an assessment that
this novel disease might persist in staying with the global population for a prolonged
period. Therefore, proper investment and constant preparedness in public health and other
resources are required for supervising the spread and morbidity caused by SARS-CoV-2.

The novel COVID-19 exhibits wide diversity in disease severity, spanning from minor
and ill-defined common cold-like symptoms to pneumonia, and then can lead to life-
threatening complications such as acute respiratory distress syndrome (ARDS) and multiple
organ failure [10]. The proliferation and transmission of SARS-CoV-2 are caused through
respiratory droplets; however, Ng et al. reported that the gut could also play a major
role in the pathogenesis of COVID-19 [11]. Moreover, it was also reported that some
coronaviruses, including the present SARS-CoV-2, could infect enterocytes, thus plating
as a potential reservoir for virus proliferation [12]. Altogether, few clinical reports have
revealed that gastrointestinal symptoms are conventional in COVID-19-infected patients,
and in few cases, it leads to disease severity [13,14]. In addition, current pandemic control
measures and practices to manage pandemics implement long-term effects on the human
microbiome across the world, given the imposition of fleeing endemic areas, physical
distancing, scapegoating of certain groups, mask-wearing, personal hygiene, quarantines,
and lockdowns that influence overall microbial loss and inability for reinoculation. Rapid
depletion and reduction of microbes over generations may lead to the extinction of microbial
species ancestrally associated with humans; species may be permanently lost from the
microbial pool unless reinoculation from other sources occurs [15,16]. In this context,
various reports have suggested probiotic strains as promising therapeutics to enhance
human immunity, thus inhibiting pathogens colonization and further minimizing the
incidence and intensity of the infections. Moreover, little clinical evidence also illustrated
the significance of probiotics in preventing viral and bacterial infections, including RTIs,
sepsis, and gastroenteritis [17].

Keeping in view the enormous health and economic burden, repurposing the usage
of natural compounds such as probiotics and prebiotics can be an effectual therapeutic
approach in blocking and/or reducing SARS-CoV-2 severity. In this review, we describe
the existing curative and preventive trial studies focused on the usage of probiotics and
prebiotics to combat viral infections. Moreover, the possible application of probiotics
bacteria as a prophylactic approach against COVID-19 is also outlined in the present study.

2. SARS-CoV-2 and COVID-19

Morphologically, the enveloped SARS-CoV-2 viruses harbor a single-stranded non-
segmented positive-sense ribonucleic acid (RNA) genome. The novel SARS-CoV-2 harbors
completely diverse virus from formerly identified coronaviruses, i.e., Middle East res-
piratory syndrome coronavirus (MERS-CoV) and SARS-CoV [18]. For that reason, the
previously available flu or antiviral therapeutics is ineffectual against it.
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The majority of studies revealed that glycoproteins are engaged in binding to the host
and consequent virus–host membrane fusion to produce the pathogenesis of the SARS-
CoV-2 [19]. Structurally, the four major glycoproteins involving the membrane protein (M),
small envelope protein (E), spike protein (S), and nucleocapsid (N) proteinform the general
structure of coronavirus [20] (Figure 1). The surface of virus harbors N-linked glycosylated
trimeric S of 150 kDa that directs N-terminal signals towards the host endoplasmic retic-
ulum. The M (25–30 kDa) with a higher C-terminal endodomain and lesser N-terminal
glycosylated ectodomain is responsible for the shape of the virion [7]. Several vertebrate
reservoirs, including humans, camels, dogs, masked palm civets, bats, cats and mice, are
the potent hosts for coronaviruses [21]. Previous studies have revealed that COVID-19
was initially harbored by bats and then subsequently transmitted to humans through the
infection of wild animals; however, the consequent spread of the virus into the human
population occurred through human-to-human transmission [22,23]. The approximate
time period between the introduction of the SARS-CoV-2 and its symptom onset in the
host species, the incubation period, is 1–14 days [24]. Moreover, the standardization and
estimation of the incubation period for COVID-19 may vary depending on the host’s age,
the genetics of the individuals, the environmental conditions [25], the pathogenicity of
the virus or the long-term use of specific treatment such as glucocorticoids [26,27]. The
usage of glucocorticoids might cause atypical infections and can also increase the incu-
bation period. In addition, variability was also observed in the clinical manifestations of
COVID-19 infections, varying from no or minimal symptoms to severe viral pneumonia
with failure of respiratory organs and even death [28]. Earlier reports have revealed that
asymptomatic or pre-symptomatic COVID-19 patients can play as promising resources
for disease transmission [29,30]. Some familiar symptoms of COVID-19 include cough,
fever, sore throat, fatigue, shortness of breath, aches, myalgia and headache [31]. Other
associated symptoms reported include discoloration of fingers or toes, a rash on the skin
or conjunctivitis, and some gastrointestinal symptoms such as vomiting, nausea, diarrhea
and abdominal pain [32]. Person-to-person dissemination of COVID-19 infections was
possible via cough- or sneeze-respiratory droplets released from the mouths/noses of
SARS-CoV-2-infected patients [33]. Moreover, direct contact with the contaminated sur-
faces is an alternative means of COVID-19 transmission in humans [34]. With the onset of
the disease, the infected person faces trouble in breathing, and simultaneously, the disease
leads to severe respiratory tract infection and chronic inflammation [35].

Depending on the Cryo-EM structural investigation of S, it was revealed that the main
reason for the rapid spread of SARS-CoV-2 is the S protein, having a 10–20 times higher
affinity to human angiotensin-converting enzyme 2 (ACE2) receptor, in comparison to the
previously emerged SARS-CoV [36]. Moreover, Zou et al. recently revealed that human
organs, including epithelial cells from alveolar (lung) and enterocytes belonging to small
intestines, are possible targets of the deadlySARS-CoV-2 virus [37]. Very recently, Guan
et al. detected the SARS-CoV-2 viruses in contaminated human stools, recommending the
chances of fecal–to-oral transmission [38]. Supporting this report, Holshue et al. further
corroborated in a few patients from US and China that SARS-CoV-2 viruses are able to grow
and proliferate in both digestive and respiratory tracts [39]. Moreover, Wu et al. revealed
that the fecal samples of some of the COVID-19 recovered individuals were identified to
be positive for the RNA of SARS-CoV-2, even though their respiratory samples were tested
negative [40]. In addition, various current research has confirmed that COVID-19 disease has
adversely affected the physiology and anatomy of the gastrointestinal tract for an extended
period thus is damaging the gut microbiota [41,42]. Conticini et al. performed a post-mortem
investigation on a patient who had died because of COVID-19 complications involving
liver, lung and heart tissue, which revealed that serious damage occurred to the lungs with
edema and desquamation [43]. Additionally, some of the patients infected with SARS-CoV-2
exhibited intestinal and microbial dysbiosis with reduced probiotic species instance, i.e.,
Bifidobacterium and Lactobacillus, signifying the necessity to look into the gastrointestinal and
nutritional function of all patients [44–46]. These studies clearly indicate that the development
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of opportunistic pathogens and simultaneous lessening of beneficial bacteria in GIT can be
directly correlated with the severity of SARS-CoV-2 infections.
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3. Discussion

The FAO/WHO definition of a probiotic is “live microorganisms which when ad-
ministered in adequate amounts confer a health benefit on the host”. [17,47]. Probiotics
serveas an enormous metabolic advantage since they play a major role in host immunity by
enhancing both specific and non-specific immune system [48]. Probiotics belonging to the
genera Lactobacillaceae, Leuconostocaceae and Bifidobacterium [49] have been commonly uti-
lized for their wide variety of benefits to the health by significantly reducing the loss of body
weight, pathological symptoms, and viral loading [50–53]. The most commonly used probi-
otic microorganisms against pathogens include Lactococcuslactis, Streptococcus thermophilus,
Lactobacillus helveticus, Lactobacillus acidophilus, Lactobacillus delbrueckii spp. bulgaricus, Lac-
tobacillus gallinarum, Lactobacillus amylovorus, Levilacto bacillusbrevis, Lactobacillus crispatus,
Lactobacillus plantarum, Lactobacillus crispatus, Latilactobacillus curvatus, Limosilactobacillus
fermentum, Lactobacillus johnsonii, Lacticaseibacillus paracasei subsp. paracasei, Lactobacillus
delbrueckii subsp. lactis, Limosilacto bacillusreuteri, Lactobacillu scellobiosus, Lacticaseibacillus
rhamnosus, Bifidobacterium laterosporum, Leuconostocmesenteroides, Pediococcus acidilactici, Pe-
diococcus pentosaceus, Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium
breve, Bifidobacterium bifidum, Bifidobacterium infantis, Bifidobacteriumessensis, Bifidobacterium
thermophilum, Bifidobacterium cereus, Propionibacterium acidipropionici, B. longumlongum, Alkali-
halobacillus alcalophilus, Propionibacterium thoenii, Propionibacteriumjensenii, Propionibacterium
freudenreichii, Enterococcus faecalis, Enterococcus faecium, Bacillus Clausii, Bacillus subtilis, Bacil-
lus coagulans, Sporolactobacillus inulinus and Escherichia coli [54–56]. Traditionally, probiotics
were administered as fermented food and determined to enhance health and nutrition
by repairing the microbial balance in the host GIT [57]. In recent years, various research
has illustrated the function of probiotics in controlling immune responses and a wide
variety of conditions, exclusively targeting the infections caused by viruses, in various
clinical trials and animal models (Figure 2) [58]. Reports also suggested that dietary meals
containing probiotics and fiber supplementation are required to prevent adverse effects
of viral infections and maintain a stable immune response system within the host [59–61].
Most importantly, probiotic bacterial species, viz., B. bifidum [62], Bacillus subtilis [63], L.
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plantarum [64,65] and L. casei [66] were previously reported to play a major role in provid-
ing a protective immune response against respiratory tract viral infection in experimental
animal models. Moreover, Lehtoranta et al. reviewed that the interventions of probiotics
lead in the reduction of viral load in the lungs by easing clinical symptoms, improving
health conditions, and increasing survival rates [67–72].
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In addition to the GIT, probiotics also colonize at distant mucosal sites, including the
lungs, and also enhance the systemic immune responses [50]. The secreted proteins of
probiotics accelerate the production of Antigen-Presenting Cell (APC) that leads to secretion
of various interleukins, such asIL10, IL12, IL17 and TNF-α, interferon-α to eradicate foreign
and allergic particles that trigger adaptive immunity. Probiotics provide two different
immunomodulatory reactions: one is the immunostimulatory effect that activates IL-12
production, induces NK, Th, and Th2 cells, and acts against infection and allergy; and
another type is the immunoregulatory effect, which induces IL-10 and Treg cell activation
by Th2, DCs, B cells and monocytes for adaptive immunity of the host [7] (Figure 3).
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4. COVID-19 Affecting the Gut–Lung Axis Crosstalk

Human microbiota plays a major role in the development and regulation of host
metabolism, immune system, brain function and maintenance of a robust and resilient
healthy homeostasis [16]. The gut and lung are among the sections in the human body that
harbors microbiota; besides, the lung hosts a smaller amount of microbiota in comparison
to gut. This bidirectional crosstalk between gut and lung is involved in supporting the
immune homeostasis [73]. Moreover, previous reports have revealed that dysbiosis of
microbiota from the gut is directly affected by various respiratory pathological conditions
(Figure 4) [74,75]. Most importantly, metabolites and microbial components belonging
to the gut viz. short-chain fatty acids and lipopolysaccharides are also engaged in the
bidirectional communication of the gut–lung axis. In addition to the commonly reported
respiratory symptoms such as cough, fever and severe respiratory syndrome caused by
the infection COVID-19, research has reported that few COVID-19-infected patients also
depicted GIT symptoms such as GI bleeding, loss of appetite, abdominal pain, diarrhea,
nausea, and vomiting [76]. In a two-hospital cohort study, Yeoh et al. revealed that patients
infected with COVID-19 were depleted in gut bacteria with known immunomodulatory
potential even after disease resolution. Further, these complications lead to the increased
concentrations of inflammatory cytokines and blood markers such as C reactive protein,
lactate dehydrogenase, aspartate aminotransferase and gamma-glutamyl transferase [77].
In addition, various COVID-19 risk-reductions measures such as vaccination, masking,
physical distancing, intensive hygiene and antibiotics negatively affect microbial diversity
and accelerate microbiota loss [15].
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Figure 4. Schematic diagram representing the immune-modulatory agents regulated by probiotics.

Notably, Chiba et al. reported that SARS-CoV-2-infected patients with GIT symptoms
including diarrhea suffered severe respiratory disorders when compared to patients without
GIT symptoms [78]. However, very little information is offered regarding the consequence
of lung microbiota on the microbiome of GIT. Moreover, few studies have revealed that
acute lung injury regulates the dysbiosis of the lung that directly affects the blood-mediated
modulation of the gut microbiota [79,80]. It was observed that the microbiota population
was disrupted in cases of pulmonary allergy [78]. Keeping this view, we can hypothesize
that COVID-19 infection can stimulate disruption of lung microbiota, which further reg-
ulates the microbiota from GIT, resulting in various GIT symptoms. Later, a few reports
unveiled that the GIT symptoms developed in COVID infected patients might be attributed
to the damaged tissues and organs caused by the immune responses [81–84]. In addition
to the lung, it is reported that ACE2 is also identified in GIT, and direct colonization of
the gut ACE2 receptors through the ingestion of the virus is probably liable for the GIT
symptoms in connection with COVID-19. Furthermore, malfunction of apoptosis pathways
in the intestine due to infections in the respiratory tract [85] is another projected elucidation
for COVID-19-related GIT symptoms. Moreover, it can be believed that COVID-19-related
GIT symptoms may be the consequence because gut and respiratory tracts have a common
embryonic origin, and hence they share a similar structure and interact in a similar way in
both pathological and physiological conditions [86]. Collectively, all the above mechanisms
can assist researchers in understanding the GIT disturbances associated with COVID-19.
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5. Supporting Evidence of Usage of Probiotics to Combat COVID-19

Despite several probable medications to treat the newly emerging SARS-CoV-2, there
is always a constant increment in the number of death cases. Moreover, it has been
observed that with intake of an optimized amount of probiotic supplements, most people
are withstanding COVID-19 on account of booted immunity. The implication of probiotic
strain, specifically Bifidobacteria and Lactobacilli, uplifted the health benefits and a significant
stimulation towards recovery [50].

Significantly, various studies have depicted that the changes in the lung microbial com-
munity also influence the composition of gut microbiota due to a bidirectional relationship.
Therefore, any type of infection in the lung can directly affect the intestinal bacterial environ-
ment. Hence, in order to maintain the healthy intestinal microbiota and cure the infections
in the lungs, consumption of a significant amount of probiotic supplements will not only
help the intestine but also stimulate the secretion of metabolites that can cure the contami-
nationin the lungs [24]. Previous clinical studies depicted the profit of probiotics towards
nullifying the influenza virus present in the respiratory tract and reinforcing the lungs’
immune system [17]. The administration of probiotics into the body enhances immunity-
and anti-inflammatory cytokines, helping to clear the viral infection by minimizing the
cell damage in the lungs [17]. Moreover, a clinical study has proven the exclusive impact
through meta-analysis, where they have demonstrated external supplementation with
probiotics tremendously improved the respiratory infections in more than 8000 preterm
infants [54]. Several studies have already demonstrated that probiotic supplements can
prevent antibiotic-associated diarrhea and infections in the gastrointestinal tract, but also
infections at other sites, including sepsis and RTIs [50,87–94]. Table 1 illustrates the relevant
pre-clinical and clinical data supporting the use of probiotics against viral diseases.

This supporting evidence strongly supports probiotics’ role in modulating the host
immune system, suggesting a potential role for probiotics against viral infections. Supple-
mentation involving probiotics could significantly curtail the extremity of SARS-CoV-2
viruses that causes high morbidity and mortality. In addition, probiotics can be an attrac-
tive adjunct, as they can impede cytokine storm by invigorating the innate immunity and
evading the exaggeration of adaptive immunity; inventing effective therapy will transform
the impact of the pandemic on lives as well as economies across the globe. Therefore,
supplementation of probiotics in high-risk and severely ill patients, and frontline health
workers, might limit the infection and flatten the COVID-19 curve.

Table 1. Pre-clinical and clinical data supporting the use of probiotics against viral diseases.

Probiotics Strains Against Diseases and Viral
Infections Clinically Tested on Results from the Clinical Studies Ref.

B.infantis 35624 Inflammatory-bowel diseases Clinical trial on 192 participants Significant reduction in C reactive protein levels and
proinflammatory markers (TNF-α and IL-6) [9]

B. bifidum Influenza virus—(H1N1) Female mice Elevated survival rate along with the induction of
both humoral and cellular immune responses [9]

B. lactis RTI Clinical trial on 109 participants
Neonates receiving probiotics had a lower (65%)
incidence of respiratory infections as compared to
94% of infants in the control group

[9]

Bacillus subtilis3 Influenza virus(H1N1) Mice Reduced viralload in lungs and improved survival
rate of infected mice [9]

L. pentosus Influenza virus(H1N1) Female mice
Higher survivalrate and lower viralload in lungs
alongwith increased NK cellactivity along with a
high expression of IL-12 and IFN-α in the lung

[95]

L. rhamnosus GG and L.
gasseri Influenza virus(H1N1) Female mice Improved clinical symptoms and lower virus load in

the lungs [96]

L. pentosus Influenza virus(H1N1) Female mice
Alleviate survival rate and decreased virus load in
the lungs along with increased production of IgA
and IgG in bronchoalveolar lavage fluid and plasma

[97]

L. rhamnosus Influenza virus(H1N1) Female mice
Alleviate survival rate with increased secretory IgA
production and reduced the expression levels of
TNF-α and IL-6

[98]

L. reuteri Inflammatory-bowel diseases Clinical trial on 40 participants
Useful in improving mucosal inflammation along
with increased cytokine expression level of IL-10 and
decreased levels of TNF-α, IL-1β and IL-8

[99]



Encyclopedia 2022, 2 1146

Table 1. Cont.

Probiotics Strains Against Diseases and Viral
Infections Clinically Tested on Results from the Clinical Studies Ref.

L. plantarum Influenza virus A/PR/8/34
(H1N1) Female mice decreased weight loss, increased clinical symptoms

and reduced virus load in the lungs of infected mice [9]

L. plantarum Influenza virusH3N2 Madin–Darby canine kidney
cells

Inhibited viral infectivity and proliferation
successfully [100]

L. acidophilus Influenza virus(H1N1) Female mice
Increased expression of antiviral cytokines and
chemokines with prevented weight lossand reduced
viral load in the lungs

[101]

L. rhamnosus and B. lactis Upper-respiratory tract
infection Clinical trial on 231candidates Lower severity in the probiotics group [102]

L. rhamnosus Influenza virus (H1N1)
andrespiratory syncytial virus Male mice Decreased risk of lung injury [103]

L. gasseri Influenza virus(H1N1) Male mice Reduced expression of IL-6 in the lung tissue and
decreased virus load [104]

L. casei Antibiotic-associated diarrhea Clinical trial on 258 candidates Effective in the treatment of antibiotic-associated
diarrhea in adults and infants [105]

B. longum, L. rhamnosus, and
L. plantarum

Ventilator-associated
pneumonia

Clinical trials on 1083
candidates

Revealed the beneficial role of probiotic strains in
reducing the risk of ventilator-associated
pneumoniain patients

[106]

L. reuteri Protectis Coxsackie-viruses and
enterovirus

Human rhabdomyosarcoma
and Caco-2 cell lines

Revealed antiviral activity Coxsackievirus and
Enterovirus [107]

L. rhamnosus Influenza virus(H1N1) Female mice
Increased production of IFN-γ, IL-2and IgA; the
increased survival rate and lower viral titer in lungs
of infected mice

[108]

Streptococcus thermophilus,
L. acidophilus, L. rhamnosus
1, and B. lactis Bb-12.

Upper-respiratory tract
infection

Clinical trials on 6269
participants

Decrease in the prevalence of respiratory tract
infections along with the improved quality of life [109]

Enterococcus faecalis Influenza virus and
enterovirus Male mice Low viral load and improved survival rate [110]

L. salivarius, L. reuteri, and L.
acidophilus Influenza virus(H4N6) Madin–Darby canine kidney

cells
Improved expression of IL-1β, IFN-γand IFN-α
resulted in protective responses against infection [65]

L. casei Influenza virus(H3N2) Female mice Prevented weight loss and higher survival rate [111]

L. paracasei Upper respiratory tract
infection Clinical trial on 233 candidates Reduced provenance [112]

L. casei Upper respiratory tract
infection

Clinical trial on 96 female
candidates Lower incidence of respiratory infections [113]

L. plantarum Influenza H1N1 andH3N2 Female mice Significantly lower viral proliferation and increased
survival rate [9]

L. fermentum, L. casei, and L.
paracase.

Upper respiratory tract
infection Clinical trial on 136 patients 50–60% reduced prevalence of common cold and

increased levels of IFN-γ andIgA [51]

B. infantis, L. reuteri, and L.
rhamnosus GG Multiple diseases Meta-analysis trials

Probiotics wereeffectivein combating necrotizing
enterocolitis, infant colic, antibiotic-associated
diarrhea, acute infectious diarrhea and acute
respiratory tract infections

[114]

L. gasseri Respiratory syncytial
virus-A2 strain Female mice

Eeduced expression of proinflammatory cytokines,
with decreased risk of weight loss and lower viral
load in the lungs

[115]

B. lactis Bb-12L. rhamnosus
GG, L. casei

Acute otitis andacute
respiratory tract infections - Reduction in the prevalence of common acute

infections and antibiotics utilization [116]

6. Probiotics and COVID-19: Current Perspectives

The affirmative effects of probiotics species on the ACE receptor are well-stated by
Robles-Vera et al., focusing on the anti-hypertensive effects of probiotics [117]. During the
period of fermentation of food, probiotics induce the production of significant bioactive
peptides with the ability to reduce the activity of ACE enzymes by impeding the active
sites [118,119]. Most importantly, the left-over of the dead probiotics also played as promis-
ing ACE inhibitors [120]. From the above findings, it can be derived that probiotics could be
a promising inhibiter to the ACE receptor that plays a major role as an entry for SARS-CoV-2
to infect the GIT. The notion of utilizing medicines for obstruction of the ACE receptors as
a treatment approach to combat COVID-19 was proposed by Fernández-Fernández [121],
regardless of the different opinion expressed by Esler and Esler [122]. Additionally, Imai
and co-authors [123] have explained the affirmative impact of utilizing an ACE2-blocker to
diminish respiratory-distress-syndrome. Notably, prebiotics might also have a significant
impact onCOVID-19 by improving the survivability and growth of probiotics. In 2018,
Yeh et al. [124] meticulously reviewed twelve studies that scrutinized the effect of probiotic
and prebiotic supplements on the infections caused by influenza. Further, the authors
concluded that the probiotics and probiotic supplements can enhance the hemagglutination
inhibition antibody titers following the vaccination against influenza.
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SARS-CoV-2 is a novel emerging virus without any effective therapeutics. More-
over, no research has claimed the promising role of probiotics and prebiotics in prevent-
ing/treating COVID-19. Additionally, various registered clinical trials that endeavor to
explore the effectiveness of probiotics in treating COVID-19 patients are still ongoing [125].
Most importantly, a number of patients infected with COVID-19 showed dysbiosis in intesti-
nal microbiota underpinning lower amounts of probiotic species, including Bifidobacterium
and Lactobacillus [72], indicating weak immunity of COVID-19-infected patients; thus,
patients necessitate nutritional maintenance as well as probiotic/prebiotic supplements
to maintain the intestinal flora equilibrium and reduce the chance of infection [126]. As
humans have not acquired immunity against the novel COVID-19disease, and the dietary
balance at GI microbiota levels is highly essential, a balanced diet involving probiotics-
containing foods and immunity-enhancing micronutrients viz., polyphenols; vitamins A, C,
and D; and minerals (mainly selenium and zinc) can be highly effective to ease the risk of
COVID-19 infection [127]. Early research suggested that the utilization of fermented milk,
including probiotics strains, considerably reduced the occurrence of upper respiratory tract
infections among elderly adults, children and healthy infants [112,128–130].

The existence of probiotics can help to enhance the anti-microbial peptide production,
enhance the attachment of mucins, decrease the pathogenic agent from the mucosal layer,
stimulate immunomodulatory agent, ACE inhibitor peptide, anti cholesterolemic, enhance
the production of lactoferrin, synthesize ca+ binding protein, maintain the pH, help in
neutralizing most of the neurotoxins, etc. (Figure 1). Hence, there is a need to have the
probiotics to boost the natural immunity [130,131].

Evidently, based on the aforementioned studies of the impending purpose of pro-
biotics, supplementation involving probiotic bacterial species can be a suitable strategy
for treating and inhibiting various viral infections. These interpretations assist the man-
agement of probiotics for patients infected with COVID-19. In spite of the absence of
any strong evidence supporting these treatments, enhancing the natural immunity of the
population using probiotics before, during or after COVID-19 infection is the foremost
priority (Figure 5).
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7. Conclusions

Researchers are still in the early stage of understanding the mechanism of SARS-CoV-2
infection in the human body. Evidence is gathering suggesting the benefits of probiotics
in regulating the immune system, inhibiting the cytokine storm and boosting adaptive
immunity. However, evidence shows that the appropriate usage of current probiotics
is safe, even for critically ill and immune-compromised patients [132–135]. Therefore,
a clear understanding of the mechanism of probiotics and their mode of use should be
determined on an individual basis. In addition, clinical trials, along with biochemical
profiling of SARS protein E, are essential before assigning a probiotic in the prophylaxis of
COVID-19. When used with caution, probiotic supplementation could reduce the severity
of COVID-19 morbidity and mortality. The current situation demands creating awareness
among the people about the health benefits of probiotics through social networks at the
district, national and international levels to control the spread of COVID-19 infection.
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