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Definition: Eruca sativa Miller (Brassicaceae) is an insect-pollinated diploid annual species which
grows spontaneously in the entire Mediterranean basin from semi-arid to arid-hot conditions and is
cultivated in Northern America, Europe, and Asia as either salad or oilseed crop. Here, some essential
background was provided on this versatile crop, summarizing the present status of Eruca sativa
research focusing on the wealth of bioactive ingredients in its seeds, which may find exploitation in
agriculture, in the food industries and as nutraceuticals for their antioxidant and anti-inflammatory
properties. Fatty acids of Eruca sativa seed oil, gums, glucosinolates and soluble and insoluble phenol
and flavonoid fractions in the defatted press cake are the main bioactive compounds considered to
date by the scientific literature and that deserve attention for their physical and biological activities.
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1. Introduction

Eruca sativa Mill. (Brassicaceae), synonym of E. vesicaria (L.) Cav. subsp. sativa (Mill.)
Thell, is the only taxon of Eruca that has been cultivated since Roman times (Figure 1). At
present, it is mainly distributed in Southern Europe, North Africa, the Middle East and
Asia, where it is typical in Pakistan, Afghanistan and India. It spontaneously grows in
the Mediterranean basin, and it is cultivated in Europe and America mostly as a baby-leaf
crop [1,2], whilst in Iran and in the Indian subcontinent it is considered an oilseed crop [3].
It is a fast-growing crop (it usually takes 20–30 days after germination for harvesting as a
leafy vegetable, and 120–250 days for a complete growing cycle) and can be sowed both in
autumn-winter and early spring [4,5]. In recent years, it has been cultivated as a salad via
hydroponics and greenhouses to provide higher quality and yields [4,6].

The Eruca sativa Mill. genome (2n = 22) and transcriptome have recently been pub-
lished [7], but rigorous phylogenetic studies are absent from the literature due to the great
genetic diversity in the species [1], with the exception of a recent analysis of phyloge-
netic relationships in the Brassicaceae family based on the complete chloroplast genome
determination of E. sativa [8]. Despite ancient reports of its use, very limited breeding
activities have been carried out prior to the mid-1990s, when the first meeting of the Rocket
genetic resources network was held in Lisbon [9], with the aim of improving germplasm
collection, conservation, and characterization. To date, less than 100 varieties are registered
in the European Community Plant Variety Office (CPVO) database [10], with the oldest
registered one dating to 2004. Reflecting the geographical difference in uses, the CPVO
technical protocol for this species primarily focuses, however, on the characteristics of
leaves [11], neglecting both seed-related and phytochemical traits. These and other genetic
and agro-morphological traits are the subject of scientific studies that, interestingly for
breeding purposes, found within the species a wide diversity [12–15]. Some characteristics
of this plant pose challenges to conservation and breeding programs: the relevant degree
of self-incompatibility, the allogamy that makes it difficult to keep varieties stable, and the
impossibility to transfer genes of interest through intergeneric crosses limit the potential of
traditional breeding [16]. Despite these difficulties, E. sativa deserves research attention,
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as it is a very interesting plant for its high adaptation to arid and semi-arid soils, which
are rapidly growing in its cultivation area due to climate changes [17]. Among other uses,
E. sativa seeds can be considered as a promising feedstock for biorefinery and, according
to a recent life cycle assessment, it may save greenhouse gas emissions by about 150% in
comparison to neat diesel [18]. In addition to that, several parts of the plant, and in particu-
lar its seeds, possess bioactive compounds which may find several industrial applications
and are studied also for their health-promoting activities, which include the antimicrobial,
antioxidant, antiproliferative, antiemetic, and antiulcer [19–23].
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Figure 1. Eruca sativa cultivated field in the CREA experimental farm located in Bologna (Italy)—
flowering time.

The steady growth in publications on E. sativa over the last two decades is a proof
of the potential of this crop. Here the present status of E. sativa research was provided,
highlighting the wealth of bioactive ingredients in its seeds.

2. Components and Bioactive Molecules in Eruca sativa Seeds

The seeds of E. sativa are characterized by oil (30–40%), a significant amount of total
carbohydrates (20–25%), crude fibres (20%), and crude protein (20–30%) [5,24,25]. To date
the protein fraction has been studied less than the others, however it can have important
applications in agriculture as an ingredient for organic fertilizers or as animal feed [26,27].
Moreover, one recent publication brings evidence in E. sativa seeds of a napin, a protein
of about 16 kDa that inhibits Fusarium graminearum growth and also shows promising
antitumor properties [28]. Part of the carbohydrates and proteins forms a gum or mucilage
content (2–4%) [29], and the rest of the E. sativa seeds consist of a wide range of bioactive
phytochemical compounds, such as polyphenols and glucosinolates (Figure 2).
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2.1. Oil

E. sativa is an interesting oilseed crop due to its high content of erucic acid, which is an
anti-nutritional compound and limits the oil applications for food and feed purposes [30,31],
even if at very low concentrations it could be used as an antidiabetic complement [32]
or as a potent antioxidant and antimicrobial oil [33–35]. The presence of high erucic acid
concentration makes the E. sativa oil suitable for many other different uses: from biofuels
to cosmetics and detergents, to polymer production and also as an ingredient for pest
management in agriculture [36–41].
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The oil yield from E. sativa mild oil extraction with cold press methods is 20–30%. The
residual oil in the defatted seed meals ranges from 17 to 21%, and its fatty acid profile is
similar to that of the extracted oil [42–44]. In a study carried out on a cultivar selected for
oil production, the oil yield from autumn sowed plants was higher than from spring sowed
ones [5], while both in Italy and in Turkey the level of erucic acid proved to be stable in the
different field conditions [5,45].

Both the oil content and fatty acid profile of E. sativa seeds were recently evaluated
in 66 genotypes originating from several localities. Golkar et al. [13] showed that the oil
content in the seeds of selected genotypes varied between a minimum of 16.2% in a sample
that came from China and a maximum of 38% in a sample that came from Pakistan. E. sativa
seeds’ fatty acid profiles are mainly characterized by oleic, linoleic, linolenic, and erucic acid,
with few exceptions for fatty acid profiles of E. sativa oils extracted from genotypes from
Syria and Pakistan, which showed a higher concentration of stearic compared to linolenic
acid. Erucic acid was the major fatty acid in all of the analysed genotypes, ranging from
25.9% to 53.6% of the total fatty acid composition, except for an accession from Iran that
has a fatty acid profile characterized by a high content of linoleic acid, and one genotype
from Pakistan whose oil contains more linolenic than erucic acid [13].

E. sativa crude oil is considered as an alternative to mineral oil in many industries, and
it has good potential for biodiesel production due to his high productivity and good stability
at room temperature [46,47]. Moreover, it finds applications in the production of lubricants,
soap, and for cosmetic, diuretic, stimulant, stomachic and depurative uses [48]. Recently,
the antifeedant activity of E. sativa cold pressed oil against the plant pest Xanthogaleruca
luteola under laboratory conditions was also explored [38].
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2.2. Gums

The E. sativa seed’s epidermal cells contain a valuable portion of gum or mucilage,
which could have great potential as a hydrocolloid for providing viscosity and stabil-
ity in the food industry, or as a delivery system for bioactive compounds during food
thermal processing and digestion times. They can also be used also in combination with
polyvinyl alcohol for producing nanofibers, which may find applications in the food and
pharmaceutical industries as bioactive compound encapsulators [49].

Rocket seed gums (RSG) are a cream-colored powder which can be extracted in
deionized water from whole E. sativa seeds, and which have a good emulsion stabilizing
effect [50,51]. They are anionic polysaccharides mixed to mucilaginous material and their
extraction procedures have been studied since 2012, while their chemical characterization
has been reported in very recent studies [52]. According to Koocheki et al. [51] the optimum
theorical conditions for mucilage extraction to achieve the best yield and viscosity are
60:1 (v/w) water:seed ratio (16.7 g L−1), pH 4 and 65.5 ◦C. When extracted at 45 ◦C, pH 4
and with a 20:1 (v/w) water:seed ratio (50 g L−1), RSG contained 67.97% carbohydrates,
9.75% protein, 12.28% moisture, 10% ash, and no fat. These proportions may change
depending on the extraction conditions. Kutlu et al. [52] found that RSG extracted in the
same water:seed ratio conditions, but at 80 ◦C had a carbohydrate, protein, moisture, and
ash content of 80.38%, 5.81%, 10.26%, and 3.55%, respectively. In another study of the same
group, Akcicek et al. [50] obtained an RSG characterized by 57.49% carbohydrates, 0.69%
fat, 8.26% ash, 10.5% moisture and a very high content of protein, i.e., 23.01%, starting
from the same temperature and water:seed ratio. This water:seed ratio, slightly different
from the one predicted in [51], has been recently adopted to obtain RSG for food industry
applications, that is for obtaining mucilages which can be used as natural fat replacers
in low-fat salad dressings such as new low-fat vegan mayonnaise [29,50,53]. The RSG
extraction procedure may also be carried out starting from E. sativa defatted seed meals
(DSM), which are by-products of oil extraction. Hijazi et al. [53] starting from E. sativa
DSM produced RSG with the same operation procedure used by Kutlu et al. [52], and they
obtained a powder characterized by 70.48% carbohydrate, 11.00% protein, 1.94% fat, 9.95%
moisture, and 6.63% ash. The monosaccharide composition of RSG, analyzed after acid
hydrolysis in H2SO4 by high performance anion exchange chromatography with a pulsed
amperometric detector, revealed a high content of mannose (39.12%), and glucose and
galactose accounting for 10.26% and 22.08%, respectively [53].

2.3. Glucosinolates

Glucosinolates (GSLs), also known as (Z)-N-hydroximinosulfate esters, are secondary
metabolites of Brassicaceae and plants of the Brassicales order consisting of a common
glycone group and a variable aglycone side chain (R) derived from amino acids. GSLs
have a sulfonate moiety with a pKa value of ca. 2 that makes them hydrophilic, negatively
charged compounds at neutral pH [54]. They may be hydrolyzed by a class of endogenous
thioglucosidases, the myrosinases, into a wide spectrum of products: isothiocyanates
(ITC), nitriles, epithionitriles, hydroxynitriles, oxazolidine-2-thiones, thiocyanates, and
indoles, depending on pH, associated proteins, cofactors and other reaction conditions [55].
Myrosinase enzymes are usually present in the same vegetal tissues where GSLs accumulate,
but they are compartmentalized in different types of cells. Upon tissue damage in the
presence of water, they hydrolyze the GSLs in their active products. Among these, the ITCs,
produced mainly at neutral pH, are the most known and studied for their antioxidant,
anti-inflammatory, cytostatic and apoptotic characteristics in cancer cells, in addition to
their antifungal and bacteriostatic activities [55,56].

E. sativa seeds are characterized by the presence of two main GSLs: 4-methylthiobutyl
GSL or glucoerucin, and 4-methylsulfinylbutyl GSL or glucoraphanin, when analyzed
as desulfo-GSLs with standard high-performance liquid chromatography (HPLC-UV)
procedures [42]. The total GSL content in E. sativa seeds was found to be in the range
108–125 µmol g−1, with glucoerucin accounting for more than 94–95% of total GSLs, and
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a slightly higher total GSL content in spring sowing in comparison to autumn sow-
ing [5,57,58]. These data are consistent with the first secondary metabolites profiling
of E. sativa seeds provided by Bennett et al. [59], who further demonstrated that profiles
and amounts of GSLs in the seeds of E. sativa from different suppliers varied very little,
suggesting a common genetic origin for most commercial seeds. In 2007, using liquid
chromatography coupled to electrospray ionization and a quadrupole ion-trap analyzer
(LC/ESI-QIT-MS) for analysis of intact GSLs, Cataldi et al. [54] identified in E. sativa
seeds, beside glucoerucin and glucoraphanin amounting to >98% of the total GSLs, a third
GSL, the N-heterocycle 4-methoxyglucobrassicin, probably one of the indolic compounds
hypothesized by Bennett et al. [59] (Figure 3).
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E. sativa DSMs are naturally enriched with GSLs and, depending on the oil extrac-
tion procedures and further formulations, they represent interesting and cheap ingredi-
ents for several applications, from pest management in agriculture to human and ani-
mal health [60–67]. Herein, DSMs according to the method of oil extraction (solvent or
mechanical) and the presence or absence of myrosinase activity (active and deactivated
DSM, respectively) can be classified. Following these criteria, here the main studies on
E. sativa DSMs and on the GSL-enriched extracts that can be obtained from these DSMs
were reported.

2.3.1. Active Defatted Seed Meals for Agricultural Uses

Oil extraction with hexane permits to obtaining of defatted meals with a GSL con-
centration up to 150 µmol g−1 [60–62], which usually also retains a myrosinase activity
of about 20 U, with one enzyme unit (U) corresponding to 1 µmol g−1 DSM of sinigrin
transformed in 1 min [42]. The low level of humidity of the DSM, however, blocks the
myrosinase activity, which can be restored only with the addition of water. These DSMs
extracted with hexane were successfully used in several experimental formulations for
the containment of plant pests, diseases, and weeds [60,61,63], highlighting their potential
role in implementing modern cropping systems and agricultural management plans able
to achieve good crop yields and at the same time a safer food production chain for the
environment and the consumers. In fact, studies on the development of formulations based
on E. sativa DSM are ongoing, with the aim of addressing the growing need of farmers
to find sustainable solutions. This need is growing due to the continuous phase out of
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synthetic pesticides in the integrated pest management sector, and even more in organic
farming, where, at the same time, the availability of biobased herbicides, for example, is
definitely scarce and weed control is mainly carried out with increasingly expensive and
time-consuming agronomic techniques. With these assumptions, Matteo et al. [60] pro-
posed a new formulation based on E. sativa DSM and crude glycerin, showing an interesting
inhibition of lettuce seed germination (about 90% inhibition compared to the untreated
control), also further preventing the development of seedling biomass. However, when
the formulation was applied to spontaneous and less sensitive plants, such as Alopecurus
myosuroides, the phytotoxic effect greatly declined (a reduction of germination of around
20% compared to the untreated control).

In Giannini et al. [61] the application of E. sativa DSM was tested for its potential
weed control activity against both cultivated plants—Cynara cardunculus L. (cardoon)
and Eruca sativa cv. Nemat (rocket)—and weeds—Silybum marianum (L.) Gaertn. (milk
thistle) and Malva sylvestris L. (mallow)—representative of the Mediterranean flora. The
experiments showed that mallow was mainly injured by direct contact through soaking,
whilst milk thistle was mainly affected by the volatile compounds released from the
DSM. It is reasonable to expect that the most represented compounds in the volatilome
of E. sativa DSM include 4-methylthiobutyl ITC (erucin), since the most represented GSL
in E. sativa seed is glucoerucin, as discussed. Other studies, for example, observed that
hydrodistilled extract from E. sativa green siliques showed values of erucin ranging from
17 to 32 ppm depending on the hydrodistillation method. 4-methylthiobutyl ITC and
5-methylthiopentanenitrile can reach 81.7% and 17.7% of total VOCs, respectively [68].
Among the other results, in Giannini et al. [61] an auto-toxic effect of E. sativa DSM on its
seeds was documented for the first time. From the same study it emerges that, although
there is an effect due to volatile components, in most cases the phytotoxic effect of E. sativa
DSM formulation is determined by contact, affecting development parameters of the
seedlings, such as plant development percentage, germination synchronization, average
germination time and others [61].

Other studies have shown that E. sativa DSM is one of the possible solutions in the
containment of soil-borne parasites of great impact such as nematodes. In 2016, Curto
et al. [63] found that amongst 13 hexane DSMs from different plants belonging to the
Brassicaceae family, the best results in the containment of Meloidogyne incognita were
achieved by the E. sativa DSM containing 121 µmol g−1 total GSL, of which 91% was
glucoerucin [63]. The containment of the nematode was even higher than that achieved
with other products already on the market and considered the state of the art of biofumigant
products, such as sinigrin-containing B. carinata DSM. Hexane extracted E. sativa DSM
was also tested, among other Brassicaceae DSMs, for its antimicrobial activity towards
pathogenic bacteria in pig manure, with the aim to reduce its bacterial load and to limit
the problem of bacterial antibiotic resistance in animal farming and agriculture due to the
use of pig manure as fertilizer [62]. In this work, the authors monitored the release from
DSM of the active compound erucin in buffer and pig manure solutions. The maximum
concentration of erucin was promptly reached within 5 min and was maintained in the
range of 80–95% for one hour of incubation in both buffer and pig manure. Erucin, produced
in situ from the hydrolysis of pure glucoerucin and E. sativa DSM, also showed good activity
against Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 6538, and Enterococcus faecalis
ATCC 8043 in in vitro assays, and erucin MIC (minimum inhibitory concentration) was
determined as 6.25 mM for the three bacterial pathogens [62].

2.3.2. Active Food-Grade Defatted Seed Meals for a Nutraceutical Purpose: E. sativa
Defatted Seed Meals from Cold-Press Oil Production

The use of solvents in oil extraction can impair DSM safety for animal and human uses,
but E. sativa DSMs can be also produced by mechanical processes in crusher machines for
small seeds, a solvent-free food-grade procedure. The concentration of total GSLs in E. sativa
DSM produced in crusher machines was found in the range 90–138 µmol g−1 [42,43,64–66].
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This ingredient can be interesting when used for formulations in which the ITC release is
needed at the time of its administration or application. This occurs when the ingredient
comes hydrated. Indeed, without any additional treatment for residual myrosinase deacti-
vation, DSM from seed crushing preserves a mild myrosinase activity [42,43], which can
be useful when a sustained release of ITC is necessary to achieve a stronger and prompt
biochemical effect [43]. This kind of ingredient was recently tested in several applications:
for its therapeutic efficacy against neuropathic pain, both in the case of diabetic neuropathy
and in the case of visceral pain due to colitis induced by 2,4-dinitrobenzenesulfonic acid
in in vivo models [43,64], and as a starting material to produce GSL enriched lyophilized
extracts, which were proved to be effective in the prevention of cardiovascular disorders
and metabolic diseases, such as obesity [65,66].

2.3.3. Deactivated Food-Grade Defatted Seed Meals for Nutraceutical Purpose:
AutoClaved E. sativa Defatted Seed Meals from Cold-Press Oil Production

E. sativa DSMs produced by mechanical processes in crusher machines for small
seeds, if needed, can be treated for myrosinase deactivation, which is autoclaved, to
stabilize the concentration of GSLs. In such deactivated DSMs, GSL hydrolysis could be
achieved and/or enhanced through the addition of active exogenous myrosinase [43,67] or,
depending on the application, thanks to the myrosinase activity that has been observed
in microbiomes in the environment, in soil and in the intestine of many animals and of
humans [69–72]. E. sativa DSM autoclaved for 20 min at 120 ◦C, with a total GSL content
in the range of 75–100 µmol g−1, were recently studied as ingredients for human [42,67]
and bee health-promoting products [44,70]. For nutraceutical purposes, the naturally GSL
enriched deactivated E. sativa DSM was tested as an ingredient for crackers produced in
an industrial plant. The addition of only 1% (w/w) of E. sativa DSM to standard industrial
recipes of crackers ensured an intake of GLS up to 75 µmol 100 g−1 of product [42]. The
bakery products were included in a small pilot study on glucose and lipid metabolism
and on systemic markers of inflammation, by asking 19 adult patients to replace the total
carbohydrate portions (bread and pasta, or other bakery products) with 150 g day−1 of
DSM-enriched crackers for a 4-week period. This preliminary trial showed a significant
improvement in inflammation markers such as C-reactive protein and TNF-α, a reduction
in cholesterol ratio, but also in Gamma-GT, which is activated in the fatty liver, and a
reduction of hepatomegaly after ultrasound examination [67]. Autoclaved E. sativa DSM
were also inserted in patties for Apis mellifera feeding. In controlled conditions, formulates
enriched with glucoerucin and glucoraphanin from two DSM concentrations, 2 and 4%
(w/w), showed good palatability and did not exert toxic effects on bees, while significantly
reducing the development of the parasite Nosema ceranae in artificially infected bees [44]. In
the field, the treatment with the highest E. sativa DSM concentration of 4% (w/w) in patty
formulations was applied to fully developed colonies naturally infected with N. ceranae [70].
In these field trials, even if the treatment with GSL enriched patties did not influence the
N. ceranae spread in infected bees, a significant decrease in the number of N. ceranae copies
in both foragers and house bees was observed. Interestingly, ITCs and/or ITC-adducts,
detected by the cyclocondensation assay, were found in bee guts, indicating the possible
presence of a myrosinase-like activity able to hydrolyze ingested GSL from DSM. This
enzymatic activity was further demonstrated in in vitro assays performed at pH 6.5 and
25 ◦C by incubating gut extracts with pure GSLs and detecting formed ITCs by GC-MS.
Furthermore, the GSL glucoraphanin and the erucin nitrile, as hydrolysis products derived
from glucoerucin, were found in the honey [70].
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2.3.4. Extracts from Defatted Seed Meals Enriched in Glucosinolates

Finally, all kinds of DSMs from E. sativa can be used as starting materials for the
realization of GSL- enriched extracts, with GSL concentration that can reach 400–520 µmol
g−1, and with a glucoerucin/glucoraphanin ratio of about 20, comparable to the ratio in
the whole seeds [65,66]. These extracts are oil-free, and the GSL content is stable during
storage for a period of about 12 months at −20 ◦C.

The efficacy in counteracting neuroinflammation in NSC34 motor neurons of an
E. sativa seed extract has been reported, but this extract was characterized by a glucoerucin
concentration of about a quarter of the one previously mentioned [73].

Numerous studies investigated the hypothesis that the beneficial effects of E. sativa
ITC, but also of other Brassicaceae derived ITC, are, at least in part, due to their capability
to release H2S [74,75]. The mechanisms underlying the release of the gasotransmitter
H2S from ITC have not yet been fully clarified, even if an L-cysteine-mediated reaction
was proposed [76]. Experimental evidence proved that in the intracellular environment
an increase in H2S release can be sustained also in the presence of unhydrolyzed GSLs:
glucoraphanin was able to release H2S in human mesenchymal stromal cells [77], and
glucoerucin and glucoraphanin from E. sativa lyophilized extracts were found to slowly
release H2S in a phosphate buffer, both in the presence and in the absence of L-cysteine [65].
At the same time a greater efficacy of DSM or extracts in comparison to pure GSLs and
GSL-derived ITC was reported [43,65]. Martelli et al. [78] evidenced in in vivo studies
that erucin, the ITC produced by the hydrolysis of glucoerucin purified from E. sativa
seeds, can reduce systolic blood pressure in spontaneously hypertensive rats by about
25%, at a dose of 10 mg kg−1 or 60 µmol kg−1. A comparable result was obtained in a
similar experiment conducted by treating the same animal models with 100 mg kg−1 of
E. sativa lyophilized extracts, at 38 µmol kg−1 of glucoerucin, without any bioactivation by
exogenous supplementation of myrosinase [65].

These observations support the hypothesis that other substances characterizing the
E. sativa seed extracts, such as flavonoids and phenolic acids, may act synergically with
GSLs through antioxidant mechanisms and signal transduction, but also favoring the H2S
release from sulfur compounds (including intact and/or hydrolyzed GSLs) and in this way
they may exert the beneficial effects reported on cardiovascular homeostasis, metabolic
diseases, neuropathic pain and gastrointestinal inflammation [43,64–66].

2.4. Polyphenols

Polyphenols are plant secondary metabolites known for their antioxidant activity and
potential beneficial effects on human health, and their use for prevention and/or treatment
of oxidative stress-induced diseases has been extensively investigated [79].

Similarly to what was stated by Bennett et al. back in 2006 [59], there are still limited
data on the phenolic and flavonoid content of rocket species and in particular of E. sativa
seeds. In the same work, using LC/MS, the authors detected in methanolic extracts of two
different seed sources quercetin flavonoids mainly represented by quercetin 2-O-glycoside
and quercetin monosinapoyl tri-O-glucoside, and isorhamnetin as isorhamnetin feruloyl
tri-O-glucoside. More recently, Sharma et al. [48] found and identified the phenols caffeoyl
glucose, 3-caffeoylquinic acid, and sinapic glucoside, and the flavonoids apigenin-7-O-
glucoside, isorhamonetin-3-O-rutinoside, kaempferol-3-O-glucuronide and isorhamonetin-
3-O-(3”-acetylglucoside), by using UPLC-DAD and UPLC-ESI-QTOF analysis of aqueous
methanolic extracts [48]. In 2021 Abd-Elsalam et al. [80] tentatively identified 39 compounds
by means of LC-ESI-MS in an E. sativa ethanolic seed extract obtained after a very long
extraction (72 h) of powdered seeds without previous defatting. This extract contained fatty
acids, GSLs (glucoerucin and glucoalyssin), desulfated GSLs, flavonoid glycosides derived
from isorhamnetin, quercetin, kaempferol, myricetin, naringenin, proanthocyanin, and
procyanidin, and caffeoyl-O-hexoside, chlorogenic and sinapic acid, but no quantitative
analysis information was provided. A protective role of the E. sativa seed extract against
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toxic effects triggered by acrylamide was reported in the form of antioxidant and anti-
apoptotic effects in testicular cells [80].

In a later study, the HPLC-UV analysis of an aqueous E. sativa seed extract revealed
a concentration of about 5 mg g−1 of rutin (quercetin-3-rutinoside) and the presence of
sinapic, p-hydroxybenzoic, chlorogenic, and p-coumaric acids [81]. Abdelkader et al. [81]
characterized and studied the nephroprotective effect of the aqueous extract of E. sativa
seeds in comparison to pure rutin in an in vivo experiment after gentamicin treatment.
Gentamicin is an aminoglycoside antibiotic that is commonly used for gram-negative bac-
terial infections, which accumulates in the proximal tubules of the kidney and may induce
nephrotoxicity associated with an increase of creatinine and urea in the serum and an unbal-
ance of Na+ and K+ electrolytes. The authors demonstrated that both E. sativa seed extracts
and rutin may protect kidneys from gentamicin- induced nephrotoxicity and low doses of E.
sativa extracts (150 mg kg−1, that is 750 µg rutin kg−1) and decrease the oxidative damage
induced by the antibiotic. On the other hand, a double dose of E. sativa seed extract induced
an increase in nitric oxide at the kidney level in gentamicin-nephrotoxic animals, which was
not reported after treatment with 50 mg kg−1 and 100 mg kg−1 rutin [81]. Furthermore the
E. sativa extract, both at low and high doses, significantly reduced the inflammatory cascade
activated by gentamicin, after nephrotoxicity induction, triggering a significant reduction
of TNF-α and IL-1β [81]. As discussed above, the main beneficial effects of E. sativa seeds
may be related to both the high antioxidant and anti-inflammatory activities of GSL/GSL
hydrolysis products and to the presence of flavonoids. They may act directly with a free
radical scavenging activity, through the modulation of phase-2 enzyme expression and
the consequent detoxification from electrophiles, but also through the regulation of the
expression of several inflammatory markers and the release of H2S [73,74,82].

If ITCs from GSLs have already been under observation as natural H2S donors for
some time, recent evidence proved that rutin, which is reported to be among the main
flavonoids in two E. sativa seed extracts [65,81], showed antidiabetic, antioxidant and
anti-inflammatory properties in vivo, and significantly increased H2S levels [83].

Recently, Testai et al. [65] demonstrated in vivo the beneficial effects on the cardiovas-
cular system of a lyophilized ethanolic extract from E. sativa DSM, characterized by the
presence of about 170 mg g−1 total GSLs and 20 mg g−1 phenols, with gallic acid, sinapic
acid, vanillic acid and vanillin as the main components (1–8 mg g−1), and flavonoids such
as luteolin, vitexin, naringenin and rutin (3 mg g−1). Notably, the extract, which was able
to release H2S in an L-cysteine-independent manner, had a content of rutin higher than the
starting DSM [65]. Other polyphenols isolated from E. sativa showed similar and possibly
synergic effects to glucoerucin. For example, kaempferol decreases pain sensitivity in
streptozotocin-induced diabetic neuropathy in the same model that is also used to study
the effects of glucoerucin and E. sativa DSM [43,84]. A comprehensive overview of the
antinociceptive, anti-obesity, anti-inflammatory, anti-hypertensive activities and of protec-
tive effects against chemical induced nephrotoxicity and testicular dysfunction in in vivo
models was provided (Table 1).
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Table 1. In vivo effects of Eruca sativa defatted seed meals and Eruca sativa seed extracts.

Model Effect Reference Material

Colitis induced in Sprague-Dawley rats by
2,4-dinitrobenzenesulfonic acid

↓mast cells infiltration and enteric GLIAS
activation in a model of
visceral hypersensitivity

[64] Defatted
seed meals

Diabetic neuropathic pain induced by
streptozotocin in C57BL/6 mice

↓ neuropathic pain in diabetic animals
↑ activation of Kv7 potassium channels [43]

Apis mellifera ligustica colonies ↓ Nosema ceranae natural infection in
Apis mellifera colonies [70] Defatted

seed meals
enriched

feed and food

Human adults with BMI < 30, euglycemic
status and normal to mild

hypercholesterolemia

↓ LDL cholesterol and cholesterol ratio
↓ High sensitivity C reactive Protein,

Gamma –GT and TNF-α
↓ reduction of hepatomegaly

[67]

Wistar rats, spontaneously hypertensive
rats and phenylephrine -hypertensive rats

Anti-hypertensive, anti-ischemic
↓ intra-mitochondrial accumulation of Ca2+ [65]

Seed
extracts

Balb/c male mice fed with standard or
high fat diet

↓ body weight gain, BMI
↓ total cholesterol, LDL and triglycerides

↑ glucose homeostasis
[66]

Gentamicin nephrotoxic Wistar albino rats
↓ Nephrotoxic effects of Gentamicin

↓ serum levels of creatinine, Urea, Na+, K+,
TNF-α, IL-1β

[81]

Wistar albino rats with acrylamide-induced
testicular dysfunction

↓ Toxic effects of acrylamide on the
sperm indices

↑ reduced GSH, and SOD activities,
counteracting oxidative damage induced

by acrylamide
↓ Bax and Caspase-3 counteracting

apoptotic effect induced by acrylamide

[80]

3. Conclusions and Prospects

Eruca sativa seeds have been studied mainly for their fatty acid profiles and for their
high glucosinolate content. Recently, their gums and the soluble and insoluble phenols and
flavonoids have also attracted scientists’ attention for their interesting applications in the
food industry, in agriculture for plant protection and as nutraceuticals for their antioxidant
and anti-inflammatory properties. Among all the Eruca sativa seed components, fibers and
protein are still lacking in dedicated studies in the literature. Eruca sativa seed co-products
represent a sustainable source of biomolecules with applications in agriculture and the
food industry, and the perspective of deepening the knowledge of fractionating procedures,
analytical separations and high added-value molecule identification is fundamental for a
better understanding of their mechanisms of action and for the design and realization of
even more innovative bio-based materials and formulations.
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