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Abstract: We derive a new system of integrable derivative non-linear Schrödinger equations with
an L operator, quadratic in the spectral parameter with coefficients belonging to the Kac–Moody
algebra A(1)

2 . The construction of the fundamental analytic solutions of L is outlined and they are
used to introduce the scattering data, thus formulating the scattering problem for the Lax pair L, M.
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1. Introduction

Since the seminal papers [1,2], nonlinear PDEs solvable by the inverse scattering
transform (IST) became of interest for both physicists and mathematicians. One such equa-
tion is the non-linear Schrödinger equation (NLS) [3,4] which admits multi-component
generalizations, the most famous being the Manakov model [5]. All such generalizations
can be associated with an L, M pair, such that the L operator is linear in the spectral param-
eter λ. In fact, most of the efforts went into studying systems with such linear L operators.
This is in part due to the fact that such operators are zero-curvature representations (ZCR)
of scalar Lax pairs. Another reason is the fact that the study of L operators, polynomial in
the spectral parameter (often called polynomial bundles or polynomial pencils), presents
numerous challenges.

The first known example of an equation related to a Lax operator with quadratic
dependence on the spectral parameter is a variation in the NLS equation known as the
derivative non-linear Schrödinger (dNLS) equation. In fact, there are three equivalent
models that fall under that name:

• The Kaup–Newell Equation [6], also known as dNLS-I:

∂tq + ∂2
xq ± i∂x

(
q|q|2

)
= 0. (1)

• The Chen–Lee–Liu Equation [7], also known as dNLS-II:

i∂tq + ∂2
xq − |q|2∂xq = 0. (2)

• The Gerdjikov–Ivanov Equation [8], also known as dNLS-III:

i∂tq + ∂2
xq − |q|2∂xq∗ +

1
2
|q|4q = 0, (3)

where ∗ denotes complex conjugation.

They are equivalent in the sense that they can be related to one another with a suitable
gauge transformation.
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Most integrable equations with one component usually allow multi-component gen-
eralizations by considering Lax pairs with potentials in some semisimple Lie algebra g. In
general, without imposing additional conditions on the form of the Lax pair, the result-
ing equations will contain a large number of independent functions, which limits their
applicability. One way out of this difficulty is to impose an additional condition, called
a reduction, using a finite order automorphism φ. The reduction, that gives the lowest
number of components, is a Coxeter reduction; i.e., φ is a Coxeter automorphism of the
corresponding Lie algebra g. Reductions form a group, called the reduction group. For
the case of a Coxeter reduction, this group is simply Zh (cyclic group of order h), where
h is the Coxeter number of the corresponding algebra. Reductions of Lax pairs and their
theory were studied extensively by Mikhailov, and the reader is encouraged to read his
original article where the subject is thoroughly examined [9].

Some multi-component generalizations of the dNLS equation can be derived by con-
sidering an L, M pair with potentials in the simple Lie algebra Ar ' sl(r+ 1), such that L is
linear and M is quadratic in the spectral parameter λ. Additionally, in order to reduce the
number of components, usually a Zn reduction is imposed. Such models were considered
in [10].

Formally, the potentials of L, M pairs with a Coxeter reduction can be viewed as ele-
ments of Kac–Moody algebras. Such an approach was chosen by Drinfeld and
Sokolov [11,12] where integrable models, related to low-rank Kac–Moody algebras were
studied (again, only for L operators linear in the spectral parameter λ). The cases for
A(1)

r and D(k)
4 can be found in [13,14]. There are, however, no known models related to

Kac–Moody algebras with L being polynomial in λ.
Formulating the scattering problem for the linear Lax operator was treated with math-

ematical rigor for the general case by Beals and Coifman [15], and for the case of potentials
in semisimple Lie algebras (which includes the case of a Coxeter reduction) by Gerdjikov
and Yanovski [16,17].

Studying exactly solvable models related to the polynomial case presents some diffi-
culties. First, there is the question of the parametrization of the Lax operators. The second
is the formulation of the scattering problem, starting with the introduction of the funda-
mental analytic solutions (FAS). Note that there have been some advances in the study of
polynomial Lax operators. A significant contribution can be found in [18], where a gen-
eral approach for parametrizing the Lax operators is formulated. The main idea is to start
from a multiplicative Riemann–Hilbert problem (RHP), with everything else following
from there. The article also contains examples of N-wave equations with a Z2 reduction
group and dNLS-type equations related to symmetric spaces.

The aim of this paper is to outline the general methodology in solving the mentioned
difficulties for the case of the quadratic Lax operator related to Kac–Moody algebra A(1)

2 ,
which results in a set of dNLS equations, for which the scattering problem is formulated.
This can be considered as a natural continuation of the work performed in [18]. The chosen
approach is slightly different: we will start with a Lax representation, then formulate the
FAS for the relevant pair of Lax operators, show that they satisfy a multiplicative RHP,
and then formulate the scattering problem and find a minimal set of scattering data.

A word on terminology—formally, a Lax pair is a pair of scalar operators and not their
matrix analogs, but we will not make this distinction here and will refer to any L, M pair
as a Lax pair and the L operator as a Lax operator. The reader is assumed to have some
familiarity with the history and basic theory of integrable systems—for an introduction,
see [19].

This paper is structured as follows: Section 1 is this introduction; Section 2 con-
tains the necessary preliminaries from the theory of simple Lie algebras; Section 3 is de-
voted to the recursion relations resulting from the compatibility condition of the L, M pair;
Section 4 presents the resulting dNLS-type equations; Section 5 introduces the FAS and
formulates the scattering problem; Section 6 studies the time evolution of the scatter-
ing matrix; and Section 7 contains some concluding remarks. The Appendix is divided
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as follows: Appendix A introduces the Cartan–Weyl basis for the simple lie algebra A2;
Appendix B contains the basis for the Kac–Moody algebra A(1)

2 ; and Appendix C derives
the expression for the inverse of adJ (which is frequently used throughout the text).

2. Preliminaries

The reader is assumed to have basic knowledge of the theory of simple Lie algebras.
Some classical textbooks on the theory of Lie algebras, both finite and infinite dimensional,
are [20–22].

Assume that g is a finite-dimensional simple Lie algebra over the field of complex
numbers C. Let adX denote the linear operator defined by

adX(Y) =
[
X, Y

]
, X, Y ∈ g, (4)

where [ , ] denotes the Lie bracket in g. This operator has a kernel and can only be inverted
on its image. We denote that inverse by ad−1

X . If X is diagonalizable then ad−1
X can be

expressed as a polynomial of adX . We will also need the Killing–Cartan form on g, usually
denoted

⟨
,
⟩
, which is defined by⟨

X, Y
⟩
= tr(adX adY), (5)

where tr denotes the trace. Note that for any simple Lie algebras, any invariant symmetric
bilinear form on g is proportional to this Killing form. This simplifies things, since in any
representation of g, we can use the form (ignoring the proportionality constant)⟨

X, Y
⟩
= tr(XY). (6)

Now , assume that φ is an automorphism of g of finite order. If φ can be represented as

φ(X) = eFXe−F (7)

for some generator F, then it is an inner automorphism. An outer automorphism is one
which is not inner. The set of outer automorphisms of g is equivalent (up to a conjugation
with an inner automorphism) to the symmetries of the Dynkin diagram of g.

An automorphism is said to be a Coxeter automorphism if its invariant eigenspace
is Abelian and the automorphism is of minimal order h, with h being called the Coxeter
number of the algebra.

Any finite order automorphism φ introduces a grading in g by the condition

g =
s−1
⊕

k=0
g(k), (8)

such that [
g(k), g(l)

]
⊂ g(k+l), φ(X) = ωkX, ω = exp

(
2πi

s

)
, ∀X ∈ g(k), (9)

where s is the order of φ and k + l is taken modulo s. Let us define

g[λ, λ−1] =

{
m

∑
i=n

viλ
i : vi ∈ g, n, m ∈ Z

}
,

f (λ) =

{
m

∑
i=0

fiλ
i : fi ∈ g, m ∈ Z

}
.

(10)
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There is a natural Lie algebraic structure on g[λ, λ−1]. Let φ be an automorphism of g of
order s. Then

L(g, φ) =

{
f ∈ g[λ, λ−1] : φ( f (λ)) = f

(
λ exp

(
2πi

s

))}
. (11)

L(g, φ) is a Lie subalgebra of g[λ, λ−1].
If g is simple and φ is a Coxeter automorphism then L(g, φ) is called a Kac–Moody

algebra.
Note that when considering finite-dimensional Lie algebras, a Coxeter automorphism

is an inner automorphism. When dealing with Kac–Moody algebras, the Coxeter automor-
phism can be an outer automorphism of the underlying simple Lie algebra g. This usually
means that we have two types of Kac–Moody algebras—twisted and untwisted (there ex-
ists one notable exception, the algebra D(3)

4 ). When the Coxeter automorphism is an outer
automorphism of g, then the corresponding Kac–Moody algebra is called twisted; other-
wise it is untwisted. Untwisted Kac–Moody algebras are usually denoted by an upper
index (1), while the twisted type is denoted by an upper index (2), with this number
being called the height of the Kac–Moody algebra. To make this more precise, consider
that every automorphism φ can be uniquely written as φ = ψ ◦ φτ where ψ is an inner
automorphism and φτ is given by

φτ(Eαi ) = Eτ(αi)
(12)

with τ being a permutation of the simple roots that preserves the symmetry of the Dynkin
diagram of g; i.e., it is an automorphism of the Dynkin diagram. Then the order of φτ

is the height of L(g, φ). It is obvious that Kac–Moody algebras are graded algebras.Note
that commonly the central extension of L(g, φ) is called a Kac–Moody algebra, with the
definitions given above being the ones used in [11,12].

In this paper, we will consider the equations related to L(A2, C), usually denoted by
A(1)

2 . The Coxeter number of A(1)
2 is 3, its rank is 2, and its exponents are 1, 2 [11,20]. We

will use the typical representation (defining module) of A2 ' sl(3), i.e., 3 × 3 matrices
with zero trace. The Lie bracket is then the commutator [X, Y] = XY − YX. The Coxeter
automorphism C can be represented as

C(X) = cXc−1, (13)

where the matrix c is given by

c =

0 0 1
1 0 0
0 1 0

. (14)

It introduces a grading in A2 via (9). The basis is (the explicit form is given in the
Appendix A):

E (k)
α =

h−1

∑
s=0

ω−skCs(Eα), H(k)
j =

h−1

∑
s=0

ω−skCs(Hj),

E (k)
α ∈ g(k), H(k)

j ∈ g(k), ω = ei 2π
3 .

(15)

Note that H(k)
j is non-vanishing only if k is an exponent, i.e H(0)

j = 0 . Here, Hj are the
Cartan basis elements and Eα are the Weyl generators of A2.

A note on notations—we will omit writing explicit dependence on x, t or λ when it is
convenient and when there is no risk of confusion. Also, in order to avoid visual clutter,
when needed, we will denote matrix inverse by “hat”; i.e., if F is an invertible matrix, then
F̂ = F−1. Partial derivatives in x and t will be denoted by ∂x and ∂t, respectively, and 11
denotes the unity matrix.
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3. Lax Pair and Recursion Relations

Consider a Lax pair given by

L = i∂x + U0(x, t) + λU1(x, t)− λ2 J,

M = i∂t + V0(x, t) + λV1(x, t) + λ2V2(x, t) + λ3V3(x, t) + λ4K,
(16)

where J and K are diagonal constant matrices with complex coefficients. Note that while
in many cases L operators that are linear in the spectral parameter can be viewed as
zero-curvature representations of scalar Lax operators, for the polynomial case there is
no such analogy.

The parametrization of the coefficients of such Lax pair comes down to imposing
the symmetry conditions, i.e., the Coxeter reduction and solving the recursion relations
resulting from the ZCC. This can be summarized as follows:

• The potentials are elements of the corresponding eigenspaces of C

U0(x, t) ∈ g(0), U1(x, t) ∈ g(1), Vk(x, t) ∈ g(k mod 3),

K ∈ g(1), J ∈ g(2).
(17)

We will also assume that the potentials vanish at spatial infinity, i.e.,

lim
x→±∞

Uk(x, t) = 0, lim
x→±∞

Vk(x, t) = 0.

Usually, an ever more restrictive condition on the asymptotic behavior of the poten-
tials is required. For the purposes of this paper, we will assume them to be Schwartz
functions, but this might be too restrictive. This, of course, needs to be studied more
rigorously and this will be accomplished in future works.

• The explicit form of the elements of L is:

J = H(1)
1 =

ω 0 0
0 ω2 0
0 0 1

, U0 =

 0 q1 q2
q2 0 q1
q1 q2 0

, U1 =

 0 ω2q3 ω2q4
ωq4 0 q3ω
q3 q4 0


• The choice of J determines the inverse of adJ to be (see Appendix C)

ad−1
J = − 1

27
ad5

J . (18)

• The elements of M are:

K = H(2)
1 =

ω2 0 0
0 ω 0
0 0 1

, Vk = v(k)1 E (k)
α1 + v(k)1 E (k)

α1+α2
+ v(k)0 H(k)

1 ,

where in the index k is taken as modulo 3.
• The zero-curvature condition [L, M] = 0 leads to the following set of recursion rela-

tions with N = 4:

λN+2 :
[

J, K
]
= 0,

λN+1 :
[

J, VN−1
]
−
[
K, U1

]
= 0,

λN :
[

J, VN−2
]
−
[
K, U0

]
−
[
U1, VN−1

]
= 0,

λs : i∂xVs +
[
U0, Vs

]
+
[
U1, Vs−1

]
−
[

J, Vs−2
]
= 0,

λ1 : −i∂tU1 + i∂xV1 +
[
U0, V1

]
+
[
U1, V0

]
= 0,

λ0 : −i∂tU0 + i∂xV0 +
[
U0, V0

]
= 0.

(19)
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• The recursion relations can be solved by noting that each X ∈ g can be decomposed as

X = X⊥ + X‖, adJ X‖ = [J, X‖] = 0, (20)

i.e., X‖ is “parallel” to J while X⊥ is “orthogonal” to J.
• This leads to the following solutions:

VN−1 = ad−1
J [K, U1],

VN−2 = ad−1
J ([K, U0] + [U1, VN−1]),

V⊥
s−2 = ad−1

J

(
i∂xVs +

[
U0, V⊥

s
]
+
[
U0, V‖

s
]
+
[
U1, V⊥

s−1
]
+
[
U1, V‖

s−1
])

,

V‖
s = i∂−1

x

([
U0, V⊥

s

]‖
+
[
U1, V⊥

s−1

]‖)
,

(21)

where by ∂−1
x we denote the operator

∂−1
x f (x) =

∫ x

−∞
f (y)dy.

Note that for any function vanishing at −∞, this is equivalent to integrating and set-
ting any constant of integration to zero. The above solutions to the recursion relations
can be formalized with the help of recursion operators Λ; see, for example [14,17].
However, calculating their explicit form in the case of polynomial Lax operators is
more involved and writing their explicit form presents considerable difficulties.

The explicit form of the coefficients of Vk is given by

v1
(3) = −aω2q3, v1

(2) = −aω2q1 − aωq2
4,

v2
(3) = −aωq4, v2

(2) = −aωq1 − aω2q2
4,

v3
(3) = 0, v3

(2) = aq3q4.

v1
(1) = aω2q4q2 −

1√
3

a∂xq3, v2
(1) = aωq3q1 +

1√
3

a∂xq4,

v3
(1) = −aωq4q1 − aω2q3q@ − 2

3
aq3

3 −
2
3

aq3
4.

v1
(0) = a

(
− 1√

3
∂xq1 −

2√
3

ω2q4∂xq4 −
2
3

ω2q4
3 − 2ωq2q2

3 +
1
3

q3q4(2ω2q2
4 + 6q1)− q2

2

)
,

v2
(0) = a

(
1√
3

∂xq2 +
2√
3

ωq3∂xq3 −
2
3

ωq4
4 − 2ω2q1q2

4 −
1
3

q3q4(2ωq2
3 + 6q2)− q2

1

)
,

v3
(0) = 0.

4. Derivative NLS Equations

The λ1 and λ0 terms in (19) result in the following equations:
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∂tq1 = a∂x

(
− 1√

3
∂xq1 −

2√
3

ω2q4∂xq4 −
2
3

ω2q4
3 − 2ωq2q2

3 +
1
3

q3q4(2ω2q2
4 + 6q1)− q2

2

)
,

∂tq2 = a∂x

(
1√
3

∂xq2 +
2√
3

ωq3∂xq3 −
2
3

ωq4
4 − 2ω2q1q2

4 −
1
3

q3q4(2ωq2
3 + 6q2)− q2

1

)
,

i∂tq3 = a

(
− 1√

3
∂2

xq3 − ωq4∂xq2 + 2q3q4∂xq3 − 2
1√
3

q5
4 −

8√
3

ωq1q3
4

− q3q2
4

(√
3
(

2
3

q2
3 − q2

)
− 3q2

)
− 2

√
3ω2q2

1q4 + 2q1q3
√

3
((

1
6

q2
3 + q2

)
− 1

2
q2

3

))
,

i∂tq4 = a

(
1√
3

∂2
xq4 − ω2q3∂xq1 + 2q3q4∂xq4 + 2

1√
3

q5
3 +

8√
3

ωq2q3
3

− q4q2
3

(√
3
(

2
3

q2
4 − q1

)
+ 3q1

)
+ 2

√
3ωq2

2q3 + 2q2q4
√

3
((

1
6

q2
4 + q1

)
+

1
2

q2
4

))
.

(22)

They form a system of dNLS type equations for the complex functions qi(x, t). Here, a is a
complex parameter, and ω = exp

(
2πi

3

)
.

5. Fundamental Analytic Solutions of L and Scattering Data

This section formulates the scattering problem for L quadratic in λ by following and
generalizing the ideas contained in [13–17]. Let us analyze the FAS of L and use them to
introduce a minimal set of scattering data. The first step in this analysis is the definition
of the Jost solutions:

lim
x→−∞

ϕ−(x, t, λ)ei Jλ2x = 11, lim
x→∞

ϕ+(x, t, λ)eiJλ2x = 11. (23)

They allow the definition of the scattering matrix

T(λ, t) = ϕ+(x, t, λ)ϕ̂−(x, t, λ). (24)

A reminder, here and below, “hat” denotes matrix inverse. Formally the Jost solutions
must satisfy Volterra type integral equations. Let

ξ±(x, t, λ) = ϕ±(x, t, λ)eiλ2 Jx. (25)

Using the Lax representation (16), it is not hard to see that the matrices ξ±(x, t, λ) must
satisfy

ξ+(x, t, λ) = 11 + i
∫ x

∞
dy e−iλ2 J(x−y)(U0(y, t) + λU1(y, t))ξ+(y, t, λ)eiλ2 J(x−y),

ξ−(x, t, λ) = 11 + i
∫ x

−∞
dy e−iλ2 J(x−y)(U0(y, t) + λU1(y, t))ξ−(y, t, λ)eiλ2 J(x−y).

(26)

However, since J is complex valued, the above construction does not exist in general
and the scattering problem needs to be formulated more precisely. Following the general
ideas of Beals and Coifman [15] and generalizing the results of [16,17] for quadratic Lax
operators in λ, we have:
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1. The continuous spectrum of L fills up the set of rays lν, ν = 0, . . . 11 in the complex
λ-plane for which (see Figure 1)

Im λ2α(J) = 0, (27)

where α is any root of A2 where α(J) =
(

α, j⃗
)

, with (⃗j)i = Jii and ( , ) denoting the
standard scalar product. Solving (27) leads to the rays being defined by

lν = arg λ =
π(ν + 1

2 )

6
, ν = 0, . . . 11. (28)

Each ray is related to a subalgebra gν with root systems δν whose roots satisfy

δν ≡ {α ∈ δν ⇐⇒ Im λ2α(J) = 0, ∀λ ∈ lν}. (29)

More specifically, for this particular case we have

δ0 ≡ {±(e1 − e3)},

δ1 ≡ {±(e1 − e2)},

δ2 ≡ {±(e2 − e3)},

(30)

and δν+3 ≡ δν.

λ

l0

l1

l2l3

l4

l5

l6

l7

l8 l9

l10

l11

Ω0

Ω1

Ω2
Ω3

Ω4

Ω5

Ω6

Ω7
Ω8

Ω9

Ω10

Ω11

Figure 1. The continuous spectrum of L fills up the rays lν, ν = 0, . . . , 11. Here, Ων denotes the
sectors of analyticity of the FAS ξν(x, t, λ).

2. The regions of analyticity of the FAS ξν(x, t, λ) are the sectors

Ων ≡
{

π(ν + 1
2 )

6
≤ arg λ ≤

π(ν + 1 + 1
2 )

6

}
. (31)
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The FAS are introduced as the solutions of the following set of integral equations
(written component-wise)

ξν,jk(x, t, λ) = δjk + i
∫ x

sjk∞
dy e−iλ2(Jjj−Jkk)(x−y)((U0(y, t) + λU1(y, t))ξν(y, t, λ))jk, (32)

where λ ∈ Ων and sjk take the values ±1, which are specific for each of the sectors
Ων, see Table 1.

Table 1. The signs sjk in (32). The table contains the values of sjk for j < k because skj = −sjk.
Also, the signs for Ων+3 and Ων+9 are opposite to the signs for Ων, ν = 0, . . . , 2, while the signs
for Ων+6 are the same. The signs are chosen in a way that ensures that the integral Equation (32) is
correctly defined.

(1, 2) (1, 3) (2, 3)

Ω0 − + +
Ω1 + + +
Ω2 + + −

3. In each sector Ων, the roots are ordered as follows: the root α is called ν-positive (resp.
ν-negative) if Im λ2α(J) > 0 (resp. Im λ2α(J) < 0) for λ ∈ Ων. For example, the sets
of positive roots of the subalgebras gν are

δ+0 ≡ {(e1 − e3)},

δ+1 ≡ {(e1 − e2)},

δ+2 ≡ {−(e2 − e3)}.

(33)

Note that the root systems δν are isomorphic to the root system of sl(2).
4. The scattering data is obtained by the limits of the FAS along both sides of the rays

lνe±i0:

lim
x→−∞

e−iλ2 Jxξν(x, t, λ)eiλ2 Jx = S+
ν (t, λ),

lim
x→∞

e−iλ2 Jxξν(x, t, λ)eiλ2 Jx = T−
ν (t, λ)D+

ν (λ),
∀λ ∈ lνe+i0, (34)

lim
x→−∞

e−iλ2 Jxξν(x, t, λ)eiλ2 Jx = S−
ν+1(t, λ),

lim
x→∞

e−iλ2 Jxξν(x, t, λ)eiλ2 Jx = T+
ν+1(t, λ)D−

ν+1(λ),
∀λ ∈ lν+1e−i0, (35)

where S±
ν , T±

ν and D±
ν are elements of the subgroup Gν (corresponding to the algebra

gν) of the form

S±
ν (t, λ) = exp

 ∑
α∈δ+ν

s±α,ν(t, λ)E±α

,

T±
ν (t, λ) = exp

 ∑
α∈δ+ν

τ±
α,ν(t, λ)E±α

,

D±
ν (λ) = exp

 ∑
α∈δ+ν

d±α,ν(λ)Hα

,

(36)

satisfying
T−

ν D+
ν Ŝ+

ν = T+
ν D−

ν Ŝ−
ν = Tν(t, λ), λ ∈ lν. (37)
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Equation (37) is the Gauss decomposition of the scattering matrix Tν(t, λ). Note that
the functions D+

ν and D−
ν+1 are analytic in the sector Ων.

5. It can be shown, that the fundamental analytic solutions ξν(x, t, λ) satisfy a (multi-
plicative) Riemann–Hilbert problem (RHP):

ξν+1(x, t, λ) = ξν(x, t, λ)Gν(x, t, λ),

Gν(x, t, λ) = eiλ2 JxŜ−
ν+1(t, λ)S+

ν+1(t, λ)e−iλ2 Jx,
(38)

which allows canonical normalization:

lim
λ→∞

ξν(x, t, λ) = 11. (39)

It follows from the generalization of Zakharov–Shabat theorem for an L operator,
quadratic in the spectral parameter [18], that the solution of the RHP (38) with canon-
ical normalization is an FAS of the system

i
∂ξν

∂x
+ (U0 + λU1)ξν(x, t, λ)− λ2[J, ξν(x, t, λ)] = 0, (40)

To make this more precise, since ξν(x, t, λ) is canonically normalized, it has an asymp-
totic form given by

ξν(x, t, λ) = exp(Q(x, t, λ)), (41)

where, in general,

Q(x, t, λ) =
∞

∑
s=1

λ−sQs(x, t). (42)

Following the idea of Gel’fand and Dikii [23], it can be shown [18] that for quadratic
Lax operators only the first two terms are needed

Q(x, t, λ) =
Q1(x, t)

λ
+

Q2(x, t)
λ2 + .... (43)

with higher terms expressed as functions of Q1(x, t) and Q2(x, t) and their deriva-
tives. Then, the potentials of L can be expressed as

U1 = ad JQ1,

U0 = ad JQ2 −
1
2

ad 2
Q1

J.
(44)

The above can be inverted, allowing us to express Q1(x, t) and Q2(x, t) in terms of
the potentials

Q1 = ad −1
J U1,

Q2 = ad −1
J

(
U0 −

1
2

[
U1, ad −1

J U1

])
,

(45)

which shows that ξν(x, t, λ) is a solution of (40). Then, the FAS of the Lax operator L
is given by χν(x, t, λ) = ξν(x, t, λ)eiλ2 Jx.

Note that some of the scattering data defined above is redundant; i.e., there is a min-
imal set of scattering data. In fact, it can be shown that this set is determined entirely by
the functions S±

ν (t, λ).
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Theorem 1. Let the solutions ξν(x, t, λ) of the RHP (38) be regular; that is they have no zeros or
singularities in their regions of analyticity. Then, a minimal set of scattering data that uniquely
determines the scattering matrices Tν(t, λ) and the potentials U0(x, t), U1(x, t) is given by

T ≡ {s+0,α(t, λ), α ∈ δ+0 , s±1,α(t, λ), α ∈ δ+1 , s±2,α(t, λ), α ∈ δ+2 , s−3,α(t, λ), α ∈ δ−3 }. (46)

Proof. The proof consists of four steps:

• Looking at the first equation from (36), the set of scattering data T uniquely deter-
mines the matrices S±

1 (t, λ) for λ ∈ l1e±i0, S±
2 (t, λ) for λ ∈ l2e±i0 and S±

3 (t, λ) for
λ ∈ l3e±i0. The Coxeter reduction implies that

S±
3ν(t, λ) = cνS±

0 (t, ω−νλ)c−ν, λ ∈ lνe±i0,

S±
3ν+1(t, λ) = cνS±

1 (t, ω−νλ)c−ν, λ ∈ lν+1e±i0,

S±
3ν+2(t, λ) = cνS±

2 (t, ω−νλ)c−ν, λ ∈ lν+2e±i0.

(47)

This determines S±
ν (λ) on the rest of the rays.

• D±
ν (λ) are determined uniquely by S±

ν (t, λ). The regularity of ξν(x, t, λ) implies that
the functions D±

ν (λ) are also regular, i.e., have no zeros or singularities. This also
means that the functions d±α,ν(λ) from the last equation in (36) are analytical. We will
use the regularity of D±

ν (λ) along with (37). In what follows, the reader is assumed
to have some familiarity with the representation theory of simple Lie algebras.
Let ω+

ν,j be the j-th fundamental weight of the subalgebra gν evaluated (with respect

to the index j) with the ordering in Ων. Let |ω±
ν,j〉 (here, we are using standard Bra–ket

notation) be the corresponding weight vector in the fundamental representation of gν

that has highest weight ω+
ν,j (respectively, ω−

ν,j is the lowest weight). Then, consider-
ing that for all α ∈ δ+ν

Eα|ω+
ν,j〉 = 0, E−α|ω−

ν,j〉 = 0, 〈ω+
ν,j|E−α = 0, 〈ω−

ν,j|Eα = 0, (48)

we have

〈ω+
ν,j|S

−
ν = 〈ω+

ν,j|T
−
ν = 〈ω+

ν,j|, 〈ω−
ν,j|S

+
ν = 〈ω−

ν,j|T
+
ν = 〈ω−

ν,j|,

S+
ν |ω+

ν,j〉 = T+
ν |ω+

ν,j〉 = |ω+
ν,j〉, S−

ν |ω−
ν,j〉 = T−

ν |ω−
ν,j〉 = |ω−

ν,j〉
(49)

and

D+
ν |ω+

ν,j〉 = e
d+αj ,ν |ω+

ν,j〉, D−
ν |ω−

ν,j〉 = e
−d−αj ,ν |ω−

ν,j〉. (50)

Analogous relations can also be derived for the inverses. Note that we can rewrite
(37) in the form of

D−
ν Ŝ−

ν S+
ν D̂+

ν = T̂+
ν T−

ν , λ ∈ lν. (51)

Then, by squeezing (51) between 〈ω±
ν,j| . . . |ω±

ν,j〉 we obtain that

d+αj ,ν − d−αj ,ν = ln〈ω−
ν,j|Ŝ

−
ν S+

ν |ω−
ν,j〉

= − ln〈ω+
ν,j|T̂

+
ν T−

ν |ω+
ν,j〉.

(52)

The functions d±αj ,ν can be recovered uniquely from their analyticity properties and
from the jumps (52) along the rays lν. This in turn determines D±

ν (λ). The exact
details are essentially the same as for linear Lax operators and can be found in [16]).

• The matrices T±
ν (t, λ) are recovered as the Gauss factors of the right hand side of (51).
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• Finally, the corresponding potentials are reconstructed from the regular solutions of
the RHP (38) by taking the limit λ → ∞ in(

∂ξν

∂x
(x, t, λ)

)
ξ̂ν(x, t, λ) + U0(x, t) + λU1(x, t) = λ2(J − ξν(x, t, λ)Jξ̂ν(x, t, λ)

)
.

(53)

6. Time Dependence of the Scattering Data

The ZCR ensures that the operators L and M have the same set of FAS. In general, we
have that

Lχν(x, t, λ) = 0, Mχν(x, t, λ)− χν(x, t, λ)Γ(λ) = 0, (54)

with χν(x, t, λ) = ξν(x, t, λ)eiλ2 Jx and Γ(λ) is a constant matrix. The idea is to choose Γ(λ)
in such a way so that the scattering data satisfy a linear evolution equation.

Assuming λ ∈ lνei0, let us calculate the following limit:

lim
x→−∞

e−iλ2 Jx Mχν(x, t, λ) =

= lim
x→−∞

e−iλ2 Jx

[(
i

∂

∂t
+

4

∑
p=0

λpVp − λ4K

)
χν(x, t, λ)− χν(x, t, λ)Γ(λ)

]

= i
∂S+

ν

∂t
− λ4KS+

ν (t, λ)− S+
ν (t, λ)Γ(λ) = 0, λ ∈ lνe+i0,

(55)

where we have used the fact that limx→±∞ Vk(x, t) = 0. From the diagonal part of (55),
considering that from (36) it follows that S+

ν (t, λ) are unitriangular matrices, and we obtain

λ4K + Γ(λ) = 0, (56)

which means that Γ(λ) = −λ4K. Then, the last line of (55) becomes

i
∂S+

ν

∂t
− λ4[K, S+

ν (t, λ)] = 0, λ ∈ lνe+i0. (57)

A similar limit can be calculated for x → ∞:

lim
x→∞

e−iλ2 Jx Mχν(x, t, λ) =

= lim
x→∞

e−iλ2 Jx

[(
i

∂

∂t
+

4

∑
p=0

λpVp − λ4K

)
χν(x, t, λ)− χν(x, t, λ)Γ(λ)

]

= i
∂T−

ν D+
ν

∂t
− λ4[K, T−

ν (t, λ)D+
ν (λ)] = 0.

(58)

Again, considering the diagonal part and (36), we have

i
∂D+

ν

∂t
= 0, (59)

i.e., the matrix elements of D+
ν (λ) are generating functionals of the integrals of motion of

the corresponding system of dNLS-type equations.
Note that we could have used as a minimal set of scattering data the functions

T±
ν (t, λ)—they form an equivalent set. We can derive a similiar evolution for T±

ν (t, λ)
by considering the lower triangular part of (58)

i
∂T−

ν

∂t
− λ4[K, T−

ν (t, λ)] = 0, λ ∈ lνe+i0. (60)
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Doing an analogous procedure for λ ∈ lνe−i0 and evaluating the limits for x → ±∞
results in

i
∂S+

ν

∂t
− λ4[K, S+

ν (t, λ)] = 0, i
∂T−

ν

∂t
− λ4[K, T−

ν (t, λ)] = 0, λ ∈ lνe+i0,

i
∂S−

ν

∂t
− λ4[K, S−

ν (t, λ)] = 0, i
∂T+

ν

∂t
− λ4[K, T+

ν (t, λ)] = 0, λ ∈ lνe−i0
(61)

with the diagonal factors D±
ν (λ) being t-independent.

The solution of the above equations is given by (written component-wise)

S±
ν,jk(t, λ) = eiλ4(Kj−Kk)tS±

ν,jk(0, λ), T±
ν,jk(t, λ) = eiλ4(Kj−Kk)tT±

ν,jk(0, λ). (62)

Solving the corresponding system of a non-linear evolution equation (NLEE) reduces to
solving the direct and the inverse scattering problem for the Lax operator L.

7. Concluding Remarks

When dealing with exactly solvable non-linear models, there are two points to con-
sider. The first is the purely mathematical interest in the subject. In that regard, the results
of this paper will mainly be of interest to specialists in exactly solvable non-linear models,
especially soliton theory, as the derived equation form a system of PDE’s which possess
soliton solutions. The other aspect is the practical application. The truth is that only a
small number of all known exactly solvable non-linear models have found application in
practice—KdV, NLS, dNLS, etc. However, this does not mean that there is no value in find-
ing generalizations—for example, the Manakov model is a multi-component generaliza-
tion of the NLS equation, and it finds applications in optics. In general, one cannot know a
priori which exactly solvable model will find application in a given practical context. The
best strategy, then, is to create a list of all possible exactly solvable models. Considering
1 + 1 variables, for L linear in λ, this list seems to be almost exhausted (at least for practical
number of components). What is left is either to consider polynomial dependence on λ
or some entirely new approach not based on the Lax representation. The article considers
the first possibility and focuses on Lax operators related to Kac–Moody algebras.

There are, however, some details that need further study:

• The first is a rigorous study of the mapping between potential (U0, U1) and scattering
matrix Tν. In defining the FAS, we assumed that Equation (32) has a solution which is
obviously not true for all classes of potentials (it is true for potentials on compact sup-
port and for Schwartz functions). The first step is a mathematically rigorous defini-
tion of the class of admissible potentials, such that the mapping (U0, U1) 7→ Tν and its
inverse are correctly defined. This problem in the case of linear L operators [16,17,23]
is rather involved and the same is expected to be true for the quadratic case.

• There is a hierarchy of integrable systems of equations related to a single L operator.
This can be derived with the help of the recursion operators. Finding their explicit
form is somewhat difficult. One can infer from the solution of the recursion relations,
i.e., Equation (36), that for an L operator of order m in λ, the recursion operator will
have m arguments (i.e., a tensor of rank m + 1).

• The hierarchy of integrable equations admits a Hamiltonian formulation. Since the
factors D±

ν generate the integrals of motion for the system, they can be used to find
the Hamiltonian. In the general case, the Hamiltonian can also be found by using the
recursion operators [14].

• Finding the multi-soliton solutions of the corresponding equations. This can be done,
for example, by using the dressing method, with the procedure being more involved
for polynomial L operators [18].

• If the soliton solutions are found by the dressing method, then the soliton dynam-
ics and interactions can be studied by considering the asymptotic behavior of the
dressing factor.
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The algebra A(1)
2 was chosen since it is the simplest non-trivial case for which a system

of exactly solvable NLEEs can be derived with a L operator quadratic in λ. The methods
presented in this article can be used to derive other exactly solvable models, for example,
by considering Lax pairs related to other Kac–Moody algebras.

Funding: This research was funded by the Bulgarian National Science Foundation, grant number
KP-06N42-2.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The author is grateful to Vladimir Gerdjikov for the useful discussions and
critical review of this work.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A. The Simple Lie Algebra A2

Let g be a simple Lie algebra. A Cartan–Weyl basis in g is a system of generators
Hi, Eαi , E−αi , 1 ≤ i ≤ r such that [

Hi, Hj
]
= 0,[

Eαi , E−αj

]
= δij Hi,[

Hi, Eαj

]
= CijHi,[

Hi, E−αj

]
= −CijHi.

(A1)

The matrix (Cij) is non-degenerate and is called the Cartan matrix of g. The number
r is the rank of the algebra. The generators Hi form an Abelian subalgebra h called the
Cartan subalgebra. Every simple Lie algebra is uniquely determined by its Cartan matrix
and can also be represented by a Dynkin diagram [20].

The Cartan–Weyl basis of A2 ' sl(3) is given by

Hi = eii − ei+1,i+1, 1 ≤ i ≤ 2,

Eαj = ej,j+1 1 ≤ j ≤ 2,
(A2)

where with eij we denote a matrix that has a one at the i-th row and j-th column and is
zero everywhere else. In addition to the simple roots, we also have α1 + α2. Its generator
is given by Eα1+α2 = [Eα1 , Eα2 ]. Explicitly, in the typical representation (defining module),
we have

Eα1 =

0 1 0
0 0 0
0 0 0

, Eα2 =

0 0 0
0 0 1
0 0 0

, Eα1+α2 =

0 0 1
0 0 0
0 0 0

,

H1 =

1 0 0
0 −1 0
0 0 0

, H2 =

0 0 0
0 1 0
0 0 −1

.

(A3)

Note that E−α = ET
α .

Appendix B. Basis in A(1)
2

Every element of A(1)
2 can be represented as

X =
m

∑
k=n

X(k)λk, n, m ∈ Z, (A4)
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where X(k) ∈ g(k mod 3). The elements X(k) are given by

X(k) = xk
1E

(k)
α1 + xk

2E
(k)
α1+α2

+ xk
3H(k), (A5)

with x0
3 = 0. The explicit form of the basis elements X(k) is given by

X(0) =

(
0 x0

1 x0
2

x0
2 0 x0

1
x0

1 x0
2 0

)
, (A6)

X(1) =

(
ω2x1

3 ω2x1
1 ω2x1

2
ωx1

2 ωx1
3 ωx1

1
x1

1 x1
2 x1

3

)
, (A7)

X(2) =

(
ωx2

3 ωx2
1 ωx2

2
ω2x2

2 ω2x2
3 ω2x2

1
x2

1 x2
2 x2

3

)
. (A8)

Appendix C. The Inverse of adJ

Consider J ∈ h, where h is the Cartan subalgebra of g = A2. Then, the eigenvalues of
the operator adJ are given by

adJ Eα =
[

J, Eα

]
= α(J)Eα, (A9)

where the root α ∈ ∆. The root system ∆ of A2 splits into positive and negative roots
∆ = ∆+ ∪ ∆−, such that if α ∈ ∆+ then −α ∈ ∆−. The positive roots are given by

∆+ ≡ {ei − ej, i, j = 1..3, i < j}.

The eigenvalues of ad J can be represented as

α(J) = (α, J⃗), α ∈ ∆, (A10)

where J⃗ is the vector in the root space of A2 dual to the Cartan element J, i.e., J⃗ = ωe1 +
ω2e2 + e3. The characteristic polynomial of ad J can be written as:

P(λ) ≡ ∏
α∈∆

(λ − α(J)) = ∏
α∈∆+

(λ2 − (α(J))2). (A11)

Considering the explicit form of J⃗ and ∆+, and the fact that ω = exp(2πi/3), after
some simplifications we obtain

P(λ) = λ6 + 27, (A12)

which in turn leads to
ad−1

J = − 1
27

ad5
J . (A13)

Note that ad J has an inverse only on its image; i.e., ad −1
J is defined on A2\hA2 .
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