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Abstract: For many engineering applications, it is sufficient to use the concept of simple materials.
However, higher gradients of the kinematic variables are taken into account to model materials
with internal length scales as well as to describe localization effects using gradient theories in finite
plasticity or fluid mechanics. In many approaches, length scale parameters have been introduced that
are related to a specific micro structure. An alternative approach is possible, if a thermodynamically
consistent framework is used for material modeling, as shown in the present contribution. However,
even if sophisticated and thermodynamically consistent material models can be established, there are
still not yet standard experiments to determine higher order material constants. In order to contribute
to this ongoing discussion, system identification based on the method of self-adaptive filtering is
proposed in this paper. To evaluate the effectiveness of this approach, it has been applied to second-
order gradient materials considering longitudinal vibrations. Based on thermodynamically consistent
models that have been solved numerically, it has been possible to prove that system identification
based on self-adaptive filtering can be used effectively for both narrow-band and broadband signals
in the field of second-order gradient materials. It has also been found that the differences identified
for simple materials and gradient materials allow for condition monitoring and detection of gradient
effects in the material behavior.
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1. Introduction

For many engineering applications, it is sufficient to use the concept of simple materi-
als [1] that includes only first gradients of the kinematical variables. However, in various
fields, modern continuum mechanics is also driven by applications that include higher
gradients [2]. This is particularly true for materials with a micro-structure, functionally
graded materials, and metamaterials [3–8]. Furthermore, finite gradient plasticity [9,10]
and theories for gradient fluids [11–13] became blossoming fields of research in the last
few decades. Because of the broad range of research in this field, the list of references is
restricted to recent publications. For this reason, the latter is far from being complete. The
author therefore apologizes to any colleague not mentioned in spite of their important
contributions to academic and/or applied research on gradient materials.

The same holds for theories that have been developed for vibrational problems and
wave propagation. However, common for many of these theories is the assumption of an
underlying micro-structure characterized by a micro-displacement, as proposed for linear
elastic continua by Mindlin [14]. Nowadays, such a continuum theory has been applied to
model anti-plane surface waves in an elastic half-space [15]. Also, one-dimensional gradient
elasticity models have been derived from a discrete microstructure using continualization
methods [16]. The static and dynamic responses of these models have been analyzed in [17].

A comprehensive overview of formulations of gradient elasticity is given in [18]. In
this reference, so-called dynamically consistent models based on at least two length scale
parameters are discussed. In particular, it is shown that one scalar length scale parameter
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in combination with strain gradients is relevant for statics, while a second one can, in
combination with acceleration gradients, be added for use in dynamics. A purely strain
gradient approach that has been applied for longitudinal vibration analysis of microbars
using three different length scale parameters has been proposed in [19].

Analytical solutions for thermal vibrations of strain gradient beams considering one
internal length scale parameter for the strain gradient have been reported in [20]. Further-
more, optimal vibration control of gradient materials based on a dynamically consistent
approach with two length scale parameters has been studied in [21].

However, even if sophisticated and thermodynamically consistent material models can
be established, there are still no standard experiments to determine length scale parameter
or higher order material constants [22]. To solve this problem, it is possible to apply
atomistic simulation approaches [23]. An alternative approach is the application of system
identification approaches that have been established in the theory of mechanical vibrations.
For simple materials, system identification based on resonance measurements has been
proposed [24,25]. Recently, an inverse identification approach based on results of impulse
response measurements was proposed in [26].

It is obvious that especially for linear time-invariant (LTI) systems that are composed
of structures described by material models considering higher gradients of the kinematical
variables, the question of system identification needs further discussion. Contributing to
this discussion is the motivation for the present paper. In order to avoid restrictions, the
presented approach is embedded in a thermodynamically consistent continuum theory
of second-order gradient materials [2] without further specification of internal micro-
structures or length scales that are linked to specific strain or acceleration gradients. This
allows for a consistent formulation of the governing equations of LTI systems using longi-
tudinal vibrations in finite one-dimensional wave guides as an illustrative example. Such
systems can be identified by adaptive filtering considering self-adaptive identification
schemas based on the least mean square (LMS) algorithm [27]. To the best knowledge of the
author, this paper reports on the application of adaptive filtering for system identification
considering second-order gradient materials for the first time.

The introduction of the well-established concept of adaptive filtering to gradient
elasticity enables the development of novel and comparable identification approaches
based on input–output relations, such as impulse response functions (IRF) or frequency
response functions (FRF), that are independent of knowledge about an underlying micro-
structure. This is the key motivation for the investigation presented in this paper. Thus, the
combination of gradient elasticity and adaptive filtering can been seen as a new contribution
to the academic discussion.

However, it is also possible to motivate practical applications, one of which can be con-
nected with computational material design. If it is possible to derive input–output relations
for LTI systems with gradient material properties (that do not yet exist) using numerical
models, it is possible to include the identified input–output relations into conventional
simulation models before manufacturing real world materials. This enables performance
evaluations on the material, compound, structural, and/or system level, before dealing
with time-consuming and cost-intensive manufacturing problems. Another application
can be considered if structural health monitoring is taken into account. In a situation in
which the measured real-world IRF (or FRF) of the system that is monitored differs from
the nominal one, the change could be used as an indicator for the development of an
internal microstructure. If, furthermore, such a change is compared to the change in the
input–output relation of an associated virtual twin that includes gradient material effects,
it could also be possible to localize the position of the structural change. This could be
carried out using a model update procedure based on minimizing the difference between
the measured and the simulated input–output relations.

This paper is structured as follows: All aspects of material modeling, necessary to
describe and investigate longitudinal vibrations of finite one-dimensional wave guides
considering both simple materials and second-order gradient materials, are described in
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Section 2. The associated numerical models as well as the principle of adaptive filtering
applied in this paper are presented in Section 3, while the results of numerical simulations
and discussion of the dynamical behavior are presented in Section 4. The main findings are
summarized in the conclusion in Section 5.

2. Continuum Models for One-Dimensional Wave Guides Based on Linear Elasticity

The dynamical behavior of elastic materials will be analyzed, considering only geomet-
rically linear theories, also known as theories of small deformations; see [1] for comparisons.
As a consequence, it is not necessary to distinguish between the current placement and the
reference placement. The same applies for operators such as grad, div, and curl, which are
related to the gradient, divergence, and curl operation of a vector field. The analysis will be
limited to the use of Cartesian coordinates and isotropic materials. Furthermore, specific
body field forces will be neglected.

2.1. Modeling Longitudinal Vibrations Considering Simple Materials

Following the framework presented in [2], the local balance of linear momentum for
simple materials reads as(

α1 +
α2

2

)
grad(div u) +

α2

2
∆u = ρa with ∆u := div(grad(u)), (1)

where u = u(x, t) is the displacement field, a = a(x, t) is the acceleration field (both
vectors are depending on space and time), and ρ is the density. Furthermore, α1 = λ
is the first and α2/2 = µ is the second LAMÉ constant, respectively. These constants
can also be expressed in terms of YOUNGS’s modulus E and POISSON’s υ ratio such as
λ = (υE)/((1 − 2υ) · (1 − 2υ)) and µ = E/(2 + 2υ). If the displacement field is given by

u = u(x, t)ex, (2)

where ex is the unit vector in x-direction, it is straight forward to show that the local balance
of linear momentum is represented by the (classical) wave equation

∂2u(x, t)
∂x2 =

1
c2 · ∂2u(x, t)

∂t2 with c2 :=
E
ρ

and E = λ + 2µ, (3)

in which the speed of sound c is defined by the relation of YOUNGS’s modulus and
the density. Considering time-harmonic fluctuations of all quantities, Equation (3) can
be solved considering proper boundary conditions, compare [18–21], in order to derive
natural frequencies as well as the associated mode shapes.

2.2. Modeling Longitudinal Vibrations Considering Second-Order Gradient Linear Elasticity

If isotropic material behavior as well as linear elasticity is assumed for a second-order
gradient material, the local balance of linear momentum becomes more sophisticated.
According to [2], the following form can be derived, containing six additional material
constants (αi, i = 3, 4, 5, 6, 7, 8)(

α1 +
α2
2
)

grad(div u) + α2
2 ∆u − α3curl(∆u) + . . .

. . . − (α4 + α6)∆∆u − (α5 + α7 + α8)grad(div(∆u)) = ρa.
(4)

In contrast to Equation (1), higher gradients of the displacement field can be found in
the third, fourth, and fifth term on the left hand side of Equation (4). It should be noticed
that, in contrast to the formulations used in [16–21], a parameter describing an internal
length scale has not been introduced. Thus, all terms containing higher gradients of the
displacement field are linked to material properties, described by material constants. This
results from the fact that Equation (4) is embedded into a thermodynamically consistent
theory of second-order gradient material behavior that is consistent with the principal of
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virtual power as well as the global balance of power; for a comparison, see [2]. Because
a micro-displacement is not introduced in this particular continuum theory to gradient
materials, spatial acceleration gradients are not to be found in Equation (4). This is different
compared to the models proposed in [15–17]. These approaches have been applied to
describe dispersive wave propagation in semi-infinite bars considering a micro-deformation.
The latter can be represented by the spatial gradient of the macro-deformation [18]. For
this reason, it is necessary to comment on the following question: why are the so-called
gradient inertia terms not considered in this work?

At first, we have to keep in mind that the gradient theory for continuum mechanics
presented in [2] is based on the assumption that the stress at a material point depends
on the motion of only a finite neighborhood of that point (Principle of Local Action) [1].
Consequently, the elastic energy of the linear second-order gradient material depends on
the macro-deformation as well as on the spatial gradient of the macro-deformation. But,
an underlying micro-structure is not introduced in [2]. For this reason, we have no time
derivatives related to the spatial gradient of the macro-deformation that contribute to the
kinetic energy K = 1

2

∫
V v · vdm. Thus, in the present approach, the kinetic energy is only

based on the velocity field v = v(x, t). But, discussing this important aspect of material
modeling in more detail would require an additional study.

However, if the application of Equation (4) is restricted to finite, one-dimensional
wave guides, it is also possible to argue that the nature of standing waves becomes more
important compared to the dispersive nature of waves traveling in semi-infinite bars [17].
This is especially true if the investigations are restricted to the low-frequency range con-
sidering only the first natural frequencies as well as the associated mode shapes. Finally,
the presented approach focuses on system identification based on self-adaptive filtering.
The analyzed system would remain linear by adding the so-called gradient inertia terms
to the right hand side of Equation (4). Thus, adding such terms would not cause a reason
to change the proposed identification approach. Summarizing these comments, it should
(in this particular case) be possible to continue the discussion on gradient inertia terms in
subsequent investigations.

If the displacement field is again described by Equation (2), the local balance of linear
momentum is reduced to

α1 + α2

ρ
· ∂2u(x, t)

∂x2 − α4 + α5 + α6 + α7 + α8

ρ
· ∂4u(x, t)

∂x4 =
∂2u(x, t)

∂t2 . (5)

Because the displacement field is given by Equation (2), the material constant α3 is not
present in Equation (5), which can be rearranged as

∂2u(x,t)
∂x2 − α4 · ∂4u(x,t)

∂x4 = 1
c2 ·

∂2u(x,t)
∂t2 with

α4 := α4+α5+α6+α7+α8
α1+α2

,
(6)

where α4 describes a combination of the relevant material constants. If α4 vanishes,
Equation (6) reduces to the classical wave equation that is used to describe the dynamical
behavior of simple materials, see Equation (3). Please note that Equation (6) still describes
longitudinal vibrations.

In order to derive an analytical solution for Equation (6), time-harmonic fluctuation of
the displacement field is assumed as

u(x, t) = Re
{

U(x)ejωt
}

, (7)

where U(x) is the spatial distribution of the displacement field, and ω is the associated
angular frequency. Considering Equation (7), it is possible to derive a frequency domain
representation, such as
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∂2U(x)
∂x2 − α4 · ∂4U(x)

∂x4 + k2 · U(x) = 0 with k :=
ω

c
, (8)

where k is known as the wave number. If α4 vanishes, Equation (8) reduces to the
well-known HELMHOLTZ equation. For a special set of boundary conditions such as
u(0, t) = u(L, t) = 0 in combination with ∂2u(0, t)/∂x2 = ∂2u(L, t)/∂x2 = 0, where L is
the total length of the finite wave guide, the ansatz

U(x) =
∞

∑
n=1

Cn sin
(nπx

L

)
(9)

is valid to calculate natural frequencies. Equation (9) describes the superposition of har-
monic mode shapes considering the arbitrary constants Cn for each n-th vibrational mode.
It is straight forward to show that inserting Equation (9) into Equation (8) yields

fn =
nc
2L

√
1 + α4

(nπ

L

)2
, (10)

where fn is the n-th natural frequency. The result presented in Equation (10) is in agreement
with the results presented in [18–21]. If α4 vanishes, Equation (10) reduces to the solution
known for the simple materials described by Equation (3) and boundary conditions such as
u(0, t) = u(L, t) = 0. The solution presented in Equation (10) includes the influence of the
higher material constants that are combined in α4 at natural frequencies. This influence
increases if the total length of the finite wave guide L decreases. If higher gradients of the
displacements have to be taken into account, the n-the natural frequency is increased by

the term
√

1 + α4(nπ/L)2 compared to the classical theory.

3. Numerical Models for One-Dimensional Continua and Self-Adaptive Filtering

In the previous section, linear elastic material behavior has been modeled for simple
as well as second-order gradient materials. The models can be used to analyze longitudinal
vibrations of one-dimensional finite wave guides considering one specific set of boundary
conditions. In order to study the potential of self-adaptive filtering for system identification
applied to second-order gradient materials, numerical models have been used to generate
a data base. The upcoming section reports on simple numerical modelling of the material
behavior. Furthermore, the method for self-adaptive filtering used for system identification
is summarized.

3.1. Finite Difference Models for Linear Elastic Materials

In order to generate data that are required for system identification, simple numerical
models based on the finite difference method (FDM) have been established. The FDM is well
documented [28] and is still an effective approach to solving boundary value problems [29].

It is of course also possible to use other approaches in computational continuum
mechanics such as the finite element method [28], but the FDM is a straightforward ap-
proach that can be used to sufficiently generate reliable numerical data that can be used for
adaptive filtering. To ease the numerical approach, a damping term has been introduced at
the right hand side of Equation (6), such as

∂2u(x,t)
∂x2 − α4 · ∂2v(x,t)

∂x2 = 1
c2 ·

∂2u(x,t)
∂t2 + r · ∂u(x,t)

∂t

with

v(x, t) = ∂2u(x,t)
∂x2 ,

(11)

where r is a viscosity parameter that in combination with the first time derivative of
the displacement field ∂u(x, t)/∂t, allows for considering velocity proportional damping.
Please note that the curvature field v(x, t) has been introduced in Equation (11). This
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modification makes it easier to implement a specific set of boundary conditions such as
u(0, t) = g(t), u(L, t) = 0, v(0, t) = ∂2u(0, t)/∂x2 = 0, v(L, t) = ∂2u(L, t)/∂x2 = 0, where
g(t) defines the displacement at the left boundary as shown in [30].

The influence of physical damping on numerical stability has been discussed for
decades. However, it has been found that the analysis becomes unconditionally stable for
extremely high linear viscous damping, and that in adjusting the details of time integrations
schemas, physical damping should be taken into account to eliminate higher erroneous
modes; see [31] for a comparison.

In order to discretize Equation (11) in time and space, as illustrated by Figure 1,
well-known finite difference formulas have been applied, see [28–30]. These formulas are
given by (

∂u(x,t)
∂t

)
x
≈ un+1−un

∆t(
∂2u(x,t)

∂t2

)
x
≈ un+1−2un+un−1

∆t2(
∂2u(x,t)

∂x2

)
t
≈ um+1−2um+um−1

∆x2(
∂2v(x,t)

∂x2

)
t
≈ vm+1−2vm+vm−1

∆x2 ,

(12)

where the index n describes a discrete time step, while the index m represents a certain
position inside the calculation domain. The time step size is given by ∆t, and the special
discretization is defined by ∆x. Inserting the formulas presented in Equation (12) into
Equation (11) yields, considering causality, algebraic equations that have to be evaluated
for every spatial point m at every time step n inside the calculation domain

u(m, n) = c2∆t2/∆x2

1+c2r∆t · v(m, n − 1) + . . .

− α4c2∆t2/∆x2

1+c2r∆t · [v(m − 1, n − 1)− 2v(m, n − 1) + v(m + 1, n − 1)] + . . .

− 1
1+c2r∆t · u(m, n − 2) + 2+c2r∆t

1+c2r∆t · u(m, n − 1)

with

v(m, n) = 1
∆x2 · [u(m − 1, n)− 2u(m, n) + u(m + 1, n)].

(13)
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Figure 1. Coordinate system and schematic configuration of grid points. 
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u(x,t)

Figure 1. Coordinate system and schematic configuration of grid points.

Please note that the boundary conditions that were used in the previous subsection
can be applied properly using Equation (13), which is based on the approach described
in [30]. Equation (13) represents a simple numerical model that can easily be implemented
and solved using an ordinary personal computer. The second term on the right hand side
of Equation (13) represents the influence of the second-order gradient effects, while the first
and the third term would also appear for a simple material.

3.2. Plant Modeling Using Self-Adaptive Finite Impulse Response Filter

Using the numerical data, it is possible to analyze the potential of system identification
based on adaptive filtering and the application of the LMS algorithm [27]. In the present
study, the so-called normalized NLMS [32] will be applied. The main idea of this approach
will be outlined in this subsection. Let us consider a time-discrete LTI system with input
signal x (called reference signal) and output signal d (called desired signal). Both signals
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can be measured for every n-th time step and can, therefore, be used to define an error
signal such as

e(n) = d(n)− y(n) with y(n) = wT(n)x(n), (14)

where the Nw × 1 column matrix w contains the Nw coefficients of a time-varying finite
impulse response (FIR) filter at the n-th time step such as

w(n) = [w0(n) w1(n) . . . wNw−1(n)]
T . (15)

The signal y, see Equation (14), represents a model of the desired signal and results
from the discrete convolution of the adaptive FIR filter w, given in Equation (15), with the
last Nw coefficients of the reference signal

x(n) = [x(n) x(n − 1) . . . x(n − Nw + 1)]T . (16)

Please notice that the number of filter coefficients (filter length) Nw defines the number
of samples that have to be taken into account for the reference signal, as shown in Equation
(16). Based on the instantaneous error signal it is possible to define the cost function such as

J(n) = e2(n). (17)

The cost function introduced in Equation (17) depends quadratically on the coefficients
of the adaptive FIR filter. According to [27,32], the steepest descent method can be applied
to find the global minimum of J using an update schema that is given by

w(n + 1) = w(n)− h(n)
2

∂J(n)
∂w(n)

, (18)

where h defines the power-adaptive step size; see [32] for a comparison. The latter is based
on the instantaneous power of the reference signal normalized by the filter length Nw. The
minimum power Pmin is used to avoid a division by zero

h(n) :=
h̃

Nw · max(Px(n), Pmin)
with Px(n) =

xT(n)x(n)
Nw

. (19)

As shown in [32], the normalized step size must be limited by 0 < h̃ < 2 to guarantee
a stable filter update. Calculating the gradient of the cost function, see Equation (18), yields
the NLMS update schema given in Equation (20)

w(n + 1) = w(n) + h(n)e(n)x(n). (20)

It is obvious that the speed of adaption is reduced if the error signal is reduced. For
more details on adaptive filtering, please refer to the references cited in this paper. However,
to conclude this section, it is also necessary to comment on the errors in the desired signal
d. Because of the numerical schema, see Equation (13), we will include systematic errors in
the computational results. The effect of such errors on the filter weights w is discussed in
Appendix A.

4. Results of Numerical Simulations and Discussion of Dynamic Behavior

The numerical models that were derived in the previous section can be used to
analyze and identify the dynamics of simple materials and second-order gradient materials
considering longitudinal vibrations in time domain as well as in frequency domain. Because
system identification based on the NLMS is organized in time domain, the discussion
focusses on the results of discrete time simulations. In the upcoming section, the system
response is discussed considering input signals such as (i) the unit impulse, (ii) time-
harmonic excitation, and (iii) band-limited noise.
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The parameter that were used in all of the simulations are summarized in Table 1. The
remaining settings for the damping constant r, the length of the adaptive filter Nw, and
the excitation frequency range are specified in the associated subsections. Considering
simple materials, it should be noted that the convergence condition defined by Courant,
Friedrichs, and Lewy, see [33], holds for the chosen set of simulation parameters, because
0.062 = (c · Nx)/( fs · L) = c · ∆t/∆x < 1. For every simulation, the input signal is
prescribed at x = 0, while the system output is determined at the 29th grid point.

Table 1. Parameter used for numerical simulation.

Parameter Description Value and Unit

L Length of wave guide 2.0 m
ρ Density 1.2 kg/m3

c Speed of sound 340.0 m/s
α4 Higher order parameter 0.05 m2

Nx Number of grid points 31
Nt Number of time steps 3,072,000
fs Sampling frequency 85.0 kHz

4.1. Impule Response of Simple Materials and Second-Order Gradient Materials

In the first step the response to a unit impulse input at the position x = 0 has been
analyzed considering boundary conditions such as

u(0, t) =
{

1 i f t = 0
0 i f t > 0

u(L, t) = 0
∂2u(0, t)

∂x2 = 0
∂2u(L, t)

∂x2 = 0. (21)

In addition to the boundary condition listed in Equation (21), the damping param-
eter has been set to r = 0.00005 s/m2. The results of these simulations are shown in
Figures 2 and 3 for both time domain and frequency domain. Please note that the curves
are normalized to the maximum of the absolute values of the dependent variable.
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For both materials, the impulse response decreases rapidly and shows the typical
behavior of linear systems with viscous damping. To recognize the differences, it is nec-
essary to compare the frequency response curves shown in Figure 2 (right) and Figure 3
(right). For the simple material, in total, nine resonances can be detected below 800 Hz. As
known from the classical theory, these resonances are equally spaced. The results are in full
agreement with Equation (10), if higher gradient effects are neglected, i.e., α4 = 0.

As shown in Figure 3 (right), the number of resonances is reduced down to four if the
second-order gradient material is analyzed. The spacing between the resonances increases
with an increase in mode number. Furthermore, modes with the same mode number occur
at higher frequencies compared to the simple material. Thus, the results of the numerical
simulations confirm the analytical solution given in Equation (10), see Table 2. Furthermore,
it has been found that the relative error between the analytical and numerical results is
limited by −1.2% using the discretization in time and space specified in Table 1.

Table 2. Comparison of analytical/numerical solution for natural frequencies for a sampling fre-
quency of 85.0 kHz and 31 grid points.

No Simple Material Relative Error Gradient Material Relative Error

1 85.0 Hz/84.9 Hz −0.1% 90.1 Hz/90.0 Hz −0.1%
2 170.0 Hz/169.7 Hz −0.1% 207.8 Hz/207.3 Hz −0.2%
3 255.0 Hz/254.1 Hz −0.4% 370.4 Hz/368.1 Hz −0.6%
4 340.0 Hz/337.4 Hz −0.8% 586.3 Hz/579.3 Hz −1.2%

To verify the numerical implementation, the influence of the time step on the relative
error was also analyzed. The same applies for the effect of the spatial discretization on the
relative error. The associated results are presented in Appendix B. It has been found that the
relative error is still limited by −1.2% using sampling frequencies of 42.5 kHz and 170 kHz,
if the spatial discretization is not changed, see Tables A1 and A2. It has also been found
that the relative error can increase up to 4.7% if the spatial discretization is reduced down
to 16 grid points, considering a sampling rate of 85 kHz. However, using 46 grid points, it
has also been confirmed that the maximum relative error is reduced down to −1.2% if the
spatial discretization is increased, see Tables A3 and A4. The computational load is also
influenced by the fineness of the time step and the fineness of the spatial discretization.
Using an ordinary personal computer, the lowest CPU time (102 s) was determined for the
simulation of the simple material using as sampling frequency of 42.5 kHz and a spatial
discretization of 16 grid points. The highest CPU time (130 s) was detected during the
simulation of the gradient material considering a sampling frequency of 170.0 kHz and
46 grid points.

4.2. Time-Harmonic Excitation

In the second step, adaptive filtering was applied considering time-harmonic excitation
with an excitation frequency of f = 150.0 Hz at x = 0 and a damping parameter of
r = 0.00005 s/m2. The associated boundary conditions are summarized in Equation (22)

u(0, t) = cos(2π f · t) u(L, t) = 0
∂2u(0, t)

∂x2 = 0
∂2u(L, t)

∂x2 = 0. (22)

Because adaptive filtering has been performed using a harmonic signal, it has been
sufficient to restrict the filter length to Nw = 2. The minimum power of the reference signal
has been set to Pmin = 0.0001 V, and h̃ = 0.0005 has been used as the normalized step size.

The time-harmonic response of the simple material is shown in Figure 4 (left) for the
first ten seconds of the simulation. The steady-state response is fully developed during the
first two seconds. This finding is in agreement with the decay of the associated impulse
response, see Figure 2 (left). The results shown in Figure 4 (right) clarify that the system
response determined at the 29th grid point is fully identified by the adaptive filter. The
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adaption process is illustrated by Figure 5. While the reduction in the cost function (learning
curve) is shown in Figure 5 (left), the development of the two filter coefficients is presented
in Figure 5 (right). It can been seen that using the NLMS, a rapid convergence of the filter
weights has been achieved.
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Figure 5. Adaption process of filter for simple material. (Left): learning curve. (Right): development
of filter coefficients.

The time-harmonic response of the second-order gradient material is presented in
Figure 6 (left), considering again the first ten seconds of the simulation. Also, for this
material, the steady-state response is fully developed after the first two seconds. This
finding is in agreement with the decay of the associated impulse response. The latter is
shown in Figure 3 (left).
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Figure 6. Time-harmonic excitation applied to second-order gradient material. (Left): system response
and steady-state solution. (Right): system response and fully identified model of system response.
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The results shown in Figure 6 (right) prove that the system response determined for
the second-order gradient material at the 29th grid point is identified by the adaptive filter
with high accuracy. The adaption process is illustrated by Figure 6. The reduction in the
cost function, shown in Figure 7 (left), is similar to the learning curve of the simple material,
see Figure 5 (left).
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Figure 7. Adaption process of filter for second-order material. (Left): Learning curve. (Right): devel-
opment of filter coefficients.

The development of the two filter coefficients is presented in Figure 7 (right). As for
the simple material, see Figure 5 (right), a fully converged filter is achieved at the end
of the simulation. This clarifies that the NLMS algorithm can be applied to identify the
time-harmonic response of LTI systems that include higher gradient effects with the same
accuracy known for LTI systems based on simple materials.

Please note that it was necessary to increase the filter length or to adjust the normalized
step size of the self-adaptive algorithm. The same applies for the minimum reference signal
power Pmin and the normalized step size h̃. This implies that the same set of parameters
that defines the process of adaptive filtering can be used to monitor changes in the material
behavior. Because of the differences in the evolution of filter weights, see Figure 5 (right)
and Figure 7 (right), it is possible to monitor a change in the material behavior that can be
caused by the relevance of higher gradients.

4.3. Band-Limited Noise

In the third step, adaptive filtering was applied considering band-limited Gaussian
noise in the frequency range 70.0 Hz ≤ f ≤ 250.0 Hz. This reference signal was used to
excite the system at the position x = 0. The damping parameter was increased significantly
to r = 0.005 s/m2. The boundary conditions used in this third step are summarized in
Equation (23)

u(0, t) = ξ(t) u(L, t) = 0
∂2u(0, t)

∂x2 = 0
∂2u(L, t)

∂x2 = 0, (23)

where ξ(t) represents the random excitation signal. The length of the adaptive filter was
also increased. It was set to Nw = 2048. The minimum power of the reference signal and
the normalized step size were not altered. Thus, the minimum power was again set to
Pmin = 0.0001 V, and h̃ = 0.0005 was again used as the normalized step size.

For the simple material, the time domain response simulated in the first ten seconds is
shown in Figure 8 (left), while the converged state at the end of the simulation is shown
in Figure 8 (right). The presented results prove that the system response is identified by
high accuracy in the investigated frequency range. This finding is also supported by the
learning curve shown Figure 9 (left), because the squared error is reduced down to −40 dB
at the end of the simulation. The development of the first two filter weights is shown in
Figure 9 (right). It can be seen that these filter weights strive against constant values at the
end of the simulation.
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Figure 9. Adaption process of filter for simple material. (Left): learning curve. (Right): development
of two filter coefficients.

The time domain response of the second-order gradient material simulated in the
first ten seconds is shown in Figure 10 (left). As for the simple material, the system is
identified with high accuracy at the end of the simulation, see Figure 10 (right). This finding
is again supported by the learning curve shown Figure 11 (left), because the squared error
is reduced down to −45 dB at the end of the simulation. The development of the first
two filter weights is shown in Figure 11 (right). It can be seen that nearly constant values
are reached at the end of the simulation.
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Figure 10. Random excitation applied to second-order gradient material. (Left): time domain
response. (Right): system response and fully identified model of system response.
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Figure 11. Adaption process of filter for second-order material. (Left): learning curve. (Right): devel-
opment of two filter coefficients.

In a converged state, the coefficients of the adaptive filter represent the impulse
response of the investigated system in the investigated frequency range. Using a normaliza-
tion to the maximum of the absolute values, the converged filter coefficients of the simple
material are presented in Figure 12 (left). The converged and normalized filter weights
that have been identified for the second-order gradient materials are shown in Figure 12
(right). For both materials, a stable impulse response has been identified in the investigated
frequency range. Please note that both impulse response curves tend to zero with an
increasing filter weight number because viscous damping has been taken into account.
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Figure 12. Normalized filter weights. (Left): simple material. (Right): second-order gradient material.

Because different systems based on different material models have been identified,
the impulse response curves shown in Figure 12 are not identical. However, as for the
time-harmonic signal, the parameters of the adaptive schema have been changed. This
opens the possibility of using monitoring techniques such as online plant modeling [34]
to observe changes in the system behavior that could be caused by an increase in the
relevance of higher gradients in the material behavior. For a practical approach to system
identification and condition monitoring, it is possible to formulate the following statements
as the main findings of the numerical investigations presented in Section 4:

Statement 1: If the investigated system behaves in a linear and time-invariant way
and is fully observable, the influence of higher gradients of the kinematic variables can be
relevant for the development of system models, if the number of resonances in a certain
frequency band is reduced and the spacing between single resonances increases with an
increase in frequency.

Statement 2: If the investigated system behaves in a linear and time-invariant way and
is fully observable, a change in the convergence characteristics of the adaptive filter weights
that is not caused by changing the parameter of the adaptive schema can indicate a change
in the material behavior that can be caused by an increasing relevance of higher-order
gradients of the kinematic variables.
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Statement 3: If the investigated system behaves in a linear and time-invariant way and
is fully observable, a change in the impulse response (that might be observed in condition
monitoring during online plant modeling) that is not caused by changing the parameter of
the adaptive schema can indicate a change in the material behavior that can be caused by
an increasing relevance of higher-order gradients of the kinematic variables.

5. Conclusions

For the first time, system identification based on self-adaptive filtering has been
applied to second-order gradient materials using numerical models. These models have
been derived from thermodynamically consistent material models that are embedded into a
general three-dimensional framework for gradient materials. For this reason, it has not been
necessary to consider parameters such as internal length scales that can be used to link the
material behavior to a specific internal micro structure. Because of the thermodynamically
consistent approach, it has been possible to compare all of the results with the behavior of
simple materials.

To obtain simple numerical models, the FDM has been applied. System identification
has been performed using the NLMS algorithm. All investigations have been restricted
to vibrations in longitudinal finite wave guides. It has been found that in contrast to the
classical theory of simple materials, these kind of vibrations are described by a fourth-order
PDE. In agreement with the state-of-the-art, it has also been found that such a PDE can be
solved analytically for a specific set of boundary conditions. The resulting solution allows
for calculating natural frequencies that can differ significantly from the solution known for
a simple material.

In particular, it has been found that the influence of second-order gradients of the
kinematic variables results in higher values for the natural frequencies and a spacing
of natural frequencies that is not equidistant in frequency. The deviation in the natural
frequencies increases with an increase in frequency. It starts with a deviation of 6% at the
first natural frequency and reaches a deviation of 72.5% at the fourth natural frequency.
To observe such a characteristic in a frequency response curve can be relevant for the
development of adequate continuum mechanical models. However, all simulations have
been validated successfully considering an analytical solution. It has been found that the
relative error was reduced down to 0.0% at the first natural frequency using 46 grid points
and a sampling frequency of 170 kHz. This holds for both the simple material and the
gradient material. It has also been found that the relative error increases if the spatial
discretization is reduced. Furthermore, the effect of spatial discretization on the results
is more important, compared to the influence of the sampling frequency. Nevertheless,
for the lowest spatial discretization (using 16 grid points) in combination with the lowest
sampling frequency (42.5 kHz), the absolute value of the relative error did not exceed 4.7%
at the fourth natural frequency, considering gradient material behaviour.

The results of the numerical investigation in combination with the adaptive filtering
applied for system identification prove that this technique can also be successfully applied
to gradient materials. However, compared to simple materials, differences have been
found, especially in the evolution of the filter weights. These differences could be used for
applications in the field of condition monitoring.

According to the author, future work in this field should include experimental data
observed in physical experiments. Furthermore, the field is open to derive more mathemat-
ical models that can be used to describe more sophisticated wave propagation phenomena
(such as shear waves or bending waves) as well as to develop more advanced numerical
models in order to guarantee stable integration schemas. Taking progress in these research
directions into account, self-adaptive filtering can become an interesting alternative to other
identification methods, especially for dynamical problems. It should also be noticed that
the present contribution is limited to small strains and LTI-systems at low frequencies.
Thus, the introduction of non-linear effects as well as the discussion of high-frequency
effects are open topics for further investigation. Furthermore, only the second gradients of
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the kinematic variables have been taken into account. For this reason, the introduction of
higher gradient terms can also be considered in future investigations.
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Appendix A

Let us assume that the desired signal is a harmonic signal that can be described by

d(n) = (A + ∆A) · cos(ω · nTs) + (B + ∆B) · sin(ω · nTs), (A1)

where A and B are the cosine amplitude and sine amplitude of the exact signal (without
errors), ω is the angular frequency of the signal, n is the number of the time step, and Ts is
the sample time. The error is described by ∆A and ∆B. It follows that the desired signal
with error can be decomposed into the exact signal (without error) and the error signal
such as

d(n) := de(n) + ∆d(n) with
de(n) := A · cos(ω · nTs) + B · sin(ω · nTs)

∆d(n) := ∆A · cos(ω · nTs) + ∆B · sin(ω · nTs).
(A2)

In order to identify the desired signal, it is necessary to define a harmonic reference
signal considering the same angular frequency such as

x(n) = cos(ω · nTs). (A3)

Because the desired signal contains a cosine amplitude and a sine amplitude, the
signal model y contains two filter weights. These filter weights are connected with the
actual reference signal at time step n and with the reference signal at the previous time step
n − 1. It is given by

y(n) = w0 · x(n) + w1 · x(n − 1)
= w0 · cos(ω · nTs) + w1 · cos(ω · (n − 1)Ts).

(A4)

The optimal filter w =
[
w0,opt w1,opt

]T with the optimal filter weights w0,opt and
w1,opt is found, if the signal model matches the desired signal such as

y(n) = d(n). (A5)

Using the usual trigonometric identities, it is straight forward to proove that the
optimal filter weights are given by[

w0,opt
w1,opt

]
=

[
1 −1/tan(ωTs)
0 +1/sin(ωTs)

]([
A
B

]
+

[
∆A
∆B

])
if ωTs ̸= nπ with n = 0, 1, 2 . . . (A6)

Because the optimal filter represents an LTI system, an error signal that is additively
superimposed to the exact signal, see Equation (A2), results in an additive contribution to
the optimal filter such as[

∆w0,opt
∆w1,opt

]
=

[
1 −1/tan(ωTs)
0 +1/sin(ωTs)

][
∆A
∆B

]
if ωTs ̸= nπ with n = 0, 1, 2 . . . (A7)
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Equation (A7) describes a liner relation between the errors in the cosine amplitude and
the sine amplitude on one hand and the optimal filter weights on the other hand. However,
the inverse of this relation only exists if the product of angular frequency and sample time
ωTs is not equal to a multiple of nπ.

Appendix B

The convergence of the numerical method has been investigated in detail. The tables
below contain data for the relative error (depending on time step and special discretization)
determined in the calculation of the first four natural frequencies.

Table A1. Comparison of analytical/numerical solution for natural frequencies for a sampling
frequency of 42.5 kHz and 31 grid points.

No Simple Material Relative Error Gradient Material Relative Error

1 85.0 Hz/85.0 Hz 0.0% 90.1 Hz/90.1 Hz −0.1%
2 170.0 Hz/169.7 Hz −0.2% 207.8 Hz/207.3 Hz −0.2%
3 255.0 Hz/254.0 Hz −0.4% 370.4 Hz/368.3 Hz −0.6%
4 340.0 Hz/337.5 Hz −0.7% 586.3 Hz/579.4 Hz −1.2%

Table A2. Comparison of analytical/numerical solution for natural frequencies for a sampling
frequency of 170.0 kHz and 31 grid points.

No Simple Material Relative Error Gradient Material Relative Error

1 85.0 Hz/84.9 Hz −0.1% 90.1 Hz/90.0 Hz −0.1%
2 170.0 Hz/169.7 Hz −0.2% 207.8 Hz/207.2 Hz −0.3%
3 255.0 Hz/253.9 Hz −0.4% 370.4 Hz/368.1 Hz −0.6%
4 340.0 Hz/337.5 Hz −0.7% 586.3 Hz/579.2 Hz −1.2%

Table A3. Comparison of analytical/numerical solution for natural frequencies for a sampling
frequency of 85.0 kHz and 16 grid points.

No Simple Material Relative Error Gradient Material Relative Error

1 85.0 Hz/84.8 Hz −0.2% 90.1 Hz/89.9 Hz −0.2%
2 170.0 Hz/168.7 Hz −0.8% 207.8 Hz/205.7 Hz −0.9%
3 255.0 Hz/250.0 Hz −1.7% 370.4 Hz/361.2 Hz −2.5%
4 340.0 Hz/330.2 Hz −2.9% 586.3 Hz/558.5 Hz −4.7%

Table A4. Comparison of analytical/numerical solution for natural frequencies for a sampling
frequency of 850.0 kHz and 46 grid points.

No Simple Material Relative Error Gradient Material Relative Error

1 85.0 Hz/85.0 Hz 0.0% 90.1 Hz/90.1 Hz 0.0%
2 170.0 Hz/169.9 Hz −0.1% 207.8 Hz/207.5 Hz −0.1%
3 255.0 Hz/254.5 Hz −0.2% 370.4 Hz/369.4 Hz −0.3%
4 340.0 Hz/338.3 Hz −0.5% 586.3 Hz/583.2 Hz −0.5%

Appendix C

This appendix contains additional numerical data that are associated with the numer-
ical simulations discussed in Section 4. These data are also relevant to characterize the
properties of the time-harmonic signals and noise signals analyzed in Section 4.
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Table A5. Additional numerical data for time-harmonic simulations.

Description Simple Material Gradient Material

Normalized amplitude of
desired signal 0.37 V 0.37 V

w0(Nt) 0.53 V −0.18 V
w1(Nt) −1.07 V −0.09 V

Table A6. Additional numerical data for simulation of random signals.

Description Simple Material Gradient Material

RMS-value of desired signal 0.37 V 0.40 V
Variance of desired signal 0.14 V2 0.16 V2

Crest factor of desired signal 4.71 4.45
Kurtosis of desired signal 3.02 2.99

w0(Nt) 0.00012358 V −0.00021372 V
w1(Nt) 0.00011861 V −0.000183 V
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