
Citation: Roig, P.J.; Alcaraz, S.; Gilly,

K.; Bernad, C.; Juiz, C. Arithmetic

Study about Efficiency in Network

Topologies for Data Centers. Network

2023, 3, 298–325. https://doi.org/

10.3390/network3030015

Academic Editors: Stavros Shiaeles,

Bogdan Ghita and Nicholas

Kolokotronis

Received: 13 April 2023

Revised: 19 June 2023

Accepted: 20 June 2023

Published: 26 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Arithmetic Study about Efficiency in Network Topologies for
Data Centers
Pedro Juan Roig 1,∗ , Salvador Alcaraz 1 , Katja Gilly 1 , Cristina Bernad 1 and Carlos Juiz 2

1 Computer Engineering Department, Miguel Hernández University, 03202 Elche, Spain
2 Mathematics and Computer Science Department, University of the Balearic Islands,

07022 Palma de Mallorca, Spain
* Correspondence: proig@umh.es; Tel.: +34-966658388

Abstract: Data centers are getting more and more attention due the rapid increase of IoT deployments,
which may result in the implementation of smaller facilities being closer to the end users as well
as larger facilities up in the cloud. In this paper, an arithmetic study has been carried out in order
to measure a coefficient related to both the average number of hops among nodes and the average
number of links among devices for a range of typical network topologies fit for data centers. Such
topologies are either tree-like or graph-like designs, where this coefficient provides a balance between
performance and simplicity, resulting in lower values in the coefficient accounting for a better
compromise between both factors in redundant architectures. The motivation of this contribution
is to craft a coefficient that is easy to calculate by applying simple arithmetic operations. This
coefficient can be seen as another tool to compare network topologies in data centers that could act as
a tie-breaker so as to select a given design when other parameters offer contradictory results.

Keywords: data center; graph-like topology; network topology; resource migration; tree-like topology

1. Introduction

Data center deployments are ever growing because of the increase in IoT environ-
ments [1]. In order to improve performance, it is convenient to optimize the allocation
strategy of virtual resources [2], with the target of minimizing the number of hops among
nodes, which results in shorter migration times [3] and decreases energy consumption [4].
Diverse proposals in the literature have been made to reach efficiency in data centers,
such as deploying an online mechanism design for demand response [5], implementing
a mobility-based strategy [6] or using a specific query engine [7]. Furthermore, holistic
approaches have been proposed, such as a sustainability-based [8], security-based [9] or
federated learning-based [10].

It is to be noted that data centersin the cloud are composed ofmultiple nodes with
greater processing and storage resources, as their scope is usually global in order for them to
be accessed anywhere and anytime by many users [11]. However, data centerson the edge
have a restricted scope to the network where they are located, although they oftentimes
employ cloud servers as backup solutions [12]. This limited scope establishes a reduced
number of users in an edge environment, thus requiring a small number of servers to deal
with traffic flows [13].Anyway, there are some general strategies to be followed when trying
to optimize data center performance [14], such as employing the right cooling system so as
to dissipate heat faster, monitoring the environment by using data center infrastructure
management (DCIM) solutions so as to facilitate decision making, taking advantage of
automation to respond faster to management and maintenance tasks, maximizing flexibility
and scalability to be able to adapt to dynamic environments and aligning budgets with
business requirements to enhance innovation in the organization [15].

Performance is also often related to energy consumption, as energy sources deliver
power to data center components such as switchgears, generators, panels, uninterrupted

Network 2023, 3, 298–325. https://doi.org/10.3390/network3030015 https://www.mdpi.com/journal/network

https://doi.org/10.3390/network3030015
https://doi.org/10.3390/network3030015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/network
https://www.mdpi.com
https://orcid.org/0000-0002-8391-8946
https://orcid.org/0000-0003-3701-5583
https://orcid.org/0000-0002-8985-0639
https://orcid.org/0000-0001-9537-415X
https://orcid.org/0000-0001-6517-5395
https://doi.org/10.3390/network3030015
https://www.mdpi.com/journal/network
https://www.mdpi.com/article/10.3390/network3030015?type=check_update&version=2


Network 2023, 3 299

power systems (UPS) and power distribution units (PDU) [16]. In turn, that power goes to
either ICT or non-ICT equipment, where the former refers to servers, storage or networking,
whilst the latterrefers to cooling, lightning or security [17].Regarding large data centers,
performance is related to data distribution analysis to support big data analysis across geo-
distributed data centers [18].An appropriate replication scheme is necessary to store replicas
whilst satisfying quality-of-service (QoS) requirements and storage capacity constraints [19].
In those cases, measurements are made through profiling-based evaluation methods along
with an approach based on multiview comparative workload trace analysis to properly
assess efficiency [20].

Hyperscale data centers (HDC) require huge demands in terms of scale and quantity
related to data storage and processing [21]. In this sense, network technologies employed in
supercomputers and data centers have many common points [22], leading to convergence
at multiple layers, which may result in the emergence of smart networking solutions to
accelerate such a convergence [23]. Furthermore, high-density data centers are catching
on due to the ever-growing demands of remote computation power, which is achieved by
the use of ultra-high-performance hardware, such as NVRAM and GPUs [24]. Traditional
data centers have issues related to bandwidth bottlenecks and failures of critical links and
critical switches; thus, high-density data centers need larger bandwidth and better fault
tolerance [25].

In order to properly utilize that bandwidth and robustness, different techniques need
be employed, such as implementing multipath TCP for different flows to take different
paths [26] or the development of optimal row-based cooling systems [27]. It is estimated
that power distribution consumes around 15% of the total energy consumption, whilst
cooling systems use around 45%, thus leaving the remaining approximately 40% to the IT
equipment, which is shared between networking equipment (taking between 30% and 50%,
depending on the load level) and computing servers (taking the rest of it) [28]. In this sense,
it is to be noted that some part of that energy is consumed in over-provisioning of resources
to meet requirements during demand at peak times [29]. Hence, it is crucial to undertake
an appropriate network design to optimize the overall performance [30].

The approach to achieve efficiencyin this paper is set on data center topology. Some
strategies have been presented in the literature, such as employing deep learning tools [31]
or focusing on wireless environments [32]. However, the strategy proposed herein is about
network topology: that being the logical topologythat links together all nodes belonging
toa data center [33] and its influence in the overall performance [34]. In this sense, a specific
coefficient is going to be defined so as to combine the average number of hops to reach
any destination withina data center architecture and the average number of links per node
in that architecture, which is known as the degree in graph theory. This way, the former
stands for a measure of performance, whereas the latter does it for a measure of simplicity,
thus obtaining a metric that showsa trade-off between performance and simplicity, similar
to the reasoning behind the metric proposed in [35].

It is to be noted that the concept of performance taken in this paper is related to
communications among the nodes within the data center, which is usually measured in
time units. However, if it is considered a data center where all nodes are interconnected
with ethernet cables that have the same length and the same speed, then performance
may also be measured in distance units, as speed is the result of dividing distance by
time, which accounts for distance as the result of multiplying speed by time. Hence,
as speed is a constant value because all cable links have the same featuresin this case, then
performance measured in distance units is directly proportional to that measured in time
units, as the measure given in distance units equals the speed of the wire multiplied by
the measure given in time units. In other words, performance in distance units equals
to that quoted in time units multiplied by a constant of proportionality, which happens
todepend on the wirespeed thus, there is a proportional relationship between both ways of
expressing performance.



Network 2023, 3 300

Furthermore, as all cabling has the same length, then it is possible to easily convert
performance given in distance units into the minimum number of cables to be traversed
from a source node all the way to a destination node by just dividing the former by
the length of each cable given in distance units. This way, the measure of performance in
distance units may also be exposed as the number of links among nodes, which is expressed
in natural numbers as it is an adimensional quantity. Therefore, this is the reason why
the average number of hops between any pair of nodes is considered as a measure of
performance of a certain data center topology in this paper. Additionally, in order to clarify
concepts in this context, the number of hops between a given pair of nodes is also called the
distance between them both, with the result being that the shorter the distance, the better
the performance. In other words, the shorter the average number of hops between any pair
of nodes, the better the performance of the data center network topology interconnecting
those nodes.

With respect to the concept of simplicity, it has been considered as a measurement of
the ease of a topology to manage the routing and forwarding processes, as the smaller the
number of links in a device, the simpler the algorithm to handle traffic is, as there are fewer
possible cases to be evaluated. Hence, this measurement has positive implications for lower
values, such as that a small value results in faster regular operations and maintenance
(O&M) due to the relative straightforwardness of the algorithm being employed. Therefore,
this is the reason why the average number of links per node is considered as a measure of
simplicity of a certain data center topology in this paper.

Consequently, the metrics applied to performance of a given data center topology
in the context of this paper are measured as the average number of hops between any
pair of nodes within that topology. In this sense, it is to be considered that the lower the
value, the better the performance, as reaching a particular destination node from a given
source node will be shorter in average, meaning that pairs of nodes are a smaller number
of hops away on average. Likewise, the metrics applied to simplicity of a particular data
center architecture in the context of this manuscript are measured as the average number
of links per device, either switches or nodes, hence giving consideration to all devices
within a given topology. In this sense, it is to be taken into account that the lower the value,
the simpler the topology; thus, traffic forwarding will be carried out by a shorter algorithm,
which implies faster processing times.

This way, the units to measure performance in this context are adimensional, as the
average number of hops between nodes does not imply any physical measurement units,
such as time in seconds or length in meters. Analogously, the units to measure simplicity
in this context are also adimensional, as the average number of links per device does not
involve any physical measurement units at all. Therefore, the metrics forthe coefficient
proposed to obtain balance between performance and simplicity will also be adimensional,
as the metrics of both its parameters are adimensional as well. Furthermore, as both
parameters display better results with lower values, it yields that the lower the coefficient
value, the better. On the other hand, the values obtained for the coefficient regarding many
of the most commonly used topologies in data center topologies will be calculated and
compared in further sections.

The main merit of this approach of crafting this coefficient is to have an easy way
to obtain an approximation of performance for a network topology within a data center,
as both factors to calculate it are pretty straightforward to obtain. This coefficient does not
need to be seen as a key parameter, but it is just another parameter that may be used as a sort
of tie-breaker when other variables such as throughput or security offer different solutions.
With respect to the demerits, this coefficient does benefit non-redundant topologies over
redundant ones, as the lower the number of links, the better is the obtained outcome. Hence,
the condition of redundancy must be imposed prior to using this coefficient.

Regarding the motivation of this paper dedicated to network topology data centers,
the following considerations have been made:



Network 2023, 3 301

• Define an easy metric based on arithmetic calculations to be applied to classify network
topologies of data centers.

• Craft such a metric as a combination of performance and simplicity of a network
topology data center.

• Impose redundant layouts as a restriction to find out that metric so that it does not
apply to non-redundant designs.

• Provide that metric as a complementary measurement to the most common parameters
typically found in data centers, such as throughput or latency.

• Create a coefficient related to data centers that is not focused on energy efficiency, as is
the case for the existing coefficients in this field.

The organization of the rest of the paper is as follows: Section 2 introduces some
topology designs fora data center. Next, Section 3 exposes some related work about
network topologies for data centers. Then, Section 4 presents the coefficient proposed for
these designs. After that, Section 5 develops some typical use cases. Afterwards, Section 6
undertakes some discussion about the results obtained. Eventually, Section 7 draws some
final conclusions.

2. Topology Designs for Data Centers

The adoption of simple network topologiesallows for an easier way to forward packets [36].
On the other hand, more complex topologies may achieve greater performance, although net-
work maintenance may become harder [37]. Hence, a balance between performance and
simplicity is a convenient point when choosinga data center design [38]. Therefore, some
topology designs for data centers are going to be proposed; these are classified into tree-like
and graph-like architectures. With respect to the former, a hierarchical switching layout inter-
connects all nodes, thus showing the form of an inverted tree within multiple roots, where
nodes are the leaves of such a tree. Regarding the latter, nodes are directly interconnected to
each other, hence no switch is involved in the design.

Figure 1 depicts a tree-like design on the left-hand side and a graph-like design on
the right-hand side. It is to be noted that tree-like designs offer steadier values of latency
and jitter, which makes them more convenient when dealing with streaming-related traffic
and in real-time conditions as well. Afterwards, some more complex topologies being
typically employed in larger data centers are going to be shown, although instances with a
low number of devices may also be used in small data centers.

Figure 1. Tree-like design (left) -vs- graph-like design (right).

2.1. Tree-like Design

Three instances of tree-like topologies are going to be taken into account herein.
The first design is a fat tree, whose main feature is the establishment of three layers of
switches, where the lower one is called the edge layer (which is the one in touch with the
nodes), the middle one is named the aggregation layer, and the upper one is branded the
core layer [39]. This design has strict specifications, such as it establishes a parameter k
that governs the number of hosts and switches in each layer as well as the ports linking
different layers.

Figure 2 exhibits the devices in each layer in a fat tree topology where k = 4 and the
oversubscription rate is 1:1, meaning that no expected links are missing. In that picture,



Network 2023, 3 302

H represents the nodes (also called hosts), E represents the edge switches, A represents
the aggregation ones, and C represents the core ones, where elements of the same kind
are sequentially numerated from left to right. It is to be noted that a fat tree architecture
organizes switches in the lower and middle layers in groups whereby full mesh connectivity
among both layers within a single group is achieved. Those groups are called pods, and
there is full mesh connectivity among them through the switches in the upper layer,
although each individual switch in the middle layer just gets partial mesh connectivity
with all upper-layer switches.

A0 A1

E0 E1

H0 H1 H2 H3

A2 A3

E2 E3

H4 H5 H6 H7

C3C0 C2C1

Pod 0 Pod 1 Pod 2 Pod 3

A4 A5

E4 E5

H8 H9 H10

A6 A7

E6 E7

H11 H12 H13 H14 H15

Figure 2. Devices in each layer in a fat tree topologywith k = 4 and oversubscription rate 1:1.

The second design is leaf and spine, whose main characteristic is the establishment of
two layers of switches, where the lower one is named the leaf and the upper one is called
the spine [40]. In this case, no parameter governs the number of devices or ports among
layers, so there is some freedom of design when it comes to choosing the number of hosts
and switches in each layer. Figure 3 exposes the devices in each layer in a leaf and spine
topology with eight leaf switches, these are represented by F, and four spine switches,
branded as G, whilst the number of nodes per each leaf is not fixed. It is to be said that
there is full mesh connectivity between switches located in both layers.

F0 F1 F2 F3 F4 F5 F6 F7

G0G0 G0G1 G0G2 G0G3

Figure 3. Devices in each layer in a leaf and spine topologywith 8 leaves and 4 spines.

The third design is hub and spoke, which may be considered atwo-level treestructure
wherein the hub is on top of the hierarchy and the spokes are at the bottom [41]. In many
production environments, it is quite common to use a redundant hub and spoke design,
where two hubs are used for redundancy purposes and a number of spokes are connected
to each of them, and where network traffic may be load-balanced so as to try to leverage
all links. Figure 4 exhibits on the left-hand side the devices within each layer in a single
hub and spoke topology with one switch acting as a hub and six nodes acting as spokes,
whereas on the right-hand side, a redundant hub and spoke topology replicates the former
scheme by adding another hub into the design for redundancy purposes. In both cases, all
interspoke communications take place through a hub, so that every pair of spokes is just
two hops away.



Network 2023, 3 303

Spoke 5

Spoke 4

Spoke 3

Hub 0

Spoke 0

Spoke 1

Spoke 2

Spoke 5

Spoke 4

Spoke 3

Hub 0

Hub 1

Spoke 0

Spoke 1

Spoke 2

Figure 4. Devices in each layer in a redundant hub and spoke topologywith 6 spokes and a single
hub (left) or a redundant hub (right).

2.2. Graph-like Design

Some instances of graph-like designs are going to be considered herein. The first
design is the N-hypercube, where two nodes share each available line in a given dimension.
This way, each node has N links to its neighbors: just one per dimension. The overall
number of nodes is 2N , and the distance between opposite nodes is N. Figure 5 shows the
nodes within N-hypercubes of lower dimensions.

000 001

011

111

101
100

110

010

00 01

1110

0

1

0

1000 1001

1011

1111

1101

1110

1100

1010

0110
0111

01010100

0011

00010000

0010

Figure 5. Nodes in N-hypercubes of dimensions {0 · · · 4} (from left to right).

The second design is a folded N-hypercube, where the previous topology is taken
and, in turn, links between each pair of opposite nodes are added. That way, each node
has N + 1 links to its neighbors, and the distance between opposite nodes is just one. This
implies that performance is improved although the design has become more complex.
Figure 6 exposes the nodes within the folded N-hypercubes of lower dimensions.

00 01

1110

000 001

011

111

101
100

110

010

1000 1001

1011

1111

1101

1110

1100

1010

0110
0111

01010100

0011

00010000

0010

Figure 6. Nodes in folded N-hypercubes of dimensions {2 · · · 4} (from left to right).

The third design is N-simplex, which is basically a full mesh topology, as all nodes are
directly connected to each other. Hence, there are N + 1 nodes, where each of them has N
links to its neighbors, resulting in a distance of one between any pair of nodes. Figure 7
exhibits the nodes for the N-simplices of lower dimensions.

2-simplex1-simplex 4-simplex3-simplex

Figure 7. Nodes in N-simplices of dimensions {1 · · · 4} (from left to right).



Network 2023, 3 304

The fourth design is N-orthoplex, where the previous topology is taken and, in turn,
links between each pair of opposite nodes are deleted, resulting in a quasi full mesh
topology. Hence, there are 2N nodes, whereby each of them has 2(N − 1) links to its
neighbors, resulting in a distance of one between any pair of nodes except for opposite
nodes, for which the distance is two. Figure 8 depicts the nodes for the N-orthoplices of
lower dimensions.

2-ortoplex 3-ortoplex 4-ortoplex1-orthoplex

Figure 8. Nodes in N-orthoplices of dimensions {1 · · · 4} (from left to right).

The fifth design is k-ary n-cube, also known as camcube, which is a toroidal topology.
This is basically a grid where nodes at the edges of a certain line in a given dimension have
a wraparound link, thus turning those into direct neighbors. The number of nodes is kn,
and each node has 2n links. Figure 9 exposes a couple of examples, where n accounts for
the number of dimensions involved and k denotes the number of nodes within a given
dimension. It is to be noted that if k = 2, then the shape obtained is that of the N-hypercube.

Figure 9. Nodes in k-ary n-cube (left: 4-ary 1-cube; right: 4-ary 2-cube).

The sixth design is Hamming graph H(n, n− 1), whose topology may be seen as a
folded version of the k-ary n-cube because an extra link directly connects each pair of nodes
that are at the maximum distance, which in the previous case was bk/2c when n = 1 and
2× bk/2c if n = 2, whilst now it is half of those values, although complexity has grown in
the design. Figure 10 exhibits an H(n, n− 1) where n = 2 and n = 4.

Figure 10. Nodes in Hamming graph H(n, n− 1) (left: n = 2; right: n = 4).

The seventh design is a Petersen graph, which is an instance of a cage graph. It
contains 10 nodes connected in a way so that the maximum distance between nodes is
two. It is also known as a (3, 5)-cage, as each node has a degree of three, meaning that
all of them have three links towards other nodes, whilst the minimum loop available in
the design contains five hops. Figure 11 shows the node disposition in a Petersen graph,
wherein two concentric circles are spotted; i.e., the exterior oneis connected as a regular
pentagon and the interior oneis linked as a pentagonal star.



Network 2023, 3 305

Figure 11. Nodes in Petersen graph, a (3, 5)-cage with 10 nodes.

The eighth design is a Heawood graph, which is also a cage graph. It contains 14 nodes
interconnected in a way so that the maximum distance among nodes is three. It is also
called a (3, 6)-cage because all nodes have a degree of three, whereas the minimum loop
available in the design includes six hops. Figure 12 exhibits the node layout in a Heawood
graph, where nodes are disseminated along a circle and secant lines interconnect every five
nodes, alternating in clockwise and counterclockwise directions at each neighboring node.

Figure 12. Nodes in Heawood graph, a (3, 6)-cage with 14 nodes.

The ninth design is a Robertson graph, which is a cage graph as well. It includes
19 nodes interconnected such that the maximum distance among nodes is three. It is also
labeled as a (4, 5)-cage because every node has a degree of four, whilst the minimum loop
available within the topology is five hops. Figure 13 depicts its node layout, where all
nodes are spread around an enneadecagon, also known as a 19-gon, and every node has
two secant lines interconnecting remote nodes, one of them clockwise and another one
counterclockwise, although the ending points of both lines do not appear to follow the
same pattern for all cases.

1
2

3

4

5

6

7

8
910

11

12

00

13

18

14

15

16

17

Figure 13. Nodes in Robertson graph, a (4, 5)-cage with 19 nodes.

2.3. Other Commonly Used Network Topologies in Data Centers

The following network topologies are typically implemented in large data centers,
even though the instances exhibited in this subsection have the parameters set for a small



Network 2023, 3 306

to medium number of servers. Moreover, it is to be noted that all the following designs are
tree-like, as they all present a hierarchical structure.

The first design is BCube, which is a recursively defined structure specially designed
for modular data centers [42]. Regarding its construction, it contains nodes with multiple
ports and switches connecting a constant number of nodes. To start with, a BCube0 contains
just n nodes connected via an n-port switch. Furthermore, a BCube1 is built up from
n BCube0 with n n-port switches and so on. This way, a BCubek (k ≥ 1) consists of n
BCubek−1 and nk n-port switches, with each node having k + 1 ports. Figure 14 exhibits
the node layout in a BCube1 with n = 4.

BCube1

Level 1

Level 0

BCube0[0] BCube0[1] BCube0[2] BCube0[3]

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

<0,0>

<1,0> <1,1> <1,2> <1,3>

<0,1> <0,2> <0,3>

Figure 14. Nodes in a BCube1 topology with n = 4.

The second design is DCell, which is also a recursively defined structure specifically
designed for modular data centers [43]. The building block for its construction is DCell0,
which has n nodes and a miniswitch. Further, DCell1 is made of n + 1 DCell0 blocks, where
each of those is connected to the other DCell0 blocks with just one link. Figure 15 depicts
the node layout in a DCell1 with n = 4.

DCell1
DCell0[4] DCell0[0]

DCell0[1]
DCell0[3]

DCell0[2]

4.0
4.1

4.2
4.3 0.0

0.1
0.2

0.3

1.0
1.1

1.2
1.3

2.02.12.22.3

3.0
3.1

3.2
3.3

Figure 15. Nodes in a DCell1 topology with n = 4.

The third design is FiConn, which is a recursively defined structure as well and is
properly designed for modular data centers [44]. It is to be noted that the node degree is
always two, which makes interconnection easier than in DCell. The basic construction unit
is FiConn0, and it is composed of n nodes and n-port switches, where all n nodes have their
backup port available. Then, to build up FiConnk (k > 0) upon FiConnk−1, it is necessary
to connect the backup ports of nodes among them. Figure 16 exposes the node layout in
FiConn2 with n = 4.



Network 2023, 3 307

FiConn1[0]

FiConn1[1]

FiConn1[2]

FiConn1[3]

FiConn2

0,0,0 0,0,1
0,0,2 0,0,3

0,1,0

0,1,1

0,1,2

0,1,3

0,2,3

0,2,2

0,2,1

0,2,0

1,0,0 1,0,1 1,0,2 1,0,3

1,1,0

1,1,1

1,1,2

1,1,3

1,2,3

1,2,2

1,2,1

1,2,0

2,0,0 2,0,1 2,0,2 2,0,3

2,1,3

2,1,2

2,1,1

2,1,02,2,3

2,2,2

2,2,1

2,2,0

3,0,0 3,0,1 3,0,2 3,0,3
3,1,0

3,1,1

3,1,2

3,1,33,2,0

3,2,1

3,2,2

3,2,3

(0,0)

(0,1)(0,2)

(1,0)

(1,1)(1,2)

(2,0)

(2,1)(2,2)

(3,0)

(3,1)(3,2)

Figure 16. Nodes in FiConn2 topology with n = 4.

The fourth design is Flattened Butterfly, whose main use is devoted to on-chip net-
works. Regarding data center network architectures, its main feature is the presence of
bypass channels in both horizontal and vertical dimensions, propitiating the employment
of non-minimal routing without increasing latency or energy consumption [45]. Figure 17
presents on the left-hand side a block of 16 switches distributed as a 4× 4 layout both
horizontally and vertically, where any two switches along the same line are direct neighbors
thanks to the bypass channels. It is to be noted that each of those switches supports four
nodes, although they are not shown in the picture for clarity purposes. Further, on the right-
hand side, a block of nine switches distributed as a 3× 3 layout is depicted, with three hosts
hanging on each switch.

R0 R1 R2 R3

R4 R5 R6 R7

R8 R9 R10 R11

R12 R13 R14 R15

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

Figure 17. Nodes in a Flattened Butterfly topology with n = 4 (left) and n = 3 (right).

The fifth design is DragonFly, which reduces cost by 20% compared to Flattened
Butterfly and by 52% compared to folded Clos networks such as fat tree for more than 16K
nodes [46]. Basically, it uses a group of routers with bypass channels among them that
acts as a virtual router to increment the effective radix of the network, thus reducing the
network diameter, cost and latency. Figure 18 depicts a Dragonfly topology with g = 9
groups and a = 4 routers within each group. Regarding the number of nodes per router,
which is not shown in the picture for simplicity purposes, it should be p = a/2 = 2 in order
to balance the channel load.



Network 2023, 3 308

Group 0

Group 1

Group 2

Group 3

Group 4Group 5

Group 6

Group 7

Group 8

Figure 18. Nodes in a DragonFly topology with g = 9 and a = 4.

The sixth design is SlimFly, which approaches the theoretically optimal network
diameter, thus shrinking the average distance among nodes [47]. This topology is achieved
through mathematical optimization looking for the Moore bound in graph theory, reducing
more than 50% of routers and 30% of cables with respect to fat tree. It is fit for use in large
data centers and high-performance computing (HPC). It obtains a 25% cost and power
benefit over DragonFly as well as being more resilient to link failures. Figure 19 represents
a Slim Fly topology where two subgraphs are composed of five groups of routers, and
those groups form a fully connected bipartite graph such that each group in one subgraph
is connected to all other groups in the other subgraph [48].

Figure 19. Nodes in a SlimFly topology, with groups of 5 routers forming a fully connected bipartite
graph of diameter 2.

The seventh design is BCDC, which is a server-centric data center network topology
based on crossed cubes [49]. This is a decentralized and recursively defined structure where
servers have a constant degree, which possesses an advantage over DCell or BCube in this
sense whilst getting better results than them. Figure 20 exposes a three-dimensional BCDC
topology where switches are shown as squares and hosts are circles and with all switches
having three ports and all servers having two.

Figure 20. Nodes in a BCDC topology in 3 dimensions.



Network 2023, 3 309

The eighth design is P-Cube, also labeled as parallel cubes; it is a duplicate structure
with a highly scalable and efficient network structure that outperforms Fat Tree, BCube
and DCell in terms of network throughput and latency [50]. Figure 21 shows a P-Cube
network topology where n = 4 and switches are represented by squares and servers are
shown as circles.

(0,0)

(0,2)

(1,1)

(1,3)

Pod (0) Pod (1)

(1,0,0) (1,0,1)

(1,0,2) (1,0,3)

(1,1,0) (1,1,1)

(1,1,2) (1,1,3)

(0,0,0) (0,0,1)

(0,0,2) (0,0,3)

(0,1,0) (0,1,1)

(0,1,2) (0,1,3)

(1,0,0) (1,0,1) (1,1,0) (1,1,1)

(1,0,2) (1,0,3) (1,1,2) (1,1,3)

(0,2,0) (0,2,1) (0,3,0) (0,3,1)

(0,2,2) (0,2,3) (0,3,2) (0,3,3)

(1,2,0) (1,2,1) (1,3,0) (1,3,1)

(1,2,2) (1,2,3) (1,3,2) (1,3,3)

Figure 21. Nodes in a P-Cube topology with n = 4.

The ninth design is DCCube, which is a compound graph with the disc-ring graph
and the crossed cube CQn [51]. It supports a large number of nodes and has high bisection
bandwidth, low cost and a small diameter. Figure 22 shows an instance with one dimension
(k = 1), four switches per pod (m = 4), one port per switch pointing to other pods
(h = 1) and two servers connected per switch (c = 2), although many other combinations
may be undertaken. It is to be noted that black solid lines represent links within a given
pod, whilst blue dotted lines show links among pods, whereas red solid lines indicate the
boundaries of each pod.

00.10 00.11

00.00 00.01

01.10 01.11

01.00 01.01

Pod 0 Pod 1

Figure 22. Nodes in a DCCube topology with k = 1, m = 4, h = 1 and c = 2.

The tenth design is Jellyfish network, which adopts a random regular graph (RRG) as
its topology [52] and has been provento outperform fat tree [53]. Jellyfish may be specified
with three parameters, such as the number of switches (N), the number of ports in each
switch (x) and the number of ports in each switch connecting to other switches (y), thus
resulting in x− y nodes connected to each switch. It happens that when N and y are large
enough, different instances have similar features. Figure 23 exhibits a Jellyfish instance
with N = 15, x = 4 and y = 3, where switches are denoted as squares and nodes are
shown as circles. It is to be said that switches and nodes have been separately identified in
a random manner within the picture, starting from zero onwards for each type of element.



Network 2023, 3 310

0

1

2

3

4

56

7

8

9

10

11

12

13

14

15

19

17

18

16

20

21

22

23

24

25

26

27

28 29

Figure 23. Nodes in a Jellyfish topology with N = 15, x = 4 and y = 3.

The eleventh design presents Subways, which is a novel approach based on wiring
servers to Top-of-Rack (ToR) switches located in neighboring racks [54]. This way, instead of
having all links connected to the same ToR, an overlapping pattern is used for neighboring
racks. The advantages of doing so are a decrease in traffic in the inter-ToR network whilst
ensuring that the remaining traffic is well-balanced. Figure 24 exhibits a cluster with a
Type-1 subway architecture with p = 3 and l = 3, where the former is the number of
ports per server and the latter is the number of racks in a single Subway loop. It is to be
mentioned that two clusters are involved in the topology, where the left one is identified as
1 and the right one is done as 2.

1 2

Figure 24. Nodes in a Subway topology with p = 3 and l = 3.

The twelfth design exposes Superways, which is an approach wherein higher band-
width is provided for some servers to absorb incasts due to the aggregation of responses
from other servers [55]. When doing so, the packet drop rate decreases whilst fault toler-
ance and throughput are improved; further, the total cost of implementation is reduced
compared to other schemes such as Subways. Figure 25 depicts a Superways scheme,
wherein L = 2 represents the number of additional links, which accounts for the minimum
number of additional links to avoid packet drops.

Figure 25. Nodes in a Superways topology with L = 2.



Network 2023, 3 311

In summary, these data center network topologies represent a wide variety of the
current architectures being employed nowadays. It is important to remark that the pictures
shown herein correspond to small deployments, although all designs may be escalated to
accommodate large data centers by including the necessary number of switches and servers.

3. Related Work

After having presented some of the main network topologies being used in data
centers, it is time to report some of the related work among them. There are some pa-
pers comparing the main features of the most typically used topologies. For instance,
Couto et al. [56] undertake an analysis of reliability and survivability of data center net-
work topologies where Fat Tree, BCube and DCell are compared, which concludes that
BCube is the most robust to link failures, whilst DCell isthe most robust regarding switch
failures, and that robustness is related to the number of interfaces per node.

Negara et al. [57] compare BCube and DCell, obtaining better speed in data transmis-
sion for the latter, although the former has better security and integrity because it is able
to forward data completely without any failures. Cortes et al. [58] confront Fat Tree and
BCube,with the outcome indicating that the latter obtains better results than the former.Al
Makhlafi et al. [59] state that data center networks may be classified into two broad groups,
such as switch-centric and server-centric, where switches are mainly responsible for routing
and networking in the former, whilst servers aremainly accountable in the latter, which
allows the use of commodity switches [60]. Examples of the former are fat tree and leaf and
spine, whereas instances of the latter are FiConn, DCell and BCube.

Yao et al. [61] carry out a comparative analysis among several well-known data center
network topologies, such as Multi-tiered, Fat Tree, Flattened Butterfly, Camcube and BCube,
regarding a variety of metrics, such as scalability, path diversity, hop count, throughput and
cost, finding that different topologies scale differently for various metrics and concluding
that designers must consider maximizing certain features whilst minimizing cost and
power. Touihri et al. [62] propose a camcube design (k-ary n-cube) following the SDN
paradigm such that the control plane is hosted in an SDN controller and including QoS into
the decision-making process. After running several simulations using Mininet software,
the results obtained are better than those attained with the shortest-path approach regarding
packet error rate and latency.

Daryin et al. [63] undertake a comparison among diverse topologies for InfiniBand net-
works, such as tori, hypercube, Dragonfly, Flattened Butterfly and Slim Fly, and their results
seem interesting in the field of data center networks. After having executed the necessary
simulations, they conclude that the best outcome is obtained by Flattened Butterfly and a
combination of this with Slim Fly.Rao et al. [64] carry out a comparison among different
topologies for Network-on-Chip (NoC), such as Dragon Fly, Flattened Butterfly, Torus
topology and Mesh topology; their results may be extrapolated to data center networks.
Those comparisons were made with diverse figures of trade-offs, such as packet latency,
network latency, throughput change and hop average; the authors concluded that Torus
topology is the most efficient one for being adaptive in nature as well as for having less
latency and time complexity.

Azizi et al. [65] compare a novel DCCube design with fat tree, Flattened Butterfly,
BCube and SWCube, where the former achieves both higher performance and lower cost
consideringthe number of switches, server NICs, server CPUs and cabling. Furthermore,
Aguirre et al. [66] propose a greedy forwarding strategy that is independent of the network
topology in place and obtains acceptable results,whilst Mohamed et al. [67] present average
networking equipment power consumption for different topologies, showing that fat tree,
leaf and spine, BCube and DCell obtain the highest outcome.In terms of creating a specific
coefficient to measure performance in a data center, most efforts have been focused on
energy efficiency. For instance, Sego et al. [68] come up with a metric called Data Center
Energy Productivity (DCeP) as the ratio of useful work produced to the energy consumed
to get that work done. Likewise, Santos et al. [69] propose a metric called Perfect Design



Network 2023, 3 312

Data Center (PDD) as a redefinition of Energy Usage Effectiveness Design (EUED), which
reflects the efficiency in the power consumption.

Basically all the papers devoted to efficiency in data centers are focused on evalua-
tion metrics about energy efficiency. In this sense, Shao et al. [70] make a review of en-
ergy efficiency evaluation metrics, combining energy conservation and eco-design, whilst
Levy et al. [71] examine performance as a combination of productivity, efficiency, sustain-
ability and operations. Kumar et al. [72] establish power usage effectiveness (PUE) as the
metric to measure efficiency and study different machine learning techniques so as to make
accurate predictions. Furthermore, Brocklehurs [73] proposes other usage effectiveness
measurements, such as carbon (CUE) and water (WUE), along with a coefficient of perfor-
mance (CoP) defined as the ratio of useful cooling provided to the energy input, where
efficiency grows as the coefficient rises. Eventually, Reddy et al. [74] expose a systematic
overview of data center metrics divided into categories such as energy efficiency, cooling,
greenness, performance, thermal and air management, network, storage, security and
financial impact. Among these metrics, a green energy coefficient (GEC) is defined as a
percentage represented by green energy compared to the total energy consumed.

In summary, this section has been devoted to comment on relevant related work,
where different papers have been presentedand diverse comparisons have been carried
out among the most common data center network topologies, such as fat tree, leaf and
spine, k-ary n-cube, BCube, DCell, FiConn, Flattened Butterfly, DragonFly and SlimFly,
to quote the main ones. In those papers, a lot of metrics have been utilized so as to rate the
different topologies by means of undertaking various tests, such as network size, bisection
bandwidth, cost, throughput, latency, load balancing, mean time to failure or resilience to
failure. However, the contribution of this paper is not to repeat those tests but to craft a new
coefficient to obtain balance between performance and simplicity as defined in the terms
exposed in the introduction. The goal herein is to be able to obtain a valuable figure in
order to help the decision-making process when it comes to selecting a certain data center
network architecture among a range of topologies, where each one may present different
features, and that will be the target in the rest of the paper.

4. Coefficient Proposed to Obtain Balance between Performance and Simplicity

The coefficient proposed to measure efficiency of the different network topologies
proposed for data centers needs to take into account both performance and simplicity of
use along with maintenance in a way to achieve a trade-off between them. Regarding the
former, it is measured by means of the average distance among nodes, whereas the latter
it is stated as the average number of links per node (its degree) for graph-like designs,
or otherwise, the average number of links per device (considering both nodes and switches)
for tree-like designs.

Anyway, both averages should be as small as possible in order to obtain both per-
formance and simplicity, such that the smaller the coefficient, the better. Regarding the
average distance among nodes, it is going to be measured as the average number of hops
between all pairs of nodes and denoted as α. With respect to the average number of links
per device, it is going to be measured as stated above and described as β.

Putting everything together, the coefficient proposed is going to be obtained by multi-
plying both averages, namely, α× β. In this sense, the lower the result obtained, the better
the combination of both factors; hence, better balance between performance and simplicity
will be attained. That is why the coefficient is branded η, which is the Greek letter used in
physics and engineering for efficiency. Therefore, it may be said that (1) defines η.

η = AvgDistance×AvgLinks = α× β (1)

The main motivation of this paper is to calculate a coefficient involving a compromise
between performance and simplicity—defined in the terms exposed in the introduction—
in a way that such a value may help decide which data center network topology is more
suitable, thus acting as a sort of tie-breaker to select among diverse interesting options.



Network 2023, 3 313

Therefore, this coefficient is just another tool for making the decision as to which data center
is more convenient among diverse options along with other tests related to throughput,
latency, cost or robustness.

As a practical-use case, let us focus on the situation exposed in the first two paragraphs
of Section 3, which is devoted to related work. In the first one, it is stated that after the
analysis carried out on reliability and survivability, BCube is the most robust design
regarding link failures, whereas DCell isthe most robust regarding switch failures. Likewise,
in the second one, it is claimed that after the tests were undertaken, BCube provided better
security and data integrity, whilst DCellprovided better speed in data transmission. Hence,
the coefficient proposed may act as a tie-breaker for the selection of the data center network
architecture, as it presents a compromise between performance and simplicity for each of
the possible options available.

5. Developing Some Typical Use Cases

After having presented some instances of network topologies fit for data centers along
with the definition of coefficient η, some typical use cases are going to be developed, taking
into account that the number of nodes that will be up and runningis considered to be small
to medium. In order to cope with this, a limit of 16 nodes per topology is going to be
imposed, although smaller numbers are going to be exposed as well. Basically, a systematic
approach by means of powers of two is going to be described in the following subsections.
Additionally, another one is going to be devoted to fit those designs not matching any
power of two, and eventually, a further one is dedicated to some other commonly used
network topologies in larger data centers.

Regarding the calculations for all topologies, the average number of hops has been
undertaken by first selecting a given end host and, in turn, adding up the number of hops to
reach all its peers within the topology and dividing into the count of such peers. Otherwise,
the average number of links has been carried out by adding up the links of each device, no
matter if they are end hosts or switches, and dividing into the count of all those devices.

It is to be reminded that data center network topologies need to avoid single points of
failure in critical points; thus, redundancy is a must. From that point of view, single hub
and spoke topologies have not been taken into account, whilst redundant hub and spoke
topologies have been included into this study. Further, it happens that the definition of
this coefficient gives advantage to topologies with fewer average links, which may benefit
non-redundant topologies against redundant ones. Hence, in order to avoid this situation,
this coefficient was restricted only to redundant topologies. On the other hand, topologies
with more than two redundant links are penalized against topologies with just two of such
links, although those cases are not considered herein, as the most common layout is to have
just two redundant devices.

5.1. One Node within the Topology

This is a trivial case as the number of nodes is 20 = 1. Then, there is just one single
node in the topology; thus, obviously there are no alternative topology designs for this
condition, neither for tree-like designs nor for graph-like ones. Hence, the average distance
among nodes and the average number of links per node are both zero. Therefore, as α = 0
and β = 0, then η = α× β = 0 for both types of topologies, as stated in Table 1.

Table 1. Values of η for the case of 20 = 1 node.

Type Instance α β η = α × β

Tree-like none 0 0 0

Graph-like none 0 0 0



Network 2023, 3 314

5.2. Two Nodes within the Topology

In this case, the number of nodes is 21 = 2. This is straightforward, as the only
tree-like option is hub and spoke; thus, both nodes act as spokes which are linked together
through a hub, whereas the only graph-like option is a direct link among nodes, provided
no multiple links are considered. However, as redundancy needs to be considered when
dealing with Data Center Network (DCN) architectures, then a redundant hub and spoke
will be considered for the tree-like case, whereas a double direct linkbetween both nodes
will be done for the graph-like case, which accounts for a redundant 1-simplex.

Hence, on the one hand, the average distance among nodes forredundant hub and
spoke is α = 2because two hops are needed to go from one node to the other, whilst it is
α = 1 inredundant 1-simplex because just one hop is necessary to move to the other node.
On the other hand, the average number of links for tree-like environments is two for both
hubs and both spokes so as to build up the redundant hub and spoke, thus accounting for
β = 2, whereas it is also β = 2 for graph-like environments, as each node hastwo redundant
links towards the other one. Therefore, for the tree-like design, η = α× β = 2× 2 = 4,
whilst for the graph-like design, η = 1× 2 = 2, as stated in Table 2.

Table 2. Values of η for the case of 21 = 2 nodes.

Type Instance α β η = α × β

Tree-like redundant hub and spoke 2 2 4

Graph-like redundant 1-simplex 1 2 2

5.3. Four Nodes within the Topology

Now, the number of nodes is 22 = 4. Regarding tree-like options, it is possible to
deploy a redundant hub and spoke, which is equivalent to a leaf and spine with four leaves
and two spines. With respect to graph-like choices, it is possible to deploy a square, which
accounts for a 2-hypercube,that being equivalent toboth a 2-orthoplex and a 2-ary 2-cube,
or otherwise, to deploy a full-mesh, which represents a 3-simplex,that being equivalent
toboth a folded 2-hypercube and a Hamming graph H2(2, 1). Table 3 exhibits the relevant
values of η for each instance proposed.

Table 3. Values of η for the case of 22 = 4 nodes.

Type Instance α β η = α × β

Tree-like redundant hub and spoke 2 2.67 5.33

Graph-like
2-hypercube 1.33 2 2.66
3-simplex 1 3 3

Focusing on tree-like designs, the α value for redundant hub and spoke is two hops
among any pair of nodes, whilst it results in β = (4×2+2×4)/(4+2) = 2.67 as there are four
spokes with two links (one connection to each hub) and two hubs with four links each (one
connection to each spoke).

On the other hand, centering on graph-like designs, 2-hypercube presents two nodes
at one hop and another node at two hops, resulting in α = (2×1+1×2)/(2+1) = 1.33 and
β = 2 as each node has two links, whereas 3-simplex results in α = 1 because all nodes are
only one hop away, and β = 3 as all nodes have just three links.

5.4. Eight Nodes within the Topology

At this point, the number of nodes is 23 = 8. Regarding tree-like choices, it is possible
to deploy a redundant hub and spoke and a leaf and spine with two spines and four
leaves,where two hostsare connected to each of them. Otherwise, with respect to graph-like



Network 2023, 3 315

alternatives, it is possible to go for a 3-hypercube, a folded 3-hypercube, a 4-orthoplex and
a 7-simplex. Table 4 exhibits the relevant values of η for those instances.

Table 4. Values of η for the case of 23 = 8 nodes.

Type Instance α β η = α × β

Tree-like redundant hub and spoke 2 3.2 6.4
leaf and spine 3.71 2.29 8.5

Graph-like

3-hypercube 1.71 3 5.13
folded 3-hypercube 1.43 4 5.72
4-orthoplex 1.14 6 6.86
7-simplex 1 7 7

With regards to the tree-like designs, redundant hub and spoke presents a steady value
of α = 2 as all nodes are two hops away, whilst leaf and spine has an
α = (1×2+6×4)/(1+6) = 3.71, because taking a given node, there is another node hang-
ing on the same leaf and the other six nodes hang on different leaves. On the other hand, it
results in β = (2×8+8×2)/(2+8) = 3.2 for the former, as the two hubs are connected to the
eight spokes and the other way around, whereas ityields β = (8×1+4×4+2×4)/(8+4+2) = 2.29
for the latter. This outcome is because the eight nodes are connected to their corresponding
leaves upwards, whilst each of the four leaves are connected to two nodes downwards and
two spines upwards and each of the two spines are connected to all four leaves downwards.

Furthermore, the selected graph-like designs present the following values:
α = (3×1+3×2+1×3)/(3+3+1) = 1.71 and β = 3 for the first one, α = (4×1+3×2)/(4+3) = 1.43
and β = 4 for the second one, α = (6×1+1×2)/(6+1) = 1.14 and β = 6 for the third one,
whereas α = 1 and β = 7 for the fourth one.

5.5. Sixteen Nodes within the Topology

The following case exhibits a number of nodes 24 = 16. With respect to tree-like
options, it is possible to deploy a redundant hub and spoke, a leaf and spine with four
spines and eight leaves,where two hostsare connected to each of them, and even a fat tree
with k = 4,which accounts for four core switches, eight aggregation switches and eight
edge switches,where two hostsare connected to each one of those. Otherwise, regarding
graph-like alternatives, it is possible to go for a 4-hypercube, a folded 4-hypercube, a 4-ary
4-cube, a Hamming graph H2(4, 3), an 8-orthoplex and a 15-simplex. Table 5 exhibits the
relevant values of η for all those instances.

Table 5. Values of η for the case of 24 = 16 nodes.

Type Instance α β η = α × β

Tree-like
redundant hub and spoke 2 3.56 7.12
leaf and spine 3.87 3.43 13.27
fat tree (k = 4) 5.47 2.67 14.60

Graph-like

4-hypercube 2.13 4 8.52
folded 4-hypercube 1.67 5 8.35
4-ary 4-cube 2.13 4 8.52
H2(4, 3) 1.67 5 8.35
8-orthoplex 1.07 14 14.93
15-simplex 1 15 15

Focusing on the tree-like designs, redundant hub and spoke presents a steady value of
α = 2, whereas leaf and spine has an α = (1×2+14×4)/(1+14) = 3.87, and fat tree has an
α = (1×2+3×4+12×6)/(1+2+12) = 5.47. On the other hand, it results in β = (2×16+16×2)/(2+16) =



Network 2023, 3 316

3.56 for the first one, whereas β = (16×1+8×6+4×8)/(16+8+4) = 3.43 for the second one, and
β = (16×1+8×4+8×4+4×4)/(16+8+8+4) = 2.67 for the third one.

Additionally, the chosen graph-like designs account for the following values:
α = (4×1+6×2+4×3+1×4)/(4+6+4+1) = 2.13 and β = 4 for the first one, α = (5×1+10×2)/(5+10) =
1.67 and β = 5 for the second one, α = (4×1+6×2+4×3+1×4)/(4+6+4+1) = 2.13 and
β = 4 for the third one, α = (5×1+10×2)/(5+10) = 1.67 and β = 5 for the fourth one,
α = (14×1+1×2)/(14+1) = 1.07 and β = 14 for the fifth one, and α = 1 and β = 15 for the
sixth one.

5.6. Other Numbers of Nodes within the Topology Not Being a Power of Two

This additional case includes some topology layouts whose number of nodes is not
a power of two, such as 3-ary 3-cube, Petersen graph, Heawood graph and Robertson
graph, all of them being graph-like designs. As per the first one: α = (4×1+4×2)/(4+4) = 1.5
and β = 4, whilst for the second one: α = (3×1+6×2)/(3+6) = 1.67 and β = 3, whereas
for the third one: α = (3×1+6×2+4×3)/(3+6+4) = 2.08 and β = 3, while for the fourth one:
α = (4×1+12×2+2×3)/(4+12+2) = 2.08 and β = 3. Table 6 exposes the relevant values of η for
these instances.

Table 6. Values for η for nodes not being a power of 2.

Type Instance Nodes α β η = α × β

Graph-like

3-ary 3-cube 9 1.5 4 6
Petersen graph 10 1.67 3 5
Heawood graph 14 2.08 3 6.24
Robertson graph 19 1.89 4 7.56

5.7. Some Other Commonly Used Network Topologies in Data Centers

In order to apply the aforementioned coefficient η to obtain a balance between per-
formance and simplicity to network topologies being employed in large data centers,
the topologies exposed in Section 2.3 are going to be used to calculate the aforesaid coef-
ficient η. This study is going to be made with the parameters exposed in that subsection
that correspond to a data center with small to medium size. However, these parameters are
higher in large deployments; hence, the use of coefficient η may be applied the same way
as exposed in this section, although the results may vary depending on the values taken for
the corresponding parameters.

Anyway, Table 7 exposes the values for such a coefficient η regarding a compromise
between performance and simplicity, where the parameters of each topology arealso shown,
along with the number of nodes involved with those parameters, followed by the values
for performance (α) and simplicity (β) for those specific parameters.

Additionally, Table 8 exhibits the values for coefficient η when the number of nodes
involved in diverse data center network topologies is increased. For this case, fat tree has
been selected with parameter k = 8, which contains 128 hosts withjust 1 port, along with
32 edge switches, 32 aggregation switches and 16 core switches,where all of them have
8 ports. Further, leaf and spine has also been set up to include 128 hosts with 1 port by
taking 16 leaves and 8 spines, all of them being switches with 16 ports.

Furthermore, BCube2 with n = 4 is chosen, whichcontains 64 hosts with 3 ports and
48 switches with 4 ports. It is to be noted that a third of those switches belong tothe 16
level-0 cells within this topology, with 4 nodes hanging on each of those, another third
is located in 4 level-1 cells, with 4 level-0 cells hanging on each of these, and the other
third one is situated within the level-2 cell, with 4 level-1 cells hanging on each of them.
Moreover, DCell2 with n = 4 is also selected, which holds 420 hosts with 3 ports and 105
switches with 4 ports. It is to be said that those switches are distributed into 21 DCell1,
where each of themhas 5 switches, such that each of those switches accounts for a DCell0,
which in turn is furnished by 4connected nodes.



Network 2023, 3 317

Table 7. Values of η for other commonly used network topologies in data centers.

Type Instance Nodes α β η = α × β

Tree-like

BCube1 (n = 4) 16 3.20 2.67 8.53

DCell1 (n = 4) 20 3.53 2.40 8.46
FiConn1 (n = 4) 12 3.00 2.00 6.00
Flattened Butterfly (n = 3) 27 3.38 2.50 8.46
DragonFly (g = 5, a = 4, p = 2) 40 3.74 2.00 7.49
SlimFly (g = 3, p = 2) 36 3.31 2.33 7.73
BCDC (n = 3, p = 2) 12 3.45 2.40 8.29
P-Cube (n = 4) 32 4.26 2.55 10.84
DCCube (k = 1, m = 4, h = 1, c = 2) 16 3.60 1.67 6.00
Jellyfish (N = 16, x = 4, y = 3) 16 4.27 2.00 8.53
Subway (p = 3, l = 3) 6 3.20 4.00 12.80
Superway (L = 2) 8 3.29 2.33 7.67

Table 8. Values of η for network topologies in data centers with larger numbers of nodes.

Type Instance Nodes α β η = α × β

Tree-like
fat tree (k = 8) 128 5.72 3.69 21.11
leaf and spine (128 hosts) 128 3.89 3.37 13.10

Recursive
BCube2 (n = 4) 64 4.57 3.43 15.67
DCell2 (n = 4) 420 5.92 3.20 18.94

6. Discussion about the Results Obtained

The study carried out above, from the point of view of arithmetic, presents some
conclusions to be taken into account. To start with, the values of η obtained for tree-like
designs are higher than those for graph-like designs when it comes to α, although regarding
β it is the other way around. In other words, the average number of hops is greater for
tree-like instances because of the excess of links due to the switching hierarchy, whilst this
hierarchical nature allows nodes to have no interconnection with their peers, as those are
undertaken among switches.

Further, the different topologies proposed for a given number of hosts result in higher
values of η as the number of redundant paths grows, which happens for both tree-like and
graph-like designs. Focusing on the former, the redundant hub and spoke presents the
lowest value, followed by leaf and spine, and finally, fat tree. Centering on the latter, partial
mesh topologies attain lower values of η, although the values grow as the number of links
rises, increasing to maximum values for full-mesh topologies.

Additionally, in tree-like designs, the average number of links among hosts increases
with redundancy, whilst the average number of links per device decreases, resulting in
η going higher, which shows that the weight of α is bigger than β in tree-like topologies.
On the contrary, in graph-like designs, the average number of links among hosts decreases
with redundancy, whereas the average number of links per device increases, resulting in η
going higher, which points out that the weight of β is bigger than α in graph-like topologies.

Having said that, further research could add some correction factor in order to try to
balance the opposite relationship between α and β for both kinds of architectures when
using the proposed expression of η.

On the other hand, the values of performance and simplicity achieved with the other
commonly used network topologies typically employed in data centers, described in
Section 2.3 and calculated in Section 5.7, are significantly lower than their counterparts
analyzed in the previous subsections within Section 5 for similar or even higher numbers
of nodes. The reason of this is because the interconnections among nodes are optimized
related to fat tree or leaf and spine, thus not presenting a pure tree structure butdisplaying



Network 2023, 3 318

more direct connections among nodes in many cases, and additionally, several instances
furnish nodes with multiple ports to connect to different destinations.

Basically, large data centers employ optimized data center network topologies in order
to attain shorter paths among nodes while facilitating scalability by means of setting the
appropriate values for the parameters involved in such topologies. Therefore, it may be
said that the coefficient proposed herein still stands for large scale topologies.

In order to facilitate discussion, the results obtained in Tables 2–8 have been graphically
represented. It is to be said that Table 1 offers a trivial case where coefficient ν is null, so it
has not been drawn. On the other hand, the correspondence of tables and figures is the
following: Table 2 goes with Figure 26, Table 3 does with Figure 27, Table 4 does with
Figure 28, Table 5 does with Figure 29, Table 6 goes with Figure 30, Table 7 goes with
Figure 31, and Table 8 goes with Figure 32.

Figure 26. Coefficient for topologies with 2 nodes.

Figure 27. Coefficient for topologies with 4 nodes.



Network 2023, 3 319

Figure 28. Coefficient for topologies with 8 nodes.

Figure 29. Coefficient for topologies with 16 nodes.

Figure 30. Coefficient for small topologies not being a power of 2.



Network 2023, 3 320

Figure 31. Coefficient for topologies commonly used in data centers.

Figure 32. Coefficient for topologies with many nodes.

In summary, by reviewing the results obtained in Tables 1–5 for the coefficient pro-
posed herein, namely η, it may be seen that the values attained for both tree-like and
graph-like cases increase as the number of nodes rises. Further, the results shown in Table 6
are reasonable comparing the values achieved with those shown in the previous tables
according to the number of nodes, as they are all within the same range.

Regarding the other commonly used data center network topologies presented in
Table 7, the results are also coherent according to the amount of nodes included in each
topology compared to those seen in the aforesaid tables. It is to be taken into account that
Table 7 represents topologies where the number of nodes cover a wide range of values,
as each topology has its own specifications. Nonetheless, most of the results obtained for
η are located in the lower range in the previous tables despite Table 7 instances having a
larger number of nodes in many cases.

Therefore, it seems that this coefficient η offers significant results for data center
network topologies focused onsmall deployments. However, as exposed in previous
sections, this coefficient is just another tool to select the most convenient data center
network design, not the definitive one. In this sense, it might be used as a tie-breaker to
choose among some designs offering different strengths, such as throughput or robustness.

It is to be reminded that the scope ofsmall data centers isusually local, which implies
that they are used by a limited number of end users; hence, the number of nodes involved



Network 2023, 3 321

to serve such users may usually be farlower than in large data centers located in the cloud.
In spite of that, some of the commonly used data center network architectures presented in
Table 7 for edge deployments have been extended to involve far more users, which makes
them ready to be employed in larger cloud data center scenarios.

Those results have been exposed in Table 8, where the outcome is higher than that
viewed in Table 7, which was expected because coefficient η grows with the number of
nodes, as was seen in the first tables. However, the figures obtained may be seen as coherent
with the ones exhibited in the previous tables as values obtainedseem to increase steadily
as the number of nodes rises with a relatively small slope.

Hence, it may be concluded that the coefficient η has been established for data center
network topologies, offering a balance between performance, measured in average number
of links between any pair of nodes, and simplicity, measured in the average number of links
per device within the topology. It was initially thought of forsmall data centers because
of itslower number of nodes compared to a normal cloud data center scenario, and the
tests carried out in Tables 1 to 7 proved that η offers an increasing value on average as the
number of nodes in a network topologygrows.

However, further tests have been undertaken for larger data centers, such as those
being deployed in normal cloud data center scenarios, shown in Table 8, where results
proved that η offers coherent results with those obtained for smaller data centers. Therefore,
it may be said that this coefficient η may be used in data center network topologies of any
size, where the greater the number of nodes, the higher the value obtained for η.

Apart from the η values obtained in order to measure the efficiency of a certain
topology, other considerations could be taken into account in further research, such as
the need for redundancy or the requirement for steady values of latency in real-time
implementations, where the former is more likely attained with topologies incorporating
more links to get extra paths, and the latter is more easily done by using tree-like designs.

7. Conclusions

In this paper, an arithmetic study about efficiency in data centers has been carried
out. First of all, a range of possible topologies with a limited number of nodeshave been
proposed asa collection of convenient architectures for dealing withlow computing traffic.

Those topologies have been divided into tree-like designs and graph-like designs,
where in the former, nodes are interconnected through a hierarchy of switches, whereas in
the latter, such interconnections are made directly between pairs of nodes.

The arithmetic study has consisted in the definition of two parameters, those being
the average number of hops among nodes and the average number of links among devices,
and in turn, a coefficient called η has been defined as the product of both in order to provide
a balance between both parameters.

On the one hand, the first parameter is related to performance, as the lower number of
hops among nodes, the better, whilst on the other hand, the second parameter is related to
simplicity, as the lower number of links per device, the better.

After having tested those parameters in different topologies mainly focused onsmall
data centers, where the number of nodes is small to middle sized, it appears thatin tree-like
designs, the value of coefficient η grows as the average number of hops among nodes
increases, even though the average number of links per device decreases at the same time.
Otherwise, it seems thatin graph-like designs, the value of coefficient η rises as the average
number of links per device increases, although the average number of hops decreases at
the same time.

Furthermore, some of the most commonly used network topologies in large data
centers have also been studied,leading to coherent results obtained by coefficient η, which
implies that this coefficient may be employed in data center networks of any size.

Author Contributions: Conceptualization, P.J.R.; Formal analysis, P.J.R.; Supervision, P.J.R., S.A.,
K.G., C.B. and C.J.; Validation, P.J.R. All authors have read and agreed to the published version of
the manuscript.



Network 2023, 3 322

Funding: This research received no external funding.

Data Availability Statement: Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ACP Algebra of Communicating Processes
DS Data Science
FDT Formal Description Techniques
IoT Internet of Things
IP Internet Protocol
IT Information Technology
LAN Local Area Network
MEC Multi-Access Edge Computing
ML Machine Learning
WAN Wide Area Network

References
1. Pérez, J.; Díaz, J.; Berrocal, J.; López-Viana, R.; González-Prieto, A. Edge Computing. Computing 2022, 104, 2711–2747. [CrossRef]
2. Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An Overview on Edge Computing Research. IEEE Access 2020, 8, 85714–85728. [CrossRef]
3. Filali, A.; Abouaomar, A.; Cherkaoui, S.; Kabbane, A.; Guizani, M. Multi-Access Edge Computing: A Survey. IEEE Access 2020, 8,

197017–197046. [CrossRef]
4. Ali, B.; Gregory, M.A.; Li, S. Multi-Access Edge Computing Architecture, Data Security and Privacy: A Review. IEEE Access 2021,

9, 18706–18721. [CrossRef]
5. Chen, S.; Jiao, L.; Liu, F.; Wang, L. EdgeDR: An Online Mechanism Design for Demand Response in Edge Clouds. IEEE Trans.

Parallel Distrib. Syst. 2022, 33, 343–358. [CrossRef]
6. Girolami, M.; Vitello, P.; Capponi, A.; Fiandrino, C.; Foschini, L.; Bellavista, P. A mobility-based deployment strategy for edge

data centers. J. Parallel Distrib. Comput. 2022, 164, 133–141. [CrossRef]
7. Liu, J.; Zhang, F.; Li, H.; Wang, D.; Wan, W.; Fang, X.; Zhai, J.; Du, X. Exploring Query Processing on CPU-GPU Integrated Edge

Device. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 4057–4070. [CrossRef]
8. Aravanis, A.I.; Voulkidis, A.; Salom, J.; Townley, J.; Georgiadou, V.; Oleksiak, A.; Porto, M.R.; Roudet, F.; Zahariadis, T. Metrics for

Assessing Flexibility and Sustainability of Next Generation Data Centers. In Proceedings of the IEEE Globecom Workshops (GC
Wkshps 2015), San Diego, CA, USA, 6–10 December 2015.

9. Román, R.; López, J.; Mambo, M. Mobile Edge Computing, Fog et al.: A Survey and Analysis of Security Threats and Challenges.
Future Gener. Comput. Syst. 2018, 78, 680–698. [CrossRef]

10. Abreha, H.G.; Hayajneh, M.; Serhani, M.A. Federated Learning in Edge Computing: A Systematic Survey. Sensors 2022, 22, 450.
[CrossRef]

11. Dimolitsas, I.; Dechouniotis; , D.; Papavassiliou, S.; Papadimitriou, P.; Theodorou, V. Edge Cloud Selection: The Essential Step for
Network Service Marketplaces. IEEE Commun. Mag. 2021, 59, 28–33. [CrossRef]

12. Liu, B.; Meng, S.; Jiang, X.; Xu, X.; Qi, L.; Dou, W. A QoS-guaranteed online user data deployment method in edge cloud
computing environment. J. Syst. Archit. 2021, 118, 102185. [CrossRef]

13. Toczé, K.; Madon, M.; García, M.; Lago, P. The Dark Side of Cloud and Edge Computing: An Exploratory Study. In Proceedings
of the 8th Workshop on Computing within Limits, Virtual Event, 21–22 June 2022.

14. Bellamy, L.A.; Henning, T.F.P.; Amor, R.; Jones, D.; Pancholy, P.; Preston, G.; van Jakobus, E. Data strategies for improving
infrastructure value and performance in New Zealand. Proc. Inst. Civ.-Eng.–Smart Infrastruct. Constr. 2022, 2200008. [CrossRef]

15. Golightly., L.; Chang, V.; Xu, Q.A.; Gao, X.; Liu, B.S. Adoption of cloud computing as innovation in the organization. Int. J. Eng.
Bus. Manag. 2022, 14. [CrossRef]

16. Andrae, A.S.G.; Edler, T. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges 2015, 6, 117–157.
[CrossRef]

17. Manganelli, M.; Soldati, A.; Martirano, L.; Ramakrishna, S. Strategies for Improving the Sustainability of Data Centers via Energy
Mix, Energy Conservation, and Circular Energy. Sustainability 2021, 13, 6114. [CrossRef]

18. Emara, T.Z.; Huang, J.Z. Distributed Data Strategies to Support Large-Scale Data Analysis Across Geo-Distributed Data Centers.
IEEE Access 2020, 8, 178526–178538. [CrossRef]

19. Mansouri, N.; Javidi, M.M.; Zade, B.M.H. Hierarchical data replication strategy to improve performance in cloud computing.
Front. Comput. Sci. 2021, 15, 152501. [CrossRef]

http://doi.org/10.1007/s00607-022-01104-2
http://dx.doi.org/10.1109/ACCESS.2020.2991734
http://dx.doi.org/10.1109/ACCESS.2020.3034136
http://dx.doi.org/10.1109/ACCESS.2021.3053233
http://dx.doi.org/10.1109/TPDS.2021.3087360
http://dx.doi.org/10.1016/j.jpdc.2022.03.007
http://dx.doi.org/10.1109/TPDS.2022.3177811
http://dx.doi.org/10.1016/j.future.2016.11.009
http://dx.doi.org/10.3390/s22020450
http://dx.doi.org/10.1109/MCOM.211.2001056
http://dx.doi.org/10.1016/j.sysarc.2021.102185
http://dx.doi.org/10.1680/jsmic.22.00008
http://dx.doi.org/10.1177/18479790221093992
http://dx.doi.org/10.3390/challe6010117
http://dx.doi.org/10.3390/su13116114
http://dx.doi.org/10.1109/ACCESS.2020.3027675
http://dx.doi.org/10.1007/s11704-019-9099-8


Network 2023, 3 323

20. Ruan, L.; Xu, X.; Xiao, L.; Ren, L.; Min-Allah„ N.; Xue, Y. Evaluating performance variations cross cloud data centres using
multiview comparative workload traces analysis. Connect. Sci. 2022, 34, 1. [CrossRef]

21. Zhang, Y.; Liu, J. Prediction of Overall Energy Consumption of Data Centers in Different Locations. Sensors 2022, 22, 3704.
[CrossRef]

22. Wang, T.; Su, Z.; Xiz, Y.; Hamdi, M. Rethinking the Data Center Networking: Architecture, Network Protocols, and Resource
Sharing. IEEE Access 2014, 2, 1481–1496. [CrossRef]

23. Hoefler, T.; Hendel, A.; Roweth, D. The Convergence of Hyperscale Data Center and High-Performance Computing Networks.
Computer 2022, 55, 29–37. [CrossRef]

24. Shen, L.; Qian, S.; Zhai, T.; Li, L.; Li, Z. Research on cloud computing high-density data center infrastructure and environment
matching technology. MATEC Web Conf. 2021, 336, 02028. [CrossRef]

25. Wang, X.; Fan, J.X.; Lin, C.K.; Zhou, L.Y.; Liu, Z. BCDC: A High-Performance, Server-Centric Data Center Network. J. Comput. Sci.
Technol. 2018, 33, 400–416. [CrossRef]

26. Raiciu, C.; Barre, S.; Pluntke, C.; Greenhalgh, A.; Wischik, W.; Handley, M. Improving datacenter performance and robustness
with multipath TCP. Acm Sigcomm Comput. Commun. Rev. 2011, 41, 266–277. [CrossRef]

27. Cho, J.; Kim, Y. Development of modular air containment system: Thermal performance optimization of row-based cooling for
high-density data centers. Energy 2021, 231, 120838. [CrossRef]

28. Patra, S.S.; Goswami, V. Performance Enhancement of Cloud Datacenters Through Replicated Database Server. J. Inf. Technol. Res.
2022, 15, 48. [CrossRef]

29. Cui, Y.; Jin, S.; Yue, W.; Takahashi, Y. Performance Optimization of Cloud Data Centers with a Dynamic Energy-Efficient Resource
Management Scheme. Complexity 2021, 2021, 6646881. [CrossRef]

30. Feng, A.; Dong, D.; Lei, F.; Ma, J.; Yu, E.; Wang, R. In-network aggregation for data center networks: A survey. Comput. Commun.
2023, 198, 63–76. [CrossRef]

31. Almasan, P.; Xiao, S.; Cheng, X.; Shi, X.; Barlet-Ros, P.; Cabellos-Aparicio, A. ENERO: Efficient real-time WAN routing optimization
with Deep Reinforcement Learning. Comput. Networks 2022, 214, 109166. [CrossRef]

32. Cao, B.; Zhao, J.; Yang, P.; Gu, Y.; Muhammad, K.; Rodrigues, J.J.; Alburquerque, V.H. Multiobjective 3-D Topology Optimization
of Next-Generation Wireless Data Center Network. IEEE Trans. Ind. Inform. 2019, 1, 3597–3605. [CrossRef]

33. Roig, P.J. Formal Algebraic Modelling of a Fog Computer Network Architecture. Ph.D. Thesis, University of the Balearic Islands,
Palma, Spain, 2022.

34. Hemachandra, K.G.R.P.; Jayasena, K.P.N.; Rankothge , W.; Wijesiri, M. P. M. Investigating the Performance in SDN Based Data
Centers Under Different Network Topologies. In Proceedings of the 2nd International Conference on Advanced Research in
Computing (ICARC), Belihuloya, Sri Lanka, 23–24 February 2022; pp. 361–366.

35. Bermejo, B. Performance and Energy Consumption Trade-Off in Server Consolidation. Ph.D. Thesis, University of the Balearic
Islands, Palma, Spain, 2020.

36. Roig, P.J.; Alcaraz, S.; Gilly, K.; Bernad, C.; Juiz, C. Arithmetic Framework to Optimize Packet Forwarding among End Devices in
Generic Edge Computing Environments. Sensors 2022, 22, 421. [CrossRef]

37. Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge Intelligence: The Confluence of Edge Computing and
Artificial Intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [CrossRef]

38. Kubler, S.; Rondeau, E.; Georges, J.P.; Mutua, P.L.; Chinnici, M. Benefit-cost model for comparing data center performance from a
biomimicry perspective. J. Clear Prod. 2019, 231, 817–834. [CrossRef]

39. Al-Fares, M.; Loukissas, A.; Vahdat, A. A Scalable, Commodity Data Center Network Architecture. ACM SIGCOMM Comput.
Commun. Rev. 2008, 38, 63–74. [CrossRef]

40. Okafor, K.C.; Achumba, I.E.; Chukwudebe, G.A.; Ononiwu, G.C. Leveraging Fog Computing for scalable IoT datacenter using
Spine-Leaf network topology. J. Electr. Comput. Eng. 2017, 2017, 2363240. [CrossRef]

41. Correia, I.; Nickel, S.; Saldanha-da-Gama, F. Hub and spoke network design with single-assignment, capacity decisions and
balancing requirements. Appl. Math. Model. 2011, 35, 4841–4851. [CrossRef]

42. Guo, C.; Lu, G.; Li, D.; Wu, H.; Zhang, X.; Shi, Y.; Tian, C.; Zhang, Y.; Lu, S. BCube: A High Performance, Server-centric Network
Architecture for Modular Data Centers. In Proceedings of the SIGCOMM 2009, Barcelona, Spain, 17–21 August 2009.

43. Guo, C.; Wu, H.M Tan, K.; Shi, L.; Zhang, Y.; Lu, S. DCell: A Scalable and Fault-Tolerant Network Structure for Data Centers. In
Proceedings of the SIGCOMM 2008, Seattle, WA, USA, 17–22 August 2008.

44. Li, D.; Guo, C.; Wu, H.; Tan, K.; Zhang, Y.; Lu, S. FiConn: Using Backup Port for Server Interconnection in Data Centers. In
Proceedings of the INFOCOM 2009, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 2276–2285.

45. Kim, J.; Balfour, J.; Dally, W.J. Flattened Butterfly Topology for On-Chip Networks. In Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 2007), Chicago, IL, USA, 1–5 December 2007; pp. 172–182.

46. Kim, J.; Dally, W.J.; Scott, S.; Abts, D. Technology-Driven, Highly-Scalable Dragonfly Topology. In Proceedings of the International
Symposium on Computer Architecture (ISCA 2008), Beijing, China, 21–25 June 2008; pp. 77–88.

47. Besta, M.; Hoefler, T. Slim Fly: A Cost Effective Low-Diameter Network Topology. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC 2014), New Orleans, LA, USA, 16–21 November 2014;
pp. 348–359.

http://dx.doi.org/10.1080/09540091.2021.2015289
http://dx.doi.org/10.3390/s22103704
http://dx.doi.org/10.1109/ACCESS.2014.2383439
http://dx.doi.org/10.1109/MC.2022.3158437
http://dx.doi.org/10.1051/matecconf/202133602028
http://dx.doi.org/10.1007/s11390-018-1826-3
http://dx.doi.org/10.1145/2043164.2018467
http://dx.doi.org/10.1016/j.energy.2021.120838
http://dx.doi.org/10.4018/JITR.299948
http://dx.doi.org/10.1155/2021/6646881
http://dx.doi.org/10.1016/j.comcom.2022.11.004
http://dx.doi.org/10.1016/j.comnet.2022.109166
http://dx.doi.org/10.1109/TII.2019.2952565
http://dx.doi.org/10.3390/s22020421
http://dx.doi.org/10.1109/JIOT.2020.2984887
http://dx.doi.org/10.1016/j.jclepro.2019.05.183
http://dx.doi.org/10.1145/1402946.1402967
http://dx.doi.org/10.1155/2017/2363240
http://dx.doi.org/10.1016/j.apm.2011.03.046


Network 2023, 3 324

48. Slim Fly: A Cost Effective Low-Diameter Network Topology. Available online: https://spcl.inf.ethz.ch/Research/Scalable_
Networking/SlimFly/ (accessed on 7 January 2023).

49. Kan, S.; Fan, J.; Cheng, B.; Wang, X. The Communication Performance of BCDC Data Center Network. In Proceedings of the 2th
International Conference on Communication Software and Networks (ICCSN), Chongqing, China, 12–15 June 2020; pp. 51–57.

50. Dash, R.K. A New Cost Effective and Reliable Interconnection Topology for Parallel Computing Systems. Int. J. Eng. Adv. Technol.
2019, 8, 1186–1195.

51. Qin, X.W.; Hao, R.X. Hamiltonian properties of some compound networks. Discret. Appl. Math. 2018, 239, 174–182. [CrossRef]
52. ALzaid, Z.; Bhowmik, S.; Yuan, X. Multi-Path Routing on the Jellyfish Networks. In Proceedings of the IEEE International Parallel

and Distributed Processing Symposium Workshops (IPDPSW), Portland, OR, USA, 17 May 2021; pp. 832–841.
53. Singla, A.; Hong, C.Y.; Popa, L.; Godfrey, P.B. Jellyfish: Networking Data Centers Randomly. In Proceedings of the 9th USENIX

conference on Networked Systems Design and Implementation (NSDI 2012), San Jose, CA, USA, 25–27 April 2012.
54. Liu, V.; Zhuo, D.; Peter, S.; Krishnamurthy, A.; Anderson, T. Subways: A Case for Redundant, Inexpensive Data Center Edge

Links. In Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies (CoNEXT 2015),
Heidelberg, Germany, 1–4 December 2015.

55. Rezaei, H.; Vamanan, B. Jellyfish: Superways: A Datacenter Topology for Incast-heavy workloads. In Proceedings of the Web
Conference 2021 (WWW 2021), Ljubljana, Slovenia, 19–23 April 2021.

56. Couto, R.S.; Secci, S.; Campista, M.E.M.; Costa, L.H.M. Reliability and Survivability Analysis of Data Center Network Topologies.
J. Netw. Syst. Manag. 2016, 24, 346–392. [CrossRef]

57. Negara, E.S.; Keni, K.; Andryani, R. BCube and DCell Topology Data Center Infrastructures Performance. IOP Conf. Ser. Mater.
Sci. Eng. 2020, 852, 012129. [CrossRef]

58. Cortés-Castillo, A. Various Network Topologies and an Analysis Comparative Between Fat-Tree and BCube for a Data Center
Network: An Overview. In Proceedings of the IEEE Cloud Summit, Fairfax, VA, USA, 20–21 October 2022.

59. Al-Makhlafi, M.; Gu, H.; Yu, X.; Lu, Y. P-Cube: A New Two-Layer Topology for Data Center Networks Exploiting Dual-Port
Servers. IEICE Trans. Commun. 2020, 103, 940–950. [CrossRef]

60. Liu, Y.; Gao, X.; Chen, G. Design and Optimization for Distributed Indexing Scheme in Switch-Centric Cloud Storage System. In
Proceedings of the 20th IEEE Symposium on Computers and Communication (ISCC), Larnaca, Cyprus, 6–9 July 2015.

61. Yao, F.; Wu, J.; Venkataramani, G.; Subramaniam, S. A Comparative Analysis of Data Center Network Architectures. In
Proceedings of the IEEE International Conference on Communications (ICC), Sidney, Australia, 10–14 June 2014; pp. 3106–3111.

62. Touihri, R.; Alwan, S.; Dandoush, A.; Aitsaadi, N.; Veillon, C. CRP: Optimized SDN Routing Protocol in Server-Only CamCube
Data-Center Networks. In Proceedings of the 2019 IEEE International Conference on Communications (ICC), Shanghai, China,
20–24 May 2019.

63. Daryin, A.; Korzh, A. Early evaluation of direct large-scale InfiniBand networks with adaptive routing. Supercomput. Front. Innov.
2014, 1, 56–69.

64. Rao, M.V.; Krishna, T.V.R.; Sruthi, S.R.S.; Akhila, S.; Gopi, Y.; Krishna, L.B. An Effective on-Chip Network Topology for Network
on Chip (Noc) Trade-Offs. Indian J. Sci. Technol. 2016, 9, 17.

65. Azizi, S.; Hashemi, N.; Khonsari, A. A flexible and high-performance data center network topology. J. Supercomput. 2017, 73,
1484–1503. [CrossRef]

66. Aguirre-Guerrero, D.; Camelo, M.; Fàbrega, L.; Vilà, P. WMGR: A Generic and Compact Routing Scheme for Data Center
Networks. IEEE/ACM Trans. Netw. 2018, 26, 356–369. [CrossRef]

67. Mohamed, S.H.; El-Gorashi, T.E.H.; Elmirghani, J.M.H. Energy Efficiency of Server-Centric PON Data Center Architecture for Fog
Computing. In Proceedings of the 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania,
1–5 July 2018.

68. Sego, L.H.; Márquez, A.; Rawson, A,; Cader, T.; Fox, K.; Gustafson, W.I.; Mundy, C.J. Implementing the data center energy
productivity metric. ACM J. Emerg. Technol. Comput. Syst. 2012, 8, 030. [CrossRef]

69. Santos, A.F.; Gaspar, P.D.; de Souza, H.J.L. New Data Center Performance Index: Perfect Design Data Center—PDD. Climate 2020,
8, 110. [CrossRef]

70. Shao, X.; Zhang, Z.; Song, P.; Feng, Y.; Wang, X. A review of energy efficiency evaluation metrics for data centers. Energy Build.
2022, 271, 112308. [CrossRef]

71. Levy, M.; Raviv, D. A Novel Framework for Data Center Metrics using a Multidimensional Approach. In Proceedings of the 15th
LACCEI International Multi-Conference for Engineering, Education, and Technology: Global Partnerships for Development and
Engineering Education, Boca Ratón, FL, USA, 19–21 July 2017, .

72. Kumar, R.; Khatri, S.K.; Diván, M.J. Performance Analysis of Machine Learning Regression Techniques to Predict Data Center
Power Usage Efficiency. Int. J. Eng. Trends Technol. 2022, 70, 328–338. [CrossRef]

https://spcl.inf.ethz.ch/Research/Scalable_Networking/SlimFly/
https://spcl.inf.ethz.ch/Research/Scalable_Networking/SlimFly/
http://dx.doi.org/10.1016/j.dam.2017.12.043
http://dx.doi.org/10.1007/s10922-015-9354-8
http://dx.doi.org/10.1088/1757-899X/852/1/012129
http://dx.doi.org/10.1587/transcom.2019EBP3219
http://dx.doi.org/10.1007/s11227-016-1836-2
http://dx.doi.org/10.1109/TNET.2017.2779866
http://dx.doi.org/10.1145/2367736.2367741
http://dx.doi.org/10.3390/cli8100110
http://dx.doi.org/10.1016/j.enbuild.2022.112308
http://dx.doi.org/10.14445/22315381/IJETT-V70I5P236


Network 2023, 3 325

73. Brocklehurs, F. International Review of Energy Efficiency in Data Centres for IEA EBC Building Energy Codes Working Group.
Available online: https://www.iea-ebc.org/Data/publications/EBC_WG_BECs_Data_Centers_March_2022.pdf (accessed on
30 May 2023).

74. Reddy, V.D.; Setz, B.; Rao, G.S.V.; Gangadharan, G.R.; Aiello, M. Metrics for Sustainable Data Centers. IEEE Trans. Sustain. Comput.
2017, 2, 290–303. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.iea-ebc.org/Data/publications/EBC_WG_BECs_Data_Centers_March_2022.pdf
http://dx.doi.org/10.1109/TSUSC.2017.2701883

	Introduction
	Topology Designs for Data Centers
	Tree-like Design
	Graph-like Design
	Other Commonly Used Network Topologies in Data Centers

	Related Work
	Coefficient Proposed to Obtain Balance between Performance and Simplicity
	Developing Some Typical Use Cases
	One Node within the Topology
	Two Nodes within the Topology
	Four Nodes within the Topology
	Eight Nodes within the Topology
	Sixteen Nodes within the Topology
	Other Numbers of Nodes within the Topology Not Being a Power of Two
	Some Other Commonly Used Network Topologies in Data Centers

	Discussion about the Results Obtained
	Conclusions
	References

