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Abstract: Food packaging has been demonstrated as a crucial issue for the migration of microplastics
(MPs) into foodstuffs, concerning human health risk factors. Polymeric materials called plastics are
continuously utilized in food packaging. Polyethylene (PE) is commonly used as a food packaging
material, because it offers easy handling during transportation and optimal storage conditions for
food preservation. In this work, three types of cured meat products of different fat compositions
and meat processing methods—bacon, mortadella, and salami—were studied using spectroscopic
methods (Raman and FT–IR/ATR) to determine the migration of low-density polyethylene (LDPE)
from plastic packaging to the surface of the meat samples. The experimental duration of this study
was set to be 28 days owing to the selected meat samples’ degradation, which started to become
visible to the human eye after 10 days of storage in vacuum LDPE packaging, under refrigerated
conditions at 4 ◦C. Spectroscopic measurements were performed at 0, 3, 9, 12, 15, and 28 days of
storage to obtain comparative results. We demonstrated that the Raman spectral peaks of LDPE
firstly appeared as a result of polymeric migration on day 9 in Bacon, on day 15 in Salami, and
finally on day 28 in Mortadella. On day 28, all meat samples were tainted, with a layer of bacterial
outgrowth developed, as proven by bright–field microscopic observation. Food packaging migration
to the surface of cured meat samples was validated using Raman vibrational spectroscopy. To ensure
minimal consumption of MPs in cured meat products stored in plastic packaging, while at the same
time maintaining good food quality, they should be kept in refrigerated conditions and consumed
within a short period of time. In this work, the migration of MPs from food packaging to the surface
of cured meat samples was observed using micro-Raman spectroscopy.

Keywords: food packaging; low-density polyethylene (LDPE); microplastic migration; micro-Raman
spectroscopy; cured meat

1. Introduction

Plastic packaging is eco-toxic and unhealthy for humans [1–4]. However, the use
of plastic for food packaging has many advantages, such as being lightweight and thus
allowing easy transportation, design freedom, durability, and cost-effectiveness [5]. The
most common plastics used by the food packaging industry are as follows: polyethylene
terephthalate (PET), high-density polyethylene (HDPE), low-density polyethylene (LDPE),
polycarbonate (PC), polyvinylidene chloride (PVDC), polypropylene (PP), and polystyrene
(PS) [6–11]. From polymer sciences, we know that different polymers have different
properties. PE and especially LDPE is produced in thinner layers compared with some
other polymers, but it remains stable in our experimental temperature range of 4–40 ◦C.
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Moreover, LDPE is very flexible and tough. For this reason, it is used in many applications
of food packaging, in grocery stores for fruit and vegetable bags, in beverages, as well
as in cured meat products under vacuum packaging [12], among others [13,14]. It can be
observed from the literature that LDPE is a very flexible material by its nature, has no
addition of plasticizers, and has a melting point at a temperature of 85 ◦C [15].

However, we already know that plasticizers and MPs [16] have been identified in
food, migrating [17] from food plastic packaging to the food surface [18,19]. Migration
of plasticizers [20] from plastic packaging to roasted chicken meat was observed in 2018.
Moreover, various studies have been conducted concerning the migration of MPs and
nanoparticles from plastic packaging to food simulants [21–24]; since 1989 [25], olive oil
and corn oil have been used as food simulants, instead of real samples, for fatty foods [26].
It is known that MPs are more prone to migrate into oily foodstuffs owing to hydrophobic
interactions [27]. This is the reason that, in this work, we chose to study LDPE migration to
real meat samples to prove that oily meats are more prone to experience faster migration
of MPs. The choice of the cured meats for LDPE migration from plastic packaging was
based on the popularity of their consumption; bacon, mortadella, and salami were selected.
Vibrational spectroscopic methods (ATR/FT–IR and Raman) are commonly used for food
studies [28], as well as MP analysis [29–31] and meat discrimination [32]. For this reason, as
in a previous cheese study [33], Raman spectroscopy was used to determine the migration
of MPs to three types of cured meat (bacon, mortadella, and salami).

According to our results, it is evident that LDPE surely migrates from food packaging
to all of the cured meat samples while being kept at refrigeration temperatures (~4 ◦C).
For each meat sample, migration was observed in different time periods, detectable by the
Raman spectroscopy technique. In these experiments, real food samples were used for
the migration of MPs to the cured meat surface, so the results simulate high-rate, real-life
situations.

2. Materials and Methods
2.1. Samples and Experiment Preparation

The experimental design was based on the fat composition and the meat processing
methods of our samples. The experimental duration was set to 28 days to observe the cured
meats’ behavior and to check if bacterial growth could affect MPs’ detection on the oily
surface of the meat. This approach resulted in six time points for each cured meat, named
as follows: day 0, where the MPs’ migration should be zero; day 3, day 9, day 12, and day
15, where the migration should be detectable for bacon, mortadella, and salami; and finally
day 28, for the observation of cured meat degradation using Raman microscopy.

Generally, bacon has up to 50% fat [34], mortadella has up to 30% fat [35], and salami
has up to 50% fat [36]. In our experiment, the materials used were as follows: (i) smoked and
fatty bacon with a 20% fat content, (ii) boiled mortadella with a 26% fat content, and (iii) air-
dried fatty salami with a 29.5% fat content. Owing to the meat processing of mortadella,
the water content is preserved, and the lipid distribution into mortadella’s meat volume is
more uniform than that of bacon and salami. On the contrary, during air drying, water is
not preserved, and the lipid distribution is sparse, resulting in denser areas. Smoked bacon
has a greater water content than salami, but lower water content than mortadella. Eighteen
(18) resealable air-tight LDPE pouches, commercially available in Greek stores as packaging
pouches, were prepared and pre-marked with the assigned measurement day and meat
type. Those polymeric pouches have previously been characterized for their chemistry
(FT-IR/ATR and Raman) and structure (XRD) [33]. For this experiment, three different
kinds of cured meats, bacon, mortadella, and salami, were prepared. Initially, to avoid any
contamination with MPs from the environment, the work area was under a hood, sterilized
with pure ethanol; nitrile gloves and a cotton lab coat were used each time during the entire
experimental process, and hair was caught in a bun. Consequently, all of the surfaces of
the cured meat samples in contact with the original packaging were removed. The cleaned
meat was cut into small square pieces with a sterilized metallic knife and then placed into
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the pre-marked LDPE pouches, as shown in Figure 1. Only fatty areas of the meat samples
were used for this experiment. Air was manually removed from the plastic package with a
vacuum pump. To accomplish this, a needle was placed at the end of the vacuum pump
tube to remove all of the air from the plastic pouches, ensuring direct contact with the
sample’s surface. To avoid any possibility of polymer migration on day 0, the first sample
from each cured meat type was measured right after being cut, without coming into contact
with the LDPE pouch. For reference purposes, the meat surface spectral information was
acquired on day 0, where the meat surface was intact and free of any LDPE contamination.
The remaining samples were stored under refrigerated conditions at 4 ◦C, and they were
measured on the corresponding measurement day that was previously marked on the
LDPE pouch.
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Figure 1. Sample preparation process.

On the measurement day, each sample was carefully taken out of the plastic packaging
and placed on a sterilized stainless metallic microscopic slide for Raman measurements.
Based on the previously mentioned fatty characteristics of the samples, it was expected that
migration of MPs from the plastic packaging to the fattier surface areas of the meats would
take place earlier [27], so the measurement points selected focused on those sample areas.
Only one side of the sample area was measured in multiple different places to increase the
possibility of MPs’ detection, as the other side was touching the metallic plate, and MPs
from the metal–sample interface could be left on the metallic slide.

2.2. Data Acquisition

Measurements were performed with a state-of-the-art instrument located in our
premises; specifically, we used a modified Raman microscope (LabRAM HR; HORIBA
FRANCE SAS, Longjumeau, France).

LabRAM HR Raman Microscope Instrument Description and Acquisition Settings

Raman measurements were performed with a modified LabRAM HR Raman Spec-
trometer (HORIBA Scientific, Kyoto, Japan). Raman excitation was achieved with a 532 nm
central wavelength solid-state laser module with a maximum laser output power of 90 mW.
The microscope was coupled with a 50× microscopic objective lens with 0.5 numerical
aperture and 10.6 mm working distance (LMPlanFLN 50X/0.5, Olympus), delivering the ex-
citation light and collecting the Raman signals. A neutral density filter of 5% transmittance
was used, which resulted in 1 mW of power on the sample (3.2% from a maximum power
of 35 mW). The laser spot size, referring to the microscope resolution, was approximately
1.7 µm laterally and 2 µm axially. A 600 groves/mm grating resulted in a Raman spectral
resolution of around 2 cm−1. The Raman spectral range was set to be from 40 to 3050 cm−1,
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resulting in two optical windows per point. The acquisition time for each measurement
was 15 s, with three accumulations in each point.

The Raman signal detector was the Syncerity CCD Deep Cooled Camera (HORIBA
Scientific, Lille, France), operating at −50 ◦C. Before each experiment, spectral calibration
of the Raman instrument was performed with an Si reference target, presenting a single
peak at 520.7 cm−1. All measurements were performed under a constant environmen-
tal temperature at 22.5 ◦C and a humidity range between 32 and 48%. At the time of
measurement, samples were placed onto a stainless-steel microscope slide using metallic
forceps, maintaining the orientation they had in the LDPE pouches. From each sample,
nine measurements at different points were acquired to check for Raman signal consistency.
All measurements were acquired from the fattiest areas of each sample. Good signals were
received only with absolute focused laser light and in flat areas.

2.3. Data Processing and Analysis
2.3.1. Raman Spectral References

In Figure 2, the Raman spectrum of LDPE is presented. The major LDPE Raman
peaks are indicated with dashed green lines. Raman peak numbering is according to the
ascending wavenumber order.
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According to KnowItAll Informatics System by Bio–Rad Laboratories database, the
identified Raman peaks of LDPE are presented in Table 1. For the identification of the
LDPE Raman assignments also found in meat studies, a literature study was performed.
These assignments together with the associated references are presented in Table 1. Bold
peaks did not exist in meat samples.
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Table 1. List of the major Raman peak assignments commonly found in meat and LDPE.

No LDPE Major Raman Peaks
(cm−1)

Raman Peak Assignments Found in Meat Studies
(cm−1)

1 1056 1056 → it does not exist in meat samples
1064→ v(C–C) of lipids [37]

2 1123 1123 → it does not exist in meat samples
1129 → Proteins, lipids, ν(C–N), ν(C–C) [37]

3 1164 1164 → it does not exist in meat samples
1171 → Proteins, ν(C–N), ν(C–C) [37]

4 1290 1297 → Amide III, protein α–helix [37]
1225–1350 → Amide III vibrational modes [38]

5 1363 1363 → it does not exist in meat samples

6 1411 1411 → it does not exist in meat samples

7 1435
1435 → it does not exist in meat samples

1443 → CH2 twisting modes of lipids [38], scissoring
mode of methylene δ(CH2) in fats [37]

8 1453
1451 → CH2 and CH3 bending vibration in lipids and

protein [39]
1449 → Proteins, lipids, δ(CH2, CH3) [37]

9 2718 2718 → it does not exist in meat samples

10 2844
2850 → CH2 symmetric stretching motion of lipids [38]
2950~2800 → C–H (CH2 and CH3) stretching vibrations

of lipids [40]

11 2879 2950~2800→ C–H (CH2 and CH3) stretching vibrations
of lipids [40]

2.3.2. Spectra Processing and Analysis

LabSpec v6 Raman software, made by Horiba (HORIBA FRANCE SAS, Longjumeau,
France), was used for all Raman spectra, visualization, procedure, and analysis. All
manuscript figures were generated through OriginLab 2021 pro.

Raman Spectra Processing and Analysis

The processing methodology is very important for comparing signaling results. The
following processing methodology was used for each Raman spectrum: (a) smoothing
under a Gaussian filter with a kernel of five points (denoise at 5) was used, where cosmic
rays were removed; (b) background was removed using a baseline correction at the ninth
order polynomial function; (c) a shift to zero was applied; and, finally, (d) a unit vector.
Moreover, for each meat sample on every measurement day, an average spectrum from
nine measurement points was determined. Finally, all of the original average day 0 Raman
spectra were then removed by the average day x spectrum (day x to day 0) to observe only
the Raman spectral changes throughout the experiment.

3. Results and Discussion
3.1. Raman Spectroscopic Analysis
3.1.1. Consistency/Repeatability Tests

Initially, consistency/repeatability tests of the Raman measurements on the same
sample were performed. For this reason, nine measurements at different locations were
acquired from each meat sample. The averages of these measurements are presented in
Figure 3. As shown, measurement repeatability was found to be consistent. Some of the
inconsistencies were mainly due to the spatial inhomogeneity of the sample, most probably
due to the protein/fatty ratio of the tissue. In general, Raman measurements followed
the same pattern between the same sample, presenting a strong level of repeatability. Day
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0 was chosen for the consistency/repeatability measurements, where there was no MP
migration or bacterial growth.
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Furthermore, on day 9, bacon and mortadella samples presented some microstructural
differentiations in fatty measurement areas, observed by Raman microscope. These differ-
entiations are possibly related to the presence of bacterial growth such as Salmonella [41],
lactic acid bacteria, Carnobacterium maltaromaticum, Staphylococcus [42], and other bacteria.
In bacon, the most common bacteria during prolonged storage are Serratia, Carnobacterium,
and Leuconostoc [42]. In vacuum-packed and refrigerated meat products, meat spoilage
arises owing to the interaction among lactic acid bacteria (the dominant flora) and Enter-
obacteriaceae, Pseudomonads, Brochothrix thermosphacta, and other bacterial species [42]. In
salami, some common bacteria in abundance are Lactobacilli and Staphylococci [43].

Salami samples did not seem to have such bacterial growth at the early stages of the
experiment. On day 28, all samples had some spherical and fibrous microstructures. These
structures were not present before day 9; therefore, we assume that they indicate the start
of bacterial growth. Three selected pictures are presented in Figure 4 below.
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3.1.2. LDPE Detection

Initially, all meat samples were measured on day 0 and compared with the charac-
teristic Raman signal of LDPE to understand if there were any overlapping peaks. The
Raman measurements are presented in Figure 5. As can be observed, all 11 Raman peaks
of LDPE are not present in the sample’s spectrum, except from number 4 at 1290 cm−1,
number 10 at 2844 cm−1, and number 11 at 2879 cm−1, where their wavenumbers are close
to sample peaks (1288, 2845, and 2877 cm−1, respectively). Although these Raman peaks
are not different from the ones of LDPE, MPs’ migration can be detected through changes
in those peak intensities.
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Figure 5. Average of reference Raman spectra from meat samples at day 0 and LDPE. Spectra are
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details in each sample. For this reason, the intensity axis is in arbitrary units.

Important Note: All of the meat samples were also measured by ATR/FT–IR spec-
troscopy, but, most probably because of the large spatial spot size, MPs were not detected.
Nevertheless, all ATR/FT–IR instrument description and settings are described in S2.1 and
Figure S1. The results from the sample measurements can be found in the Supplementary
Document (S3.2 and Figure S2) of this work.

As we observe in Figure 6 bellow, almost all Raman LDPE peaks start to appear at on
day 9 in bacon and, on day 12, these peaks continue to appear. This means that we have
detectable migration of MPs from plastic packaging to the bacon surface on day 9. On day
15, the LDPE peaks are reversed, probably because of the presence of bacterial growth of
some developing species [42], causing bacon spoilage [44]. Finally, on day 28, we observe
again the appearance of LDPE peaks, because MPs have accumulated on so many days.
Concurrently, these peaks are not less prominent on day 28, owing to the parallel extended
bacterial growth (see Figure 4).
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Different behavior was found in mortadella meat. As we observe in Figure 7, the first
detection of the migration of MPs was on day 28. Before then, we did not observe any LDPE
peak on days 3, 9, 12 or 15. This fact can be explained as follows: mortadella has a more
uniform fat content distribution with less dense areas than bacon, where the migration of
LDPE was first detected on day 9. Moreover, mortadella was boiled, not smoked or dried,
which has probably caused a significant amount of lipids to be redistributed during the
boiling process. For these reasons, mortadella can be preserved for longer periods in the
fridge, the development of bacterial growth is more difficult, and the migration of MPs is
delayed because of the uniform distribution of lipids. It is noteworthy that mortadella is a
cooked meat product with a shelf life of up to 60 days when stored at 4 ◦C [27,45].

Salami meat was the most stable, concerning the development of bacterial growth,
compared with mortadella and bacon. Migration of MPs was detected sooner compared
with mortadella, but later compared with bacon samples. On day 15, LDPE peaks increased
and were observed for the first time, as can be seen in Figure 8 below. On day 28, these
peaks were less distinct, probably because of the bacterial growth that covers the LDPE
signal (see Figure 8 below).

Based on the spectral differences from day 0, we believe that an interplay between the
LDPE characteristic peaks and the behavior of the Raman signals from the meat samples
could not possibly exist throughout the days. Additionally, the measured LDPE spectral
features have no direct correlation with the spectral features from Raman spectra present in
the later experimental days, where the bacterial growth starts to develop and the spoilage of
the meat begins. These observations, in combination with the fact that the most important
LDPE peaks are present from day 9 in bacon, day 15 in salami, and day 28 in mortadella,
prove that the Raman spectra identified are most probably from the polymer itself. However,
this result is due to Raman instrument sensitivity, which managed to detect those peaks only
after day 9. Migration of MPs from plastic packaging to the surface of cured meat samples
could have possibly started earlier in the timeline even though the concentration of the
polymeric migration may have not been sufficient to be detected with Raman spectroscopy.
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It must be noted that the aim of our work is to show that microplastics indeed migrate
from food packaging to processed food (fatty food) while being kept under refrigerated
conditions. Any correlation with human health is out of the scope of this work and should
be studied in the future.
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4. Conclusions

In this work, we showed that LDPE migration from LDPE food packaging indeed
occurs in three different cured meat samples being kept under refrigeration temperatures
(4 ◦C). We managed to observe this polymeric migration over time, based on Raman
spectroscopy instrumentation. MPs were first identified on day 9 in bacon, later on day
15 in salami, and finally on day 28 in Mortadella. LDPE migration was validated with
Raman spectroscopy, but not through ATR/FT–IR spectroscopy. With Raman spectroscopy,
a simple, fast, and efficient vibrational spectral measurement methodology was developed,
which enabled us to detect the migration of MPs to foodstuffs through Raman signal
analysis. Our findings indicate that MPs migrate from LDPE packaging to processed meat
while being kept under refrigerated storage conditions.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/microplastics1030031/s1, Figure S1: Sample preparation process
for ATR measurement; Figure S2: ATR measurements of meat samples compared with LDPE peaks.
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