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Abstract: We analyze time-of-arrival probability distributions for relativistic particles in the context of
quantum field theory (QFT). We show that QFT leads to a unique prediction, modulo post-selection
that incorporates properties of the apparatus into the initial state. We also show that an experimental
distinction of different probability assignments is possible especially in near-field measurements.
We also analyze causality in relativistic measurements. We consider a quantum state obtained
by a spacetime-localized operation on the vacuum, and we show that detection probabilities are
typically characterized by small transient non-causal terms. We explain that these terms originate
from Feynman propagation of the initial operation, because the Feynman propagator does not vanish
outside the light cone. We discuss possible ways to restore causality, and we argue that this may not
be possible in measurement models that involve switching the field–apparatus coupling on and off.

Keywords: quantum measurement theory; relativistic quantum theory; causality; time in quantum
mechanics

1. Introduction

Finding a consistent quantum description for time-of-arrival measurements is a classic
problem in the foundations of quantum theory. In the simplest time-of-arrival measurement,
a particle is prepared on an initial state |ψ0〉with positive momentum, and localized around
x = 0. A particle detector is placed at x = L. The issue is to determine probability P(t, L)dt
that the detector clicks at some moment between t and t + δt. Despite the apparent
simplicity of the problem, no unique time-of-arrival probability exists [1–3]. Fundamentally,
this is due to the fact that time is not a quantum observable. There is no self-adjoint operator
for time [4]; hence, we cannot rely on Born’s rule for a unique answer.

The time-of-arrival problem is exacerbated for relativistic particles, because it becomes
entangled with another foundational problem, the issue of localization. Particle localization
is essential to any description of measurements, because all particle-detection records
are localized in space and in time. However, the existence of observables associated to
spatial localization is in conflict with the requirement of causality, as evidenced by several
theorems [5–7].

The most well-known set-up where this conflict appears is Fermi’s two-atom problem.
Fermi studied information transmission through a quantum field in a system of two
localized atoms at distance r [8]. He assumed that at time t = 0, atom A is in an excited state
and atom B is in the ground state. He posed a question of when the influence of A will cause
B to leave its ground state. In accordance with the locality principle that space-like separated
events cannot influence each other, he found that this happens only at time greater than r.
However, Fermi’s result was shown to be an artefact of approximation [9]. Later studies
of the problem came to different results that were heavily dependent on approximations.
Eventually, Hegerfeldt showed that the conflict of localization and causality is generic in
relativistic systems [10,11]; it only requires energy positivity and the treatment of atoms as
being localized in disjoint spatial regions—see also the clarification of this result in [12].

Foundations 2023, 3, 724–737. https://doi.org/10.3390/foundations3040041 https://www.mdpi.com/journal/foundations

https://doi.org/10.3390/foundations3040041
https://doi.org/10.3390/foundations3040041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foundations
https://www.mdpi.com
https://orcid.org/0000-0001-7307-5175
https://doi.org/10.3390/foundations3040041
https://www.mdpi.com/journal/foundations
https://www.mdpi.com/article/10.3390/foundations3040041?type=check_update&version=1


Foundations 2023, 3 725

In this paper, we analyze a broad class of probability distributions for the time of
arrival of relativistic particles. This class was identified in ref. [13] through an analysis of
measurements in QFT. Part of our motivation is the possibility of experimentally distin-
guishing between different proposals for time of arrival. We also analyze the structure of
small apparently super-luminal transient terms—analogous to the ones in the Fermi-atom
problem—that appear in the time-of-arrival probability distribution. We identify their
origin and examine their implications for relativistic quantum theory of measurement.

An important reason for studying the time of arrival is that it forces us to re-conceptualize
the description of quantum measurements. Ever since von Neumann [14], measurements
have been described as almost instantaneous processes that occur at a single moment of
time t. In von Neumann-type measurements, the interaction of the apparatus with the
measured quantum system is switched on for a pre-determined time interval—the exact
timing of the measurement is determined by the shape of the switching function. Hence,
the timing of the measurement is an external parameter of the measurement scheme, and
not a random variable of the experiment. This logic has recently been extended to QFT
measurements [15,16]: the measured field and the apparatus are initially uncorrelated, and
they interact only in a finite, predetermined spacetime region.

Time-of-arrival measurements challenge this measurement paradigm. Actual particle
detectors (e.g., photographic plates, silicon strips) have a fixed location in space and
they are made sensitive for a long time interval during which particles may be detected.
Therefore, the location of a detection event is a fixed parameter of the experiment; the
actual random variable is the detection time. Von Neumann-type measurements are
fundamentally incapable of describing time as a random variable, but it turns out that
they can mimic some aspects of time-of-arrival measurements. However, imitations have
limitations: they work only to the lowest order in perturbation theory and eventually lead
to causality problems.

We note that we use the word “causality” exclusively in its temporal sense, namely to
denote temporal relations between two or more events. In relativistic physics, this means
that there should exist no faster-than-light signals. In this paper, the word “causality” does
not have the connotation of one event being a cause of another, a concept that is ill defined
in standard quantum theory.

Our results are the following. First, we re-derive the relativistic time-of-arrival proba-
bilities of ref. [13] in a von Neumann measurement scheme for quantum fields. The original
derivation involved the Quantum Temporal Probabilities (QTP) method [13,17–20] that
explicitly constructed a probability density with respect to time. In the von Neumann
measurement scheme, we use a switching function that is localized in a compact spacetime
region, and we reinterpret the probabilities in order to define a probability density. This
works only to leading the order in perturbation theory. We use this alternative derivation
in order to identify the problems that persist in this treatment of measurements.

Time-of-arrival probability distributions are post selected, i.e., they refer only to
the fraction of particles that has been detected. They depend on the apparatus through
specific operator Ŝ that describes the localization of the detection records. We show that
this operator can be absorbed into a post selection of the initial state. A unique time-of-
arrival probability measure ensues, modulo post selection. This measure was first derived by
Leon [21] and then rederived from a QFT analysis in [17]. In the non-relativistic limit, it
coincides with Kijowski’s time-of-arrival distribution [22].

The measured time-of-arrival probability distribution does depend on the properties
of the apparatus. We analyze the probability measure for an operationally meaningful class
of initial states that was recently proposed, in relation to experiments for distinguishing
between different time-of-arrival proposals. We find that the different distributions are in
principle distinguishable in near-field experiments.

Then, we analyze locality in the derived time-of-arrival probabilities. We consider an
initial state that is generated by a localized external source acting on the quantum field
vacuum. By “localized” we mean that the source has support in a compact spacetime region.
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We find that the time-of-arrival probability has a small but non-zero contribution outside
the light cone of the source’s support. We analyze the origin of this term, and we find
that it originates from the well-known fact that in QFT, sources evolve with the Feynman
propagator. The problem is that Feynman propagator is non-zero outside the light cone.
We argue that von Neumann-type models that rely on switching on the interaction may
not be able to resolve this problem.

Finally, we revisit the QTP description of relativistic measurements and present possi-
ble strategies through which the super-luminal transient terms can be consistently removed.

2. Relativistic Time-of-Arrival Probabilities

In this section, we first re-derive the time-of-arrival probabilities of ref. [13] using a
von Neumann-type account of measurements. We show that these probabilities are unique
modulo post selection, and that the effect of the detector—as determined by its localization
properties—can be distinguished in near-field measurements.

The probabilities derived here follow from a QFT analysis that constraints the cou-
plings of the field to the apparatus. This leads to a specific family of POVMs for the
time-of-arrival probability distribution. At the level of free fields, the QFT analysis provides
no further calculational benefit; in particular, it does not affect post selection. However, it is
essential in order to guarantee that the analysis of causality occurs at the most fundamen-
tal level.

2.1. Detection Probability from a Von Neumann-Type Measurement

We consider the measurement of a free scalar field φ̂(x) on Hilbert space F , inter-
acting with an apparatus described by Hilbert space H. As our focus is time-of-arrival
measurements, we work only in one spatial dimension. The reason is that only particles
that propagate along the axis that connects the source with the detector contribute to the
total probability.

The Hamiltonian of the total system is

Ĥ = Ĥφ ⊗ Î + Î ⊗ ĤA + ĤI , (1)

where Ĥφ is the quantum field Hamiltonian and ĤA the Hamiltonian of the apparatus. We
consider a von Neumann type of measurement, in which the interaction is switched on for
a finite time. Then, we choose an interaction Hamiltonian

ĤI =
∫

dxFt̄,x̄(t, x)φ̂(x)⊗ Ĵ(x), (2)

where Ft̄,x̄(t, x) is a switching function centered around the spacetime point (t̄, x̄), and Ĵ(x)
is a current operator onH. Certainly, the idea of a switching interaction is not realistic in
QFT. Fields interact with the apparatuses through terms defined by the Standard Model of
particle physics, and in a Poincaré covariant theory, the interaction terms are always present.

We assume initial state |ψ〉 for the field and initial state |Ω〉 for the detector. It
is convenient to identify |Ω〉 with the ground state of Hamiltonian ĤA, i.e., to assume
ĤA|Ω〉 = 0, and also to be annihilated by the generator of space translations P̂A of the
apparatus. Then, the probability that the detector is found in an excited state, when
measured after the interaction is switched off, is given by

Prob(t̄, x̄) = 〈ψ0, Ω|Ŝ†
t̄,x̄ Î ⊗ ( Î ⊗ |Ω〉〈Ω|)Ŝt̄,x̄|ψ0, Ω〉, (3)

expressed in terms of the S-matrix Ŝt̄,x̄ = T exp
[
−i
∫

dtdxFt̄,x̄(t, x)φ̂(t, x)⊗ Ĵ(t, x)
]
; φ̂(t, x)

and Ĵ(t, x) are Heisenberg-picture operators and T stands for time-ordering.
To leading order in perturbation theory,

Prob(t̄, x̄) =
∫

dt1dx1dt2dx2Ft̄,x̄(t1, x1)Ft̄,x̄(t2, x2)G(tx, t1; t2, x2)〈Ω| Ĵ(t1, x1) Ĵ(t2, x2)|Ω〉, (4)
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where
G(t1, x1; t2, x2) = 〈ψ0|φ̂(t1, x1)φ̂(t2, x2)|ψ0〉 (5)

is a two-point correlation function for the field.
We take reference point x0 = 0 on the apparatus and we define |ω〉 := Ĵ(0)|Ω〉. Then,

we can write Ω| Ĵ(t1, x1) Ĵ(t2, x2)|Ω〉 = R(t2 − t2, x2 − x1), where

R(t, x) = 〈ω|eiĤAt−iP̂Ax|ω〉

is the detector kernel. The key property of R(t, x) is that its Fourier transform

R̃(E, K) :=
∫

dtdxR(t, x)e−iEt+iKx = 2π〈ω|δ(E− ĤA)δ(K− P̂A)|ω〉 (6)

vanishes for E < 0, by energy positivity for apparatus Hamiltonian ĤA.
In Equation (4), x̄ and t̄ appear as parameters, not as random variables. However,

Equation (4) has a natural interpretation in terms of a probability density. We consider a ho-
mogeneous switching function Ft̄,x̄(t, x) = f (t− t̄, x− x̄), where f (t, x) = exp

[
− t2

2δ2
t
− x2

2δ2
x

]
,

for space and time spreads δx and δt, respectively. Gaussians satisfy identity

f (t, x) f (t′, x′) = f 2
(

t + t′

2
,

x + x′

2

)√
f (t− t′, x− x′). (7)

Then, Equation (4) takes the form

Prob(t̄, x̄) =
∫

dtdx f 2(t̄− t, x̄− x)P(t, x), (8)

i.e., it is a convolution of probability density

P(t, x) =
∫

dsdyR(s, y)
√

f (s, y)G(t− s
2

, x− 1
2

y; t +
1
2

s, x +
1
2

y). (9)

Typically, the detector kernel decays to zero for |t| larger than temporal scale σ̂T or
|x| larger than length scale σx. Both scales depend on properties of the apparatus. Taking
δt >> σt and δx >> σx, the contribution of

√
f can be dropped from Equation (9), so that

P(t, x) =
∫

dsdyR(s, y)G(t− s
2

, x− 1
2

y; t +
1
2

s, x +
1
2

y). (10)

It is important to emphasize that probability density P(t, x) of Equation (10) is mean-
ingful only to the leading order in perturbation theory. We cannot construct a spacetime
density out of higher-order terms in this procedure. This is to be constructed with the QTP
method, briefly described in Section 3, that leads to probability densities at all orders of
perturbation theory.

Equation (10) holds for any scalar field theory. For a free field of mass m,

φ̂(t, x) =
∫ dp

2π
√

2εp
[â(k)eipx−iεpt + â†(k)e−ipx+iεpt], (11)

where εp =
√

p2 + m2.
Equation (10) becomes

P(t, x) = P0 +
∫ dpdp′

2π

ρ(p, p′)
2√εpεp′

R̃
(

p + p′

2
,

εp + εp′

2

)
ei(p−p′)x−i(εp−εp′ )t, (12)
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where ρ̂(p, p′) = 〈ψ|â†(p′)â(p)|ψ〉 is the single-particle reduced density matrix. Term

P0 =
∫ dp

4πεp
R̃(p, εp) (13)

is constant and state independent. It corresponds to vacuum noise, i.e., a background rate
of false alarms. Hence, a detection signal exists only as long as P(t, x) is larger than P0. In
what follows, we ignore P0, except for checking whether transient terms that appear in
P(t, x) are actual detection signals.

2.2. Post Selection with Respect to Recorded Events

Equation (12) is an unnormalized probability density. To normalize, we consider a
set-up where the particle source is in the vicinity of x = 0 and the detector is at x = L, where
L > 0 is a macroscopic distance. In this set-up, the contribution of negative momenta to
P(t, L) is negligible. It is therefore convenient to normalize over initial states with support
only over positive momenta. Then, integrating over t ∈ R, we obtain the total detection
probability for constant L,

Ptot =
∫

dpρ(p, p)
R̃(p, εp)

2p
. (14)

This means that quantity

α(p) :=
R̃(p, εp)

2p
(15)

is the absorption coefficient of the detector, i.e., it expresses the fraction of particles of mo-
mentum p that are absorbed, and hence detected. We note that we integrated t over the
full real axis, because the contribution of t < 0 is very small if the initial state has no
negative momenta. This is an approximation, as only positive values of t are operationally
meaningful.

Conditional probability distribution Pc(t, L) := P(t, L)/Ptot is normalized to unity,
as long as the initial state contains positive momenta. Then, we define the post-selected
density matrix

ρps(p, p′) :=

√
α(p)

√
α(p′)

Ptot
ρ(p, p′). (16)

We note that for an initial pure state, the post-selected state remains pure. Then,

Pc(t, L) =
∫ dpdp′

2π
ρps(p, p′)

√
vpvp′S(p, p′)ei(p−p′)L−i(εp−εp′ )t, (17)

where vp = p/εp is particle velocity. S(p, p′) are matrix elements 〈p|Ŝ|p′〉 of localization
operator Ŝ defined by

〈p|Ŝ|p′〉 :=
R̃
(

p+p′
2 ,

εp+εp′
2

)
√

R̃(p, εp)R̃(p′, εp′)
. (18)

By definition, 〈p|Ŝ| p̂′〉 ≥ 0 and S(p, p) = 1. Its name originates from the fact that Ŝ
describes the localization of an elementary measurement event. Ŝ is a positive operator if
ln R̃(p, εp) is a convex function of p. Then, the Cauchy–Schwarz inequality applies:

〈p|Ŝ|p′〉 ≤
√
〈p|Ŝ|p〉〈p′|Ŝ|p′〉 = 1. (19)

Maximal localization is achieved when Equation (19) is saturated, i.e., for 〈p|Ŝ|p′〉 = 1.
For a pure initial state,
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Pc(t, L) =
∣∣∣∣∫ ∞

0
dpψps(p)

√
vpeipL−iεpt

∣∣∣∣2. (20)

Equation (20) was first derived in [21]. In the non-relativistic limit, it coincides with
Kijowski’s formula [22]. These expressions differ from those obtained by the current
operator Ĵ = 1

2 [v̂δ(x̂− L) + δ(x̂− L)v̂],

PJ(t, L) =
∫ dpdp′

2π
ρps(p, p′)

1
2
(vp + vp′)e

i(p−p′)L−i(εp−εp′ )t. (21)

Unlike Equation (17), Equation (21) does not guarantee the positivity of probabilities.
To understand the meaning of the localization operator, we evaluate its Wigner–Weyl

transform,

S̃(x, p) :=
∫ dξ

2π
S
(

p− ξ

2
, p +

ξ

2

)
e−iξx. (22)

It is straightforward to show that
∫

dxS̃(x, p) = S(p, p) = 1. Furthermore, by
Bochner’s theorem, S̃(x, p) ≥ 0. Hence, S̃(x, p) is a p-dependent probability distribu-
tion with respect to x, which we denote by up(x). This probability distribution defines
the irreducible spread of the measurement record. Maximum localization corresponds to
up(x) = δ(x) [13]. We note that the general form (17) is fixed by the requirement of Poincaré
covariance [23]; however, this requirement does not fix the properties of the localization
operator or its physical interpretation in terms of properties of the apparatus.

We can absorb the localization operator Ŝ through further post selection of the ini-
tial state,

ρ̃ps(p, p′) = S(p, p′)ρps(p, p′). (23)

It is straightforward to show that ρ̃ps satisfies all properties of a density matrix. Hence,
all time-of-arrival probabilities can be brought in the form of (19) modulo post selection of
the initial state.

This uniqueness result has to be interpreted carefully. Uniqueness is not reflected in
the measured probability distributions, which depend strongly on the properties of the
detector. The latter are incorporated in two quantities, absorption coefficient α(p) and
localization operator Ŝ. In principle, we can determine both quantities for any detector:
α(p) is determined by the attenuation coefficient of the detecting medium, while Ŝ can be
determined through time-of-arrival experiments. Hence, both redefinitions, (23) and (16),
make operational sense.

2.3. Wigner Representation

We gain some insight into the structure of the time-of-arrival probabilities by express-
ing them in terms of the Wigner function associated to density matrix ρps(p, p′),

W(x, p) =
∫ dξ

2π
ρps

(
p− ξ

2
, p +

ξ

2

)
e−iξx. (24)

With these definitions, Equation (17) becomes

Pc(t, L) =
∫

dpdx0dx f W(x0, p)up(x f )Ft(L− x f − x0, t), (25)

where

Ft(x, p) =
∫ 2p

−2p
dξ
√
|vp+ξ/2vp−ξ/2|eixξ−i(εp+ξ/2−εp−ξ/2)t (26)

is a function on the classical phase space that represents the quantum time-of-arrival
observable.
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Changing variables to x := x f − x0, we can write Equation (25) as

Pc(t, L) =
∫

dpdxW̃(x, p)Ft(x, p), (27)

where W̃(x, p) =
∫

dx f up(x f )W(x− x f , p) is the Wigner function associated to the post-
selected quantum state ρ̃ps. Hence, the localization operator implements a position smear-
ing of the particle’s Wigner function.

In the non-relativistic limit,

Ft(x, p) = m−1
∫ 2p

−2p
dξ

√
p2 − ξ2

4
eixξ−ipξt/m = vp

π J1(2p|x− vpt|)
|x− vpt| , (28)

where J1 is the Bessel function. We note that Ft takes negative values. This fact does not
contradict the positivity of time-of-arrival probabilities. No probability distribution that is
concentrated in the regions where Ft is negative is a Wigner function for a quantum state.

In the ultra-relativistic limit (m = 0),

Ft(x, p) =
∫ 2p

−2p
dξeixξ−iξt =

sin[2p(t− x)]
p(t− x)

. (29)

These expressions are to be compared with the corresponding classical expression for
the time-of-arrival observable,

Fcl
t (x, p) = δ(t− x/vp), (30)

and the expression obtained from the non-relativistic current operator

F J
t (x, p) =

∫ 2p

−2p
dξ

1
2
(vp+ξ/2 + vp−ξ/2)e

ixξ−i(εp+ξ/2−εp−ξ/2)t = vp
2 sin[2p(x− vpt)]

(x− vpt)
. (31)

The different versions of the time-of-arrival functions in the non-relativistic regime are
plotted in Figure 1 as a function of s := p(x− vpt). The classical time-of-arrival observable
is a delta function at s = 0. Equations (28) and (31) have finite spread around s = 0, and
they differ strongly near s = 0.

2.4. Probability Dependence on the Detector Kernel

One motivation of this paper is the possibility of experimental comparison between
different proposals for time-of-arrival probabilities. To achieve this, we need to specify an
operationally meaningful initial condition. Such a condition was proposed in ref. [24]. In
this work, a strong divergence was suggested of the prediction by Bohmian mechanics
from the predictions of the semi-classical theory for the time of arrival.

The idea is that we prepare a number of particles in a box of width a, and then we
remove one wall of the box (or both) at time t = 0. Then, the initial state is an eigenfunction

of the Hamiltonian for a particle in a box, ψn(x) =
√

2
a sin(πx/an) for x ∈ [0, a], and zero

otherwise; here, an = a/n and n = 1, 2, . . .. Equivalently, in the momentum representation,

ψn(p) = π

√
2
a

an
1 + e−ian p

π2 − a2
n p2 . (32)

To understand the dependence of probability density Pc(t) on the detection kernel, we
consider a simple model, where S(p, p′) = exp[−σ2(p− p′)2], i.e., a detection kernel that
is determined by localization length σ. In Figure 2, we plot Pc(t) for different values of σ;
we also plot the pseudo-probability density (21). We see that the probability densities differ
significantly at early times, and they have the same asymptotic fall-off behavior.
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Figure 1. The time-of-arrival functions (28) (solid) and (31) (dashed) divided by 2E = p2/m as a
function of s := p(x− vpt).

Figure 2. Probability density Pc(τ) as a function of τ := t/(2ma2) for different values of localiza-
tion length σ and for different distances, as well as for pseudo-probability density (21). The plots
correspond to the non-relativistic regime. The insets show the early-time behavior of Pc(t).

We also find that if σ/α << 1, probability distribution Pc(t) essentially coincides with
the maximal localization probability distribution given by Equation (20). We also note that
Distribution (21), defined by the current operator, becomes negative at early times; hence,
it has no operational significance. The differences between the probability distributions
are more pronounced for short distances L, i.e., in the near-field regime. At large distances
L, only distributions with σ/α of order one or larger are distinguishable. The analysis
suggests that it is, in principle, possible to distinguish experimentally between different
probability distributions for the time of arrival in near-field measurements, as it was also
shown in ref. [13].
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3. Causality Issues

In this section, we show that the time-of-arrival probabilities suffer from small transient
super-luminal terms. These terms originate from the fact that unitary evolution implies the
Feynman propagation of sources, and the Feynman propagator does not vanish outside
the light cone. We discuss possible strategies for removing such terms from the theoretical
description, and we argue that this may not be possible in von Neumann-type models of
measurement.

3.1. Apparent Causality Violation

Any theory of relativistic measurements for quantum systems must respect causality,
in the sense that if the system is initially prepared within a localized spacetime region A,
then there should be no detection signal in any region B space-like to A.

To implement this condition, we must first identify initial states that are localized in a
spacetime region. This is a difficult task. First, we know that spatial localization at a moment
of time does not work. Any notion of spatial localization in the single-time quantum state
(even approximate ones) leads to faster-than-light signals [6,7]. This conclusion is not an
artefact of specific models, but a consequence of fundamental properties of relativistic
quantum systems, namely Poincaré covariance and energy positivity.

Rather than spatially localized states, we consider spacetime localized operations. We
assume that the field is initially in the vacuum state |0〉, and that we prepare an initial state
for the time-of-arrival measurement by an external intervention. This intervention has
support in a compact spacetime region that lies wholly before the Cauchy surface t = 0.
Then, we take the resulting state as |ψ0〉 in Equation (5).

The simplest type of external intervention on a field involves the switching on of
a source. This intervention is implemented through the inclusion of a time-dependent
term

∫
dxĈ(x)J(x, t) in the field Hamiltonian. Here, Ĉ(x) is a local composite opera-

tor and J(t, x) is a classical source with support in a compact spacetime region. Then,
|ψ0〉 = T exp[−i

∫
dtdxĈ(x, t)J(x, t)]|0〉.

For Ĉ(t, x) = φ̂(t, x), |ψ0〉 coincides with the field coherent state e−i
∫

dtdxJ(x,t)φ̂(t,x)|0〉,
modulo a phase. Hence, the single-particle wave function is identified with

ψ0(p) =
1√
2εp

∫
dtdxJ(t, x)e−ipx+iεpt. (33)

We note that states of this form cannot have support only on positive momenta; hence, the
probability density Pc(t) is not normalized to unity. Any state with only positive momenta
has a tail in a position that extends up to the location of the detector, and is therefore not
appropriate for testing causality).

We consider a source that vanishes outside the spatial interval [−a, 0] and [−T, 0],
where a > 0 and T > 0. We work in regime a << T, i.e., a spatially localized interaction of
long duration. For concreteness, we take

J(t, x) =
{

δ(x) sin(πt/T), t ∈ [−T, 0]
0, otherwise

. (34)

Then,

ψ0(p) = −πT(1 + e−iεpT)

π2 − ε2
pT2 . (35)

Causality requires that the detection probability at x = L vanishes for all t < L− T. This
condition guarantees that the detector is only influenced by events that happen after the
onset of the external intervention. This turns out not to be the case. Figure 3 shows that
Pc(t) starts becoming appreciably larger than zero slightly before t = L− T and, in fact,
it is non-zero for all times t > 0. The non-causal component is more pronounced in the
near-field regime, i.e., small L.
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Figure 3. The probability density Pc(t) for maximal localization as a function of τ := t/T for
L/T = 10 and mT = 103. The non-causal behavior is manifested in the jump of the probability
density prior to t = L− T.

We emphasize that this type of apparent causality violation is different from ones that
have so far been considered in the literature. Past results focus on the evolution of spatially
localized quantum states at a single moment of time. In contrast, here, we considered a
time-extended external localized intervention. Hence, the causality problem is not an artefact
of using idealizations from non-relativistic theory in describing a fundamentally relativistic
system. It is also not an artefact of perturbation theory. The conditional probability
density Pc(t) that manifests the causality violating terms is of order λ0 with respect to the
field-apparatus coupling λ; higher perturbative corrections are negligible for sufficiently
weak coupling.

This result does not indicate a fundamental failure of causality; rather, it points at
the limitations of von Neumann’s description of measurements, i.e., the description of
measurements in terms of an interaction that is switched on. If we take the quantum
formalism literally, Probability density (3) does not describe a measurement that takes place
at time t̄; t̄ specifies the moment when the field-apparatus is on. Rather, Equation (3) refers
to a measurement that takes place after the field-apparatus interaction is switched-off. Certainly,
this distinction may be unimportant when the interaction time is very small. Indeed, in the
models presented here, the width of the switching function can be made arbitrarily small.

In contrast, if we take the duration of the interaction larger than the distance between
source and detector, no causality problem arises. However, the switching function is
supposed to model a defining feature of a measuring apparatus; it cannot change arbitrarily
if the distance between the source and the apparatus is changed. Hence, no matter how
large the duration of the interaction is, we can always move the detector at a sufficiently
large distance from the source so that the causality problem reappears.

In S-matrix theory, the coupling is assumed to be switched on and off adiabatically.
This means that the effective duration of the interaction is arbitrarily large, and measure-
ment takes place effectively at t → ∞. In this description, transient terms disappear.
However, this is not a solution of the problem, merely a sidestep. In any particle detec-
tor, particles are recorded at specific moments of time, i.e., particle detection is a temporally
localized process.

An adiabatic switching of the interaction fails to localize the measurement event
in time.

Hence, we conclude that von Neumann-type measurement models cannot account
for a fundamental observed feature of the particle detection process, namely that particle
detection is localized in time.
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One possible way of restoring causality is by showing that the causality violating terms
are impossible to measure, as a matter of principle. This resolution is conceivable, because
QFT measurements are invariably characterized by false alarms, i.e., spurious detection
events. Such events essentially define an irreducible background noise that persists even
if the field is in the vacuum state. A detection signal exists only if it leads to a significant
spike of recorded events over the noise background. This means that the super-luminal
transient terms may be ignored if they contribute to probability less than the noise term
due to vacuum.

In the present model, this noise is expressed by the constant background P0 of
Equation (13). This term is quite strong; in fact, it drowns a large part of the signal in
the ultra-relativistic regime, and not only the transient terms. The strength of this term is an
artefact of coupling switching. A realistic model for the apparatus must take into account
that the initial state of the apparatus is correlated with the field vacuum, i.e., it is a dressed
state. Term P0 of Equation (13) incorporates also the equilibration of the apparatus with the
field vacuum when the coupling is switched on. This equilibration is a spurious process. In
the full description, the initial state of the apparatus is already equilibrated with the field.
This implies that the restoration of causality through a signal/noise analysis requires a
more nuanced approach to quantum measurements, beyond the use of switching functions.
In Section 3.3, we argue that such an analysis is feasible in the QTP approach.

3.2. Retarded Propagator versus Feynman Propagator

For the initial state (33), the detection probability becomes

P(t, x) = P0 +
∫

dsdyR(s, y)
[

2Re
[
(∆F J)(t− s

2
, x− 1

2
y)(∆F J)(t +

1
2

s, x +
1
2

y)
]

+(∆F J)(t− s
2

, x− 1
2

y)(∆F J)∗(t− s
2

, x− 1
2

y)
]

. (36)

Here, ∆F J(t, x) stands for
∫

dt′dx′∆F(t− t′, x− x′)J(t′, x′), where

∆F(t, x) =
∫ ∞

−∞

dp
4πεp

eipx−iεp |t| (37)

is the Feynman propagator. The reason for the non-causal terms in the probability assign-
ment is that the Feynman propagator does not vanish outside the light cone.

The causal solutions to the Klein–Gordon equation with a source, �φ − m2φ = J,
are retarded solutions, i.e., they are generated from J through the retarded propagator,
φ(t, x) =

∫
dx′∆ret(t′, x′)J(t, x). The retarded propagator ∆ret is simply the imaginary part

of Feynman propagator

∆ret(t, x) =
∫ ∞

−∞

dp
4πεp

eipx sin(εp|t|), (38)

and it vanishes outside the light cone, i.e., for |x| > |t|.
In classical field theory, the restriction to retarded solutions is implemented as a

boundary condition. This condition breaks the time-reversal invariance of the evolution
equation; it defines an arrow of time. There are two main explanations for the emergence of
this arrow: either it is a consequence of thermodynamic time asymmetry, or the boundary
conditions must be specified at the cosmological level—see the analysis in Chapter 2 of [25].

Certainly, if we substitute ∆F with ∆ret in Equation (36), the problem of causality is
resolved. Analogous substitutions have been proposed in the context of photo-detection
theory, in order to cure Glauber’s model from the transient super-luminal terms [26–29]).
This amounts to a substitution of e−i(εp−εp′ )t with sin[(εp − εp′)|t|] in Equation (12).

If we make this substitution, we cannot normalize probability density Pc(t) by inte-
grating t along the whole real axis. The error due to the inclusion of negative times exactly
equals the error in the substitution of ∆F with ∆ret in Pc(t). The two error terms do not
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cancel, but they add up. Still, for a large class of initial states, the correction in the total
probability is small, so it is meaningful to define the post-selected density matrices (14)
and (16), and write the causally corrected version of Equation (18),

Pc(t, L) =
∣∣∣∣∫ ∞

0
dpψps(p)

√
vpeipL−iεpt

∣∣∣∣2 − ∣∣∣∣∫ ∞

0
dpψps(p)

√
vpeipL+iεpt

∣∣∣∣2, (39)

modulo the fact that Probability density (39) is not normalized to unity.
The problem is that the substitution of ∆F with ∆ret is equivalent to the substitution

of evolution operator e−iĤφt for the field with operator K̂t = e−iĤφt − eiĤφt which is non-
unitary. Not only is such a substitution completely ad hoc, it also contradicts the basic rules
of quantum theory. Furthermore, K̂t makes no sense as the evolution of an initial state,
because K̂0 = 0. As long as we use a measurement model in which the instant of detection
is determined by the Hamiltonian, the sources are Feynman propagated, and probabilities
cannot be cured from super-luminal transients. A resolution requires, at the very least, an
incorporation of time-irreversibility in the description of measurement in order to obtain
some version of causal propagation.

3.3. Causal Propagation versus Restricted Propagation

Next, we describe the QTP approach to quantum field measurements [13,17,20] because
it has the potential to resolve the spurious superluminality problem from first principles. In
QTP, detection probabilities are genuine densities with respect to the space-time coordinates,
and the interaction between system and apparatus is always present. The key point here
is that the propagator for an initial source is not the Feynman propagator. A resolution of
the superluminality problem within QTP requires an explicit modeling of the macroscopic
apparatus in a way consistent with thermodynamic irreversibility. This is taken up in a
different publication.

In QTP, we describe measurement events as a transition between two complementary
subspacesH+ andH− of Hilbert spaceH = H+ ⊕H−. SubspaceH+ describes the states
of the system that are compatible with the realization of the event under consideration. If
the event is a detection of a microscopic particle by a measuring apparatus, then subspace
H+ corresponds to all states of the apparatus compatible with a macroscopic detection
record. We denote the projection operator onto H+ as P̂ and the projector onto H− as
Q̂ := 1− P̂.

Transitions that are correlated with the emergence of a macroscopic record of obser-
vation are logically irreversible. Once they occur, and a measurement outcome is recorded,
further time evolution of the system does not affect our knowledge.

After transition occurs, a pointer variable λ of the measurement apparatus takes a
definite value. We let Π̂(λ) be positive operators that correspond to the different values of λ.
For example, when considering transitions associated with particle detection, the projectors
Π̂(λ) may be correlated to the position or to the momentum of the microscopic particle.
Since λ has a value only under the assumption that a detection event occurred, alternatives
Π̂(λ) span subspaceH+ and not the full Hilbert spaceH. Hence, ∑λ Π̂(λ) = P̂.

Assuming that the systems is prepared in state |Ψ0〉 ∈ H−, and that the Hamiltonian
is Ĥ, probability distribution P(λ, t) that the transition took place at time t and an outcome
λ was recorded is

P(λ, t) =
∫

dτ〈Ψ0|Ĉ†(λ, t− τ

2
)Ĉ(λ, t +

τ

2
)|Ψ0〉, (40)

where the class operator

Ĉ(λ, t) := eiĤt
√

Π̂(λ)ĤŜt (41)

is defined in terms of restricted evolution operator Ŝt which is the continuous limit of
product Q̂e−iĤt/NQ̂e−iĤt/NQ̂ . . . Q̂e−iĤt/NQ̂ as number of steps N continues to infinity. By
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the Mishra–Sudarshan theorem [30], Ŝt is a unitary operator onH− in this limit. However,
one may modify the definition, for example, by regularizing the product so that there is
an effective minimal time τ—see, for example, the analysis of Ref. [31]. Then, Ŝt may be
non-unitary.

It is important to emphasize that Equation (40) is a genuine probability density with
respect to both λ and t [17]. The derivation of Equation (40) requires the assumption of
decoherence in the measuring apparatus.

We note that P(λ, t) vanishes if for [P̂, Ĥ] = 0. We consider Hamiltonian Ĥ = Ĥ0 + ĤI ,
where [Ĥ0, P̂] = 0, and HI a perturbing interaction. Since all transitions are due to ĤI , to
the leading order in the perturbation,

Ĉ(λ, t) = eiĤ0t
√

Π̂(λ)ĤIe−iĤ0t. (42)

When we use Equation (42) for the measurement model of Section 2.1, and we take λ to
coincide with position x of a record, we obtain Equation (12). The derivation is conceptually
more rigorous here, because Equation (40) is a genuine probability density to all orders
of perturbation theory. Furthermore, the interaction is always present; no switching is
necessary in order to specify the instant of detection.

There are two distinct ways that the QTP approach to measurements could resolve the
superluminality problem. First, in QTP, we can employ a dressed state for the apparatus,
i.e., we may employ a non-factorized initial state |Ψ0〉 for the field–apparatus system. In
perturbation theory, |Ψ0〉 = |Ω, ψ0〉+ |χ〉, where |χ〉 is a correction to the leading order in
the coupling. A first-principle identification of |χ〉 allow us identification of the vacuum
noise for the measurement. Thus, we are able to check whether the super-luminal transients
are strongly dominated by noise and are hence unobservable.

Second, in QTP, the initial state is propagated by restricted propagator Ŝt. This implies
that for states derived by localized source J(x, t), the source is Feynman-propagated only
at the tree level; higher-order terms incorporate contributions from the apparatus through
projector Q̂. We conjecture that these contributions will introduce desired time asymmetry
in the evolution of J(x, t) that may lead to a suppression of transient terms.

4. Conclusions

We presented our motivation and our results in the introduction. Here, we want to
iterate the importance of a consistent formulation of a QFT measurement theory in order
to provide a first-principle construction of relativistic quantum information [19,20]. Such
formulations are also important for the consistent description of proposed quantum optics
experiments in space [32,33]. These are characterized by very long baselines, and they can
explore fundamental issues of relativistic locality and causality at a fundamental level.

The issues analyzed in this paper are challenges to any QFT measurement theory. Any
such theory must provide specific predictions for time-of-arrival experiments, because in
most of our measurements, the location of the detector is fixed and detection time is a
random variable. The theory must also be consistent with locality and causality. This means
that it must provide an explicit recipe for writing the initial state that corresponds to a given
measurement set-up and then specify the associated probabilities. Superluminal transients
must either be removed from the predicted probabilities or drowned by vacuum noise.
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