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Abstract: Ensuring the humane harvest of farmed fish without compromising the quality of the fresh
product is paramount to the welfare of fish and in meeting consumer demands. Electrical stunning is
a quick and effective way to render fish unconscious and it has emerged as the suggested harvest
method by EFSA and OIE. The present study evaluated the effects of electrical stunning on the
biochemical processes that lead to fillet degradation postmortem, in the red seabream (Pagrus major).
Two distinct electrical stunning conditions (low and high) were compared along with the conventional
harvest method (an ice slurry). The activity patterns of calpain, collagenase, and cathepsin B and L
were assessed and compared to stereological changes in white muscles at different time points up to
13 days post-harvest. Histological examinations, independent of the harvest technique, revealed a
progressively declining trend in fiber volume density and increasing interfibrillar spaces over time,
indicative of degradation activity within and between the muscle fibers. Strong correlations between
the stereological measures and the individual protease activities were recorded. The higher current
condition (electric field 1.8 V/cm and velocity 1.6 m/s) consistently exhibited the lowest protease
activity levels and the slowest pace of stereological changes, making it the suggested method of all
harvest methods explored.
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1. Introduction

Fish is a nutritious and healthy food product with a high market demand that is
rapidly increasing [1]. Aquaculture production is expected to double by 2030 to meet these
high demands [2]. Fresh fish rank among the most perishable animal food products due
to endogenous fish proteases, microbial activities, and lipid oxidation [3]; extending their
shelf-life is key to resilient supply chains and the ecological footprint of fresh products.
The proteolytic cleavage of structural proteins in myofibrils and the extracellular matrix
connecting them occurs postmortem, reducing muscle collagen and disassembling the
myofibrils. As a result, a softening of the fillet and a gaping in the myocommata is
observed [4]. Proteases, such as collagenases, are responsible for degrading the native
triple helix of collagen, while lysosomal cathepsins and cytoplasmic calpains extend the
disassembly of the myofibril complex-cleaving proteins of the myofibril, such as Z-Disk,
desmin, etc. [5,6].

Handling and harvesting methods are known to induce stress, compromising fish wel-
fare and their quality attributes post-harvest. Handling stress pre-harvest has been found
to have an extreme effect on muscle pH accompanied by a rapid onset of rigor mortis [7].
This may enhance protein denaturation, leading to easier access to protein substrates for
proteolytic enzymes, faster muscle softening, and impaired organoleptic quality of the final
product [8]. Reduced stress prior to slaughter has been proven to have a positive influence
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on flesh quality in various farmed fish species, including Atlantic salmon [9], trout [10],
eel [11], turbot [12], red seabream, gilthead seabream, and European seabass [13].

The available slaughtering procedures vary greatly. In most cases, removal from water
followed by asphyxiation in an ice slurry is employed to slaughter farmed marine fish in
Europe [13] and is known to cause excessive stress to harvested fish before killing them via
hypothermia [14]. Research shows that immersion in cold water and crowding are stressful
for many fish, raising cortisol levels and heart rate; in some species, aversive behavior is
observed [15–17].

Crowding, air exposure, and extreme hypothermia as attributes of the slaughtering
process in fish farms underline the need for a less stressful, more humane, harvest method
while maintaining the high quality of the fillet. This has led to exploring novel harvest
methods, such as electrical stunning, a method suggested by both the EFSA and OIE [18].
Electrical stunning has been found to be a quick and effective way to render fish uncon-
scious [19]. The main premise of electrical stunning is to pass enough current into the
brain, inducing an epileptic-like fit, resulting in brain function loss [20]. The effectiveness
of electrical stunning can be ascertained by previous studies by assessing brain and heart
activity [17,21]. However, injuries associated with the electrical field strength, the duration
of the current, the conductivity of the water, and the fish species [22,23], such as blood
spots on the fish, are commercially unacceptable, lowering the market value [13].

Mediterranean marine fish farming is dominated by gilthead seabream and European
seabass. Only a small percentage (3%) of the market share is about other species, including
red seabream (Pagrus major). Yet, the dynamic of red seabream is strong and constantly
growing with an annual growth rate of 12.3% (2015–2019), making it a species of high
market value with great prospects [24]. The objective of this study was to evaluate the
effects of different electrical stunning conditions on the post-mortem biochemical processes
that underlie the fillet’s histological changes, connected to fillet quality, in order to make
electrical stunning a realistic option for red seabream harvesting.

2. Materials and Methods
2.1. Ethics Statement

All examined biological materials were derived from fish reared and harvested at
commercial farms, registered for aquaculture production in EU countries. Animal sampling
followed routine procedures and samples were collected by a qualified staff member from
standard production cycles. The legislation and measures implemented by the commercial
producers complied with existing national and EU (Directive 1998/58/EC) legislation
(protection of animals kept for farming).

2.2. Fish Sampling

The experiment was performed at the installations of Nireus S.A., currently AVRA-
MAR S.A., in Astakos, Aitoloakarnania, Greece, in August 2020, at a water temperature
of 25 ◦C. Red seabream were farmed in a rectangular cage (7 m × 7 m and 8 m in depth).
The stocking density of red sea bream was 10 kg/m3 and the fish weight at harvest was
800–1200 g. Fish were killed by either hypothermia through chilling on an ice slurry (CS),
which is the harvesting method currently used, or electrical stunning, which is the alternate
recommended method considered more humane. In the case of electrical stunning, the fish
were crowded in the net and pumped with a fish pump (1080-P; Aqua Life) connected in
line with an electrical stunning machine (HSU stunner, Aquatech). Fish were separated
from marine water using a stainless-steel dewatering device to remove excess water. The
electrodes on the apparatus were parallel and extended to the full width and height of the
water, where the fish were orientated so their head–tail axes were perpendicular to the
direction of the electric field [22]. Finally, the fish were killed in an ice slurry. A free-view
video demonstrating the structure and function of the device is available on YouTube (URL:
https://www.youtube.com/watch?v=pgLBUpul1Ps, accessed on: 20 October 2022).

https://www.youtube.com/watch?v=pgLBUpul1Ps
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Two different electrical stunning settings were compared with the conventional harvest
method (CS); a higher current treatment (HC), with an electric field of 1.8 V/cm and passage
velocity of 1.6 m/s; and a lower current treatment (LC), with an electric field of 1.5 V/cm
and passage velocity 1.6 m/s. The higher current appeared to be more effective at keeping
the fish stunned until their deaths. More details regarding the water conductivity and the
features of the nature of the electrical stunning can be found in Table 1. In the ordinary
slaughtering method, fish were harvested with a brail, exposed to air for a few seconds,
and killed in an ice slurry.

Table 1. Properties of the electric field applied in electrical stunning; the water conductivity, waveform
type, amperage, electric field, and frequency for each electrical stunning (LC: Lower current treatment;
HC: Higher current treatment) setting are shown; the velocity, exposure, and length of the water pipe
are also specified.

Properties LC HC

Water Conductivity 50 ms/cm 50 ms/cm
Waveform AC (sinusoidal voltage) AC (sinusoidal voltage)
Amperage 27 A 48 A
Electric field 1.5 V/cm 1.8 V/cm
Frequency 1000 Hz 1000 Hz
Velocity 1.6 m/s 1.6 m/s
Exposure 9 s 9 s
Water pipe length 14 m 14 m

Fish were packed as a whole without bleeding in polystyrene boxes filled with ice
flakes and transported to the Department of Biochemistry and Biotechnology, University
of Thessaly. Upon arrival, the boxes were stored isothermally at 0 ◦C in high-precision
(±0.2 ◦C) professional low-temperature incubators. White muscle samples from the areas
below the dorsal fins were extracted from eight individuals at each sampling point; harvest
day (day 0) and on days 1, 2, 5, 7, 13 post-harvest.

2.3. Proteolytic Enzyme Activities

Samples of white muscles were collected, snapped-frozen in liquid nitrogen, and
stored at −80 ◦C until the preparation of enzyme extracts and the determination of the
activities of calpain, collagenase, cathepsin B, and cathepsin L.

A crude enzyme extract was prepared for cathepsin determination by homogenizing
minced muscle in a 1:2 ratio with cold water (4 ◦C). The homogenate was centrifuged
at 14,600× g (4 ◦C) for 20 min, and the supernatant was kept at −80 ◦C until further
analysis [25]. For the determination of calpain and collagenase activities, crude enzyme
extracts were obtained according to Chéret et al. with slight modifications [6]. Samples
were homogenized in 500 mM Tris-HCl (pH 7.5), 10 mM β-mercaptoethanol, and 1 mM
EDTA at a ratio of 1:3. The homogenate was centrifuged at 10,000× g for 40 min (10 ◦C),
and the supernatant was transferred and stored at −80 ◦C until enzymatic analysis.

Calpain, collagenase, and cathepsins B and L activities were measured using the Barret
and Kirschke method with minor refinements [26]. L-methionine-AMC trifluoroacetic salt
in DMSO and Suc-Gly-Pro-Leu-Gly-Pro-AMC in DMSO were used as substrates for calpain
and collagenases, respectively. Enzyme extracts were mixed with the substrate solution
in 100 mM bis-Tris, 5 mM CaCl2 pH 6.5. Z-arginine-arginine-7-amido-4-methyl-coumarin
hydrochloride and Z-phenylalanine-arginine-7-amido-4-methylcoumarin hydrochloride
were used as substrates for cathepsin B and cathepsin L, respectively. The enzyme extract
was mixed with the substrate solution (100 mmol/L Tris-HCl, 20 mmol/L EDTA, 4 mmol/L
DTT, pH 6.5). In all assays, 7-amino-4-methylcoumarin (AMC) was released as the final
product and its concentration was determined in all the enzyme assays (excitation = 360 nm,
emission = 460 nm) using a spectrofluorometer (Varioskan™ LUX multimode microplate
reader, Thermo Fisher). The protein content of the crude extracts was quantified via
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the Bradford method, in duplicates, and using bovine serum albumin as a standard [27].
Enzymatic activity was expressed as the fluorescence unit (FU) change per minute per mg
protein. Two replicates per sample were performed [28].

2.4. Stereological Analysis

Samples for the histological analysis were obtained from red seabream on the harvest
day (day 0) and days 7 and 13 post-harvest. Freshly dissected tissue was merged in cold
4% formaldehyde (PFA in PBS) pH 7.4 and stored overnight at 4 ◦C. Subsequently, PFA
was washed twice with cold 1× PBS while shaken. Samples were then stored at −20 ◦C
until embedding. Samples were dehydrated by graded ethanol and xylene in a series of
washes with increasing concentrations and included in paraffin. Samples were embedded
in molten paraffin (58 ◦C); serial transverse microsections (6 µm) for each sample were
prepared, placed on glass slides, and dried at room temperature overnight [29].

Sections were stained with hematoxylin and 1% eosin Y after dewaxing in xylene,
rehydrated through baths of decreasing ethanol concentrations (100%, 95%, and 70%),
and immersed in distilled water. Following staining, sections were dehydrated through
increasing concentrations of ethanol washes (70%, 95%, and 100%) [29].

Multistage sampling and morphometrical evaluation were performed according to
the principles of Weibel et al. (1969) and Weibel (1979) [30,31]. Three tissue blocks were
prepared from each individual sample. One block was selected at random and serial
sections were prepared. Five (5) randomly chosen sections were observed by using a light
microscope coupled to a digital camera (100×). Captured images were analyzed using Fiji
packages incorporated in ImageJ software [32].

The number of white muscle fibers per unit area and volume densities of white muscle
fibers and inter-fiber spaces were determined by standard histological methods and stereol-
ogy. Volume densities were estimated by placing a lattice of test points (PT) on micrographs
of the 10 µm2 area and determining the fraction (Pi/PT) of these points enclosed within
profiles of the muscle fibers (Pm) and in the inter-fiber space (Ps), respectively. The average
single fiber volume density was calculated by dividing the total white muscle volume
density by the number of fibers in the examination area.

2.5. Statistical Analysis

A statistical analysis of the harvest method and enzymatic activities of calpain, colla-
genase, cathepsin B, and cathepsin L were performed by R packages [33]. Firstly, summary
statistics were carried out and min, max, mean, median, and standard deviations were
calculated. Data normality was checked using a Shapiro–Wilk test; since our data devi-
ated from the normal distribution, non-parametric tests were conducted. Kruskal–Wallis
test was by rank and a non-parametric alternative to the one-way ANOVA test was per-
formed since the assumptions of the one-way ANOVA test were not met for either the
time post-harvest or the harvest method as factors. Significance was determined by a
p-value < 0.05. Furthermore, statistical dependencies between the rankings of two variables
were computed using Spearman’s rank correlation coefficient. Coefficients were plotted
using the corrplot function, where positive correlations are displayed in blue and negative
correlations in red color. The color intensity and the size of the circle are proportional to
Spearman’s correlation coefficient (rho).

3. Results and Discussion
3.1. Enzymatic Activity Analysis

Following harvest, blood circulation, oxygen supply, and defense mechanisms are
violently disrupted in fish. The ATP required for breaking the actin–myosin cross-bridges
during muscle relaxation is depleted and the fish go into rigor mortis, and at the same
time, lactic acid is produced, leading to a decrease in the pH levels [4]. This underlies
the activation of calpains, cathepsins, and collagenases, which are enzymes that hold the
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key to the loss of the fillet’s texture and freshness [34] by degrading muscle proteins and
connective tissue [35].

Cytoplasmic calpains are the first to be activated, leading to the degradation of the
Z-disk. In the present study, calpain activity levels varied significantly between sampling
days in all harvest methods (Figure 1). The variation pattern was differentiated from
the harvest method. Significantly higher calpain activities were recorded in CS and LC
specimens on harvest day compared with HC. HC electrical stunning elicited the lowest
on-average calpain activity throughout the sampling period, unlike LC, which led to the
highest overall calpain activity on day 2. This early activation pattern of calpain has also
been recorded in previous studies in other marine fishes [28,36,37].
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Figure 1. Enzymatic activity of calpain in all sampling days per harvest method. CS (gray): control
group, LC (orange): low current group, HC (red): high current group. Superscripts indicate statisti-
cally significant differences between sampling days in each harvest method (ns: p > 0.05, NS. = 1,
*: p < 0.05, **: p < 0.01, ***: p < 0.001).

Moreover, significantly higher collagenase activities were recorded in CS and LC
specimens on harvest day compared with HC (Figure 2). The highest collagenase activity
was also recorded on day 2 post-harvest in CS and LC specimens (Figure 2). HC elicited the
lowest on-average collagenase activities. Interestingly, calpain and collagenase appeared to
share a similar activation pattern (Figures 1 and 2), in agreement with a previously recorded
study on grass carp stored on ice [38].
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Electrical stunning, although improving the killing conditions of fish, has been shown
to cause a decrease in muscle pH peri mortem due to intense muscle stimulation and
subsequent production of lactic acid from glycogen, and may, therefore, have a strong
mobilization effect on cathepsins, thus hastening the beginning of their proteolytic action,
having adverse effects on the fish fillet quality [12]. However, no significant differences
were recorded in cathepsin L activity in the present study between the harvest methods
on harvest day. Subsequently, the activity in HC specimens followed a decreasing trend
throughout the sampling period (Figure 3). The activation pattern of cathepsin L in CS and
LC specimens was different, with the highest activity on average observed in LC specimens
(Figure 3).
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Different patterns of activation were observed in cathepsin B (Figure 4). HC specimens
exhibited the lowest activity on harvest day (day 0), and after a peak on days 1 and 2,
it decreased to the lowest levels by day 13. On the contrary, cathepsin B activity in CS
specimens was the highest on day 0 and day 13 (Figure 4). Previous studies on seabass
have shown that a combination of cathepsin B, D, and L effectively degrades the myosin
heavy chain, actin, α-actin, desmin, troponin T, and tropomyosin, as these three can
also act synergistically [5]. This fact can possibly interpret the high positive correlation
(0.48 < r < 0.77) observed between the two enzymes, regardless of the sampling day.
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3.2. Stereological Analysis

The number of muscle fibers, the average single fiber volume density, and the volume
density of the inter-fiber space were determined. Muscle fibers are the basic structural
and functional units of striated muscle tissues. Myofibrils, or muscle fiber subunits, run
longitudinally and parallel to each other in each muscle fiber. The structural and functional
units of the myofibrils, take up the majority of the muscle fiber volume [39] and they are
the targets of the endogenous proteases. Thus, flesh softening and loss of texture are mainly
due to the muscle histological changes brought about by the action of proteases on muscle
proteins and connective tissues [35].

The number of muscle fibers in the 10 µm2 area examined in this study significantly
decreased between day 0 and day 7 regardless of the harvest method. A histological ex-
amination is a reliable tool used to prove how freezing and storage can affect the muscle
structure. During storage, the distance between muscle fibers is increased due to physico-
chemical changes and enzymatic activity [39,40]. The number of fibers decreased further
between day 7 and day 13 and this decrease was significant in groups CS and LC (Figure 5).
As a result, the HC group exhibited the highest number of muscle fibers on day 13.
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Figure 5. Number of white muscle fibers in the 10 µm2 area in sampling days per harvest method. CS
(gray): Control group, LC (orange): Low current group, HC (red): High current group. Superscripts
indicate statistically significant differences between days in each harvest method (NS. = 1, *: p < 0.05).

Changes in the number of muscle fibers within a standard area can be the result of
changes in the average volume, changes in the intermyofibrillar space, or a combination of
both. In the present study, the average single fiber volume density increased between days
0 and 7, irrelevant of the harvest method (Figure 6). This increase was significant in electro-
stunned groups LC and HC, and it may be due to osmotic phenomena following changes
in the intracellular membrane permeability and disruption of ion balance in the cytoplasm
as reported in previous studies [34,41]. From this point onward, a significant decrease
in average single fiber volume density followed in all groups by day 13 post-harvest,
indicative of the intense degradation processes within the muscle fibers.

Proteases are principally responsible for the degradation of collagenous tissue, includ-
ing the perimysium and endomysium connective tissues, as well as proteins located in
the Z-line and H-zones. This can lead to an increased distance between muscle fibers [42].
The space between the muscle fibers increased significantly between sampling days in all
harvest methods (Figure 7).

The muscle cross-sections in Figure 8 show the temporal changes in the histological
phenotype. Notably, on day 0 (harvest day), there was a rather regular dispersion of muscle
fibers and a compact shape. On day 7, inter-fiber spaces were enlarged probably due to
loss of connective tissues, and some fibers appear to be damaged. Finally, by day 13 post-
harvest, there was a greater loss of connective tissue, with fibers significantly separated
and highly fragmented.
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phenotype. Notably, on day 0 (harvest day), there was a rather regular dispersion of mus-
cle fibers and a compact shape. On day 7, inter-fiber spaces were enlarged probably due 
to loss of connective tissues, and some fibers appear to be damaged. Finally, by day 13 
post-harvest, there was a greater loss of connective tissue, with fibers significantly sepa-
rated and highly fragmented. 

Figure 6. The volume density of single white muscle fibers in sampling days per harvest method. CS
(gray): control group, LC (orange): low current group, HC (red): high current group. Superscripts
indicate statistically significant differences between days in each harvest method (ns: p > 0.05,
*: p < 0.05).

Previous studies indicated that fish myocommata disintegration is caused by the
degradation of matrix proteoglycans, by proteases, resulting in the structural breakdown of
the collagen [43]. No significant differences between sampling methods were recorded on
harvest day and seven days later. By day 13, the space enlargement between muscle fibers
had progressed, yet it was lower on average in the HC group, indicative of lower rates of
disassembly of the myofibril complex and degradation of the connective tissue. A pattern
was also revealed, showing a constant negative correlation between collagenase, the enzyme
that degrades the collagenous fibrils. Likewise, the other proteolytic enzymes (calpain,
cathepsin B and L) showed correlation patterns similar to collagenase, indicating that these
enzymes likely function in a complimentary and synergistic way during the degradation
of myofibrillar proteins (Figure 9) [44]. As a result, a constant positive correlation on all
sampling days between all four proteolytic enzymes and the volume density of the inter-
fiber space were recorded along with a similar negative correlation between the proteolytic
enzymes and the volume density of single white muscle fibers (Figure 8).
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in white muscle structure did not differentiate from the harvest method.
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Figure 9. Pairwise correlation coefficients of proteolytic enzymes and muscle fiber properties in the
control group (D0 CS: control group day 0, D7 CS: control group day 7 post-harvest, D13 CS: control
group day 13 post-harvest), low current treatment group (D0 LC: low current treatment group day 0,
D7 LC: low current treatment group day 7 post-harvest, D13 LC: low current treatment group day
13 post-harvest) and high current treatment group (D0 HC: high current treatment group day 0, D7
HC: high current treatment group day 7 post-harvest, D13 HC: high current treatment group day
13 post-harvest) treatment groups. SFVF: single fiber volume fraction, EVF: extracellular volume
fraction, CTSB: cathepsin B, CTSL: cathepsin L. Spearman’s correlation coefficient (rho) is shown. The
intensity of the color and the size of the circle are proportional to the correlation coefficient.

4. Conclusions

Electrical stunning is recognized as a more humane and less stressful method for
fish slaughter, as long as the electric field settings do not affect the quality of the fish
post-harvest. In the present study, HC elicited the lowest proteolytic activity of calpain,
collagenase, and cathepsin. A correlation between these enzymes with stress and pH levels
was previously described [45,46]. Papaharisis et al., using a similar electrical stunning
method on red seabream, found statistically significantly lower mean cortisol levels in
the electrical stunning group [13]. The significant differentiation of proteolytic activity at
HC conditions compared with the other methods explored here was also evident in the
white muscle histology. Overall, the results of the present study support that electrically
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stunning red seabream via an electric field of 1.8 V/cm and a velocity of 1.6 m/s leads to
lower activities of endogenous proteases and delayed fillet degradation compared with
other harvest methods.
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