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Abstract: The simple assembly line balancing (SALB) problem is a significant challenge faced by
industries across various sectors aiming to optimise production line efficiency and resource allocation.
One important issue when the decision-maker balances a line is how to keep the cycle time under
a given time across all cells, even though there is variability in some parameters. When there are
stochastic elements, some approaches use constraint relaxation, intervals for the stochastic parameters,
and fuzzy numbers. In this paper, a three-part algorithm is proposed that first solves the balancing
problem without considering stochastic parameters; then, using simulation, it measures the effect of
some parameters (in this case, the inter-arrival time, processing times, speed of the material handling
system which is manually performed by the workers in the cell, and the number of workers who
perform the tasks on the machines); finally, the add-on OptQuest in SIMIO solves an optimisation
problem to constrain the cycle time using the stochastic parameters as decision variables. A Gearbox
instance from literature is solved with 15 tasks and 14 precedence rules to test the proposed approach.
The deterministic balancing problem is solved optimally using the open solver GLPK and the Pyomo
programming language, and, with simulation, the proposed algorithm keeps the cycle time less than
or equal to 70 s in the presence of variability and deterministic inter-arrival time. Meanwhile, with
stochastic inter-arrival time, the maximum cell cycle is 72.04 s. The reader can download the source
code and the simulation models from the GitHub page of the authors.
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1. Introduction

In the time of supply chain (SC) digitalisation, or Industry 4.0, it is relatively easy to
track events that happen throughout the SC’s stages. Therefore, nowadays, SC managers
must understand, monitor, and control the operations of sourcing, logistics, production,
and retail delivery [1]. From the production point of view, one important event is delivering
products to the customer on time and in the correct quantity. Thus, production managers
must set a cycle time to produce enough to meet the demand in the available time (e.g., an
eight-hour shift). To this end, engineers in manufacturing (since Henry Ford’s time) devel-
oped the assembly lines that have been frequently cited as one of the greatest inventions of
the modern era due to their ability to increase productivity [2].

In the manufacturing engineering literature, this is known as the assembly line balanc-
ing problem (ALB), in which a product is fully assembled once all the required operations or
tasks (to produce it) are completed in a specific order. The ALB problem aims to distribute
the tasks among the available manufacturing cells to achieve a balanced workload and
maximise utilisation, defined as the amount of time for which the cell is not idle. Mass man-
ufacturers use assembly lines in various industrial sectors, including the manufacturing of
white goods, consumer electronics, lorries, and aeroplanes [3].
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Solving the ALB problem is not easy because there are a lot of constraints such as
limited resources, process variabilities, and precedence relationships. Still, when they are
optimised, the operating costs decrease, making the company more competitive [4]. From
the optimisation point of view, finding an optimal solution to the assembly line problem is
challenging and computationally expensive due to the exponential growth of the search
space. Therefore, it falls under the classification of NP-hard problems.

Since the first mathematical formulation of the ALB problem in 1955 [5], this issue has
attracted the attention of researchers and practitioners. The ALB problem is divided into
Simple (SALB) and General (GALB) ALB problems. In the SALB problem, various tasks or
operations are performed sequentially to produce a final product. In the GALB problem,
U-shaped lines, parallel stations, or processing alternatives extend the SALB problem.

Meanwhile, in the SALB-1 problem, the objective is to reduce the number of manufac-
turing cells given a constant cycle time; in the SALB-2 problem, the aim is to minimise the
cycle time given a constant number of cells. An important characteristic of the problem is
whether it has deterministic and/or stochastic parameters (e.g., processing times).

According to the most recent work about a comprehensive review of new trends in
the ALB problem (see [6–8]), the stochastic ALB problem and its variants have been solved
by formulating a mathematical model, adding stochasticity to the processing times, and
solving the problem using tailor-made heuristics, metaheuristics, or constraint program-
ming. On the other hand, simulations have been used to test some stochastic scenarios. In
this paper, some relevant works are briefly summarised, and the insights and novelties of
the proposed approach are highlighted at the end of this section.

The most used source of stochasticity reported in the specialised literature (see [7]) is
processing time. Sometimes, it is assumed that the processing time varies over time without
any specific pattern [9], but other approaches assume that the information is limited; thus,
the mean and standard deviation are the two pieces of known information [10]. Other
works model the variability using interval processing times, i.e., the processing time has
a lower, a nominal, and an upper value; using this approach, the cycle time [11] and the
number of stations [12] have been minimised. Fuzzy numbers, which allow for a range of
potential values with variable degrees of membership or possibility, are another technique
used to model the variability of processing times. Using triangular fuzzy numbers, the
fuzzy ALB problem is solved by maximising the line efficiency [13].

Concerning the solution methods when non-deterministic processing time is taken
into account, stochastic programming models [14], constraint programming[15], and meta-
heuristics [16] are the most widely used solution techniques.

In [17], not only is the processing time non-deterministic, but also elements of the flow
of the process, i.e., the arrival of orders or changes in the demand, are stochastic. To solve
the problem, a mixed-integer programming model is formulated to maximise the stations’
utilisation to equally distribute the workload among the stations. The programming model
is solved using constraint programming to assign stations to tasks, and queue theory to
compute the solution’s performance.

A tailor-made heuristic, named the multi-started neighbourhood search heuristic,
is proposed to solve a motorcycle assembly line in [4]. The only source of variability is
the processing times which follow a normal distribution. Their results are compared by
modifying the classical ranked positional weight method and tested via simulation to
create several scenarios without any optimisation capability. Another tailor-made exact
heuristic is developed in [11] for a two-part model that minimises the cycle time. The
first part keeps the station time under a given bound, and the second part assigns the
maximum percentage of tasks to the station. The problem is solved optimally using Bender
decomposition. The SALB-2 problem was solved to minimise the cycle time for a number
of workstations subjected to the probability that the workload does not exceed the cycle
time for the whole assembly line [18].

Meta-heuristics have been applied to solve the stochastic ALB problem. Modelling
the processing time as a triangular fuzzy membership function, a genetic algorithm (GA)
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approach was used in [19] to minimise the fuzzy cycle time and the fuzzy index representing
the workload of the line; this approach is extended in [13] by maximising the line efficiency.
Another multi–objective ALB problem is solved via simulated annealing in [20]. One
objective is to distribute the workload as equally as possible (this is called the smoothed
index), and the other is to minimise the cost. The source of stochasticity in their model is the
probability that the sum of the mean task times does not exceed the station capacity. Particle
Swarm Optimisation solves a multi–objective model in [21], which minimises the cycle
time, the equipment cost, and the smoothed index when the only known information is the
lower and upper bound of tasks’ processing time, and it depends on the workers’ learning.

Regarding simulation, two methodologies are used when the ALB is solved with
stochasticity. In the first one, a mathematical model is formulated and then some scenarios
for various variables are created; see [22,23]. In the second one, a simulation model is
created using software; then, some scenarios are created to test it (see [24–27]), and in
some cases, the simulation model is created, then OptQuest is used to optimise a desired
variable; see [28–30].

A mathematical model is developed to minimise the overlapping and stopped op-
erations in [22]; then, a genetic algorithm-based solution method is used to solve it, and
finally, some scenarios are created to compute and check the effect of variability. A similar
approach is used in [23], in which a mathematical model is formulated to minimise the
cycle time. To solve it, the authors used a standard optimisation solver to find the answer
and then simulation software to test the number of pallets. In these models, the objective
is to stress the optimisation solution computed by the mathematical model, but there is
no evidence of using simulation as a tool to find the value of the variables to obtain the
solution to the mathematical model.

In some applications, such as the apparel industry [24], garment production [25] or
automotive manufacturing [26], the ALB problem is solved using standard simulation
software to create some scenarios in which the value of the number of operators and
the buffer size is changed. For these works, there are no optimisation capabilities or
optimisation model.

The optimisation capabilities of OptQuest have been applied to optimise a five–stage
production cell in [28]. In this case, the model is implemented in commercial software
without a previous study of optimality; i.e., there is no mathematical model to optimise
the balancing of the number of cells to accomplish the desired cycle time or minimise
the number of cells. Similar to the work in a trouser assembly line in [29] and in a kids’
pants line in [30], OptQuest is used without previous optimisation criteria defined by a
mathematical model.

In summary, in the papers presenting a systematic review of the literature on the ALB
problem, it is reported that the only source of uncertainty is the processing times [6–8].
Those works do not consider the pace at which jobs or parts arrive at the first cell, i.e., the
inter-arrival time. Moreover, the physical space (or layout) in which the assembly line will
operate is also not considered. The inter-arrival time adds uncertainty because the time at
which the jobs or parts enter the first cell is not fixed; thus, the cycle time could be greater
than the one required to deliver products on time. On the other hand, the physical space
adds variability because the the distances among the machines are considered to be zero
for the solution methods; thus, the speed of the material handling system (i.e., the speed at
which workers move the processing units from station to station) could increase the cells’
cycle time. Another issue in the cell layout is the number of workers; this is important
given that it is assumed that there is one worker in each cell.

This work aims to balance a simple assembly line (SALB-1) so that, in the presence of
variability, the sum of cells’ time content is less than or equal to the required cycle time to
deliver products on time. The line is balanced by solving the mixed-integer programming
model using the GLPK solver via Pyomo. Then, variability is added to the balancing using
a simulation model with the following stochastic parameters: inter-arrival time, processing
times, and the number of workers to measure the effect on the overall cycle time. Also, a
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20 × 10 m2 shop layout is set in which the cells are physically placed; thus, the simulation
enables the decision-maker to monitor and quantify how process variability impacts the line
performance. It aids their comprehension of the trade–offs brought on by unpredictability.
Finally, using the add–on OptQuest in SIMIO, the values of the stochastic parameter that
satisfies the cycle time are optimised.

The proposed algorithm is relevant since most of the parameters in real-world imple-
mentations are stochastic; as a result, solutions derived using deterministic optimum or
near-optimum approaches cannot be guaranteed to comply with the cycle time. Managers
will not deliver products on schedule as a result. Some works reported in the literature
include variability in the tasks’ processing time, but there is no evidence that, when imple-
mented, their solution will accomplish the cycle time. In this work, the simulation tests
the line balancing, including variability not only in the processing time but also in the
inter-arrival time, number of workers, and the speed of the material handling system by
placing the line in a layout. The suggested three-part approach is connected to both the
requirement for stability essential to handle uncertainty effectively, as pointed out in [3],
as well as the extension of the ALB issue with non-deterministic parameters, as described
in [6]. A gearbox case in [31], which required a cycle time of 70 s, is used to demonstrate
the methodology.

2. Materials and Methods
2.1. Mixed-Integer Programming (MIP) Model

The SALB–1 problem is represented by a graph G = {V, E} in which the set of vertices
V = {1, . . . , n} represents the tasks, indexed as i = 1, . . . , n. The set of edges E = {(i, j)}
stands for the precedence relations; thus, the edge (i, j) means that task i must be processed
before task j. There is also a set of cells K = {1, . . . , m} indexed as k = 1, . . . , m. Notice that
n and m represent the maximum number of tasks and stations, respectively. Meanwhile,
C is the required cycle time, and ti is the processing time of task k.

The following two decision variables are defined:

xik =

{
1, if task i is assigned to station k,
0, otherwise.

, yk =

{
1, if station k is open,
0, otherwise.

the mixed-integer programming model that returns the minimum number of cells to satisfy
the cycle time is:

min
m

∑
k=1

yk (1a)

s.t.
n

∑
i=1

tixik ≤ Cyk, ∀ k ∈ K, (1b)

m

∑
k=1

xik = 1, ∀ i ∈ V, (1c)

m

∑
k=1

kxik ≤
m

∑
k=1

kxjk, ∀ (i, j) ∈ E, (1d)

yk+1 ≤ yk, k = 1, 2, . . . , m− 1, (1e)

xik ∈ (0, 1) ∀ i, k, yk ∈ (0, 1) ∀ k (1f)

where the objective function that minimises the number of open cells is Equations (1a) and (1b)
ensures that the cycle time C is not exceeded by the time content of a task allocated
to an open cell. Equation (1c) ensures that a task is only assigned to one cell; mean-
while, Equation (1d) guarantees that given the precedence relationship (i, j) ∈ E and
given that the task i is assigned to a cell k, the task j is allocated in the same cell k or
a further one k + 1, k + 2, . . .; e.g., if task i is assigned to cell k = 3 (i.e., xi3 = 1); then
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3xi3 ≤ 3xj3 + 4xj4 + · · ·+ mxjm. Although (i, j) ∈ E, operations i and j can be allocated in
the same cell, but i must first be processed. This is not achieved by the formulation, but it
must be carried out when the cells are being set in the physical shop (layout). Equation (1d)
assures that if the task i is assigned to cell k, the successor operations j can be in cells
k, k + 1, k + 2, . . .. Equation (1e) assures that only k cells are opened; e.g., if only two cells
must be open, then y2+1 = y3 = 0. Therefore, if y4 ≤ y3, the only possible value is y4 = 0,
until ym ≤ ym−1. Finally, Equation (1f) sets the decision variables as binary. The solution of
the model in Equation (1) is a number of sets Sk of tasks i assigned to a cell k, as shown in
Equation (2)

Sk = {i ∈ V | xik = 1} ∀ k = 1, . . . , m (2)

the cell time (Tk) is the sum of the processing times of the tasks assigned to cell k; it is called
the cell time content, as defined in Equation (3).

Tk = ∑
i∈Sk

ti ∀ k = 1, . . . , m (3)

Finally, the efficiency of a cell (Ek) is computed as the sum of the processing times
assigned to the cell divided by the cycle time, as shown in Equation (4).

Ek =

(
Tk
C

)
× 100 ∀ k = 1, . . . , m (4)

In the SALB-1 problem, the maximum number of cells m can be computed by dividing
the sum of all tasks’ processing time by the cycle time, rounded to the next nearest integer,
as shown in Equation (5).

m =


∑
i∈V

ti

C

 (5)

By setting the maximum number of open cells as in Equation (5), the objective function
is rewritten using the finite set K = {1, 2, . . . , m} as min ∑k∈K yk instead of using infinite
indexes k = 1, 2, . . .. As m cells are open; then, Equation (1b) is ∑i=1 tixik ≤ C , throwing
the term ≤Cyk, given that y1 = y2 = · · · = ym = 1, and Equation (1e) can be deleted.
Therefore, the problem modelling is the same as in [7]. In our implementation [32], the user
can set m to any number, and the proposed implementation can solve the problem.

2.2. Proposed Algorithm

The following notation indicates whether a parameter is deterministic or stochastic
when defining the proposed three-part algorithm.

• Tk is the cell time content computed by simulation and Tk is defined in Equation (3).
• Ek is the cell efficiency computed by simulation and Ek is defined in Equation (4).
• pr is the rth stochastic parameter under study and pr is the rth deterministic pa-

rameter; e.g., pr = the deterministic inter-arrival time or pr = is the inter–arrival
time ∼Exp( 1

λ ). Another example is pr = the deterministic processing time or pr = is
stochastic processing time ∼ Exp(ti).

• P = {p1, p2, p3, p4, . . .} is the set of all parameters of interest, both deterministic and
stochastic, in no particular order.

The suggested method is shown in Algorithm 1, which requires the graph G repre-
senting the product’s structure to be assembled, the processing times, and the desired cycle
time. As a result, the output is the cells to be deployed and the values of the stochastic
parameters to obtain the desired cycle time.

Algorithm 1 has three steps: (a) computing the number of cells using the MIP model,
whereby each task has been assigned to a cell; (b) experimenting with the MIP model’s
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solution in a simulation model by including stochasticity; and (c) optimising the value of
the stochastic parameters so that the user can obtain the required cycle time in each cell.

Algorithm 1: Solving the stochastic SALB–1 Problem.

Data: A graph G = {V, E}, C, and ti ∀ i ∈ V
Result: cells Sk (Equation (2), the values of the parameters set P
/* Section 2.2.1 Cells formation */

1 compute m (Equation (5);
2 set the cycle time C;
3 solve the model in Equation (1) using GLPK via Pyomo;
4 get the Sk (Equation (2), the Tk (Equation (3), and the Ek (Equation (4) for every

cell;
/* Section 2.2.2 Build the simulation model and verify it */

5 define the deterministic parameters set of interest, P = {p1, . . . , pr, . . .};
6 build the simulation model placing, in a scaled layout, the distribution of the Sk;
7 input all model information to the simulation model;
8 create Controls in SIMIO for the Tk and Ek;
9 run the simulation model;

10 if Tk ≈ Tk ∧ Ek ≈ Ek then
11 go to 14; // model has been verified

12 else
13 go to 7;

14 foreach pr ∈ P do
15 set pr;
16 run the simulation model with P = {p1, . . . , pr, pr+1, . . .};
17 record the results of pr;

/* Section 2.2.3 Optimising the Value of the Stochastic Parameters
*/

18 duplicate the simulation model to solve it by OptQuest in SIMIO;
19 select the Controls to minimise and/or maximise;
20 according to the values in 17, constrain the parameters pr;
21 define the constraint Tk ≤ C ∀ k;
22 report the solution P = {p1, . . . , pr, . . .}

2.2.1. Cells Formation Achieved by Solving the MIP Model

The suggested method calculates the number of cells and the task to be carried out
in each one. To achieve this, the maximum number of cells m is computed along with the
cycle time C (lines 1–2). In line 3, the Python implementation solves the model; an excerpt
from the source code is shown in Listing A1 in Appendix A. This requires inputting the
data as a DiGraph using the Python package NetworkX [33].

GNU Linear Programming Kit (GLPK) is used to solve the MIP model in Equation (1),
and it is implemented with Pyomo language. GLPK consists of a collection of ANSI
C routines arranged as a callable library under the GNU General Public License [34].
Meanwhile, Pyomo is an open-source Python-based modelling language for mathematical
optimisation. It provides a flexible framework for formulating and solving optimisation
problems, allowing users to express complex mathematical models in a concise and intuitive
manner [35].

The line 35 of Listing A1 is used to solving the MIP model in Equation (1). The user
must input “glpk” to the function SolverFactory and the name of the model to be solved
in this case “model” as in Listing 1.
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Listing 1. Call SolverFactory in Pyomo

1 results = pyo.SolverFactory(’glpk’).solve(model)

Finally, the implementation returns a report for every cell, similar to the following one:

Cell k produces the tasks: i, . . . (i.e., Sk).
The time content in cell k is . . . (i.e., Tk).
The efficiency of cell k is . . . (i.e., Ek).

2.2.2. Build the Simulation Model

This part has two important objectives: (a) to verify the model by comparing the
values of the Tk and Ek with the ones computed by the simulation model, and (b) to create
scenarios to set a parameter as stochastic and the other as deterministic to find (if possible)
the value of the parameter that returns the desired cycle time.

In order to accomplish this, the user must specify the parameters of interest (line 5 in
Algorithm 1), such as the number of workers in a cell or the value of the inter-arrival time.

The cells’ physical distribution is a key aspect of the method; therefore, the proposed
approach considers the distances among the machines, and the distance a product must
travel to reach the next station or cell (line 6).

In line 7, all the information required for the model is input. The following data must
be set in the SIMIO model to verify it (independently of the parameters of interest defined
by the user): (a) a task is performed in a SIMIO object called server; (b) each server cannot
store any kind of buffer; (c) every cell k has a SIMIO object called worker that performs
all the tasks in the cell, one at a time; (d) the worker transports the processing units from
station to station, and travels the physical distance in no time (i.e., instantaneously); (e) all
the processing times are deterministic (ti); and (f) the inter-arrival time is deterministic
with 1

λ = C.
To record the value of the Tk and Ek, SIMIO uses Controls. A Control in SIMIO

software simulation is a variable that can be changed to test the effects on the simulation
output [36].

Once the model is run, the user has to verify the model by comparing the simulation
results with those computed when solving the MIP model (lines 9–13). If those values are
not similar, the user has to check the input information and the entire model, given that an
unverified model returns untrusted results.

Finally, after the model has been validated, some scenarios are produced by making
one parameter stochastic pk and the other deterministic pk′ (lines 14–17).

2.2.3. Optimising the Value of the Stochastic Parameters

To carry out this section, the model created in Section 2.2.2 is duplicated; thus, the
Control is retained (line 18).

This section requires us to create a model in which one or more Controls are min-
imised and/or maximised under a set of constraints, where the default constraint is that the
cell time content must be less than or equal to the cycle time Tk ≤ C ∀ k ∈ K. The decision
variables are the stochastic parameters whose values are within the range in Equation (6)
(lines 19–21):

pr = αr, αr + ∆, αr + 2∆, αr + 3∆, . . . , βr (6)

this is represented in the model as pr ∈ (αr, βr) + ∆r. To determine the range of the
parameter intervals, the results in line 17 can be used. The general model to be solved is
depicted below:

Maximise/Minimise (Control1, Control2, . . .)
Subject to
Tk ≤ C ∀ k ∈ K
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...
pr ∈ (αr, βr) + ∆r ∀ r ∈ P

The solution is the value of the stochastic parameters as P = {p1, . . . , pr, . . .} (line 22),
which guarantee that the time of each cell is less than or equal to the required cycle time.

2.3. Instance to Be Solved

Algorithm 1 is tested using a two–stage gearbox that appears in [31]. Figure 1 shows
the graph G = {V, E} with V = {1, 2, . . . , 15} (the maximum number of tasks is n = 15)
and E = {(1, 2), . . . , (11, 12), . . . , (14, 15)} and a table with the description of each element
(or raw material) and its quantities.

15

t15 = 3

Unload

14

t14 = 10

Clean,G

13

t13 = 50

Adjust,S

12

t12 = 10

Assemble

8

t8 = 7

2 7→ 1b, G

7

t7 = 25

1b 7→ 4, G

6

t6 = 7

4 7→ 1a, G

5

t5 = 27

1a 7→ 5, G

4

t4 = 8

5 7→ 11, G

3

t3 = 10

11 7→ 6

2

t2 = 45

6, G

1

t1 = 2

Load 6

11

t11 = 5

8 7→ 7

10

t10 = 41

7 7→ 3, S

9

t9 = 5

3 7→ 9, G

Element Qty Description
1a 3 20–tooth planet
1b 3 20–tooth planet
2 1 14–tooth pinion
3 1 Brushless dc motor
4 1 14–teeth carrier spider gear
5 1 3–pin output carrier shaft
6 1 70–tooth ring gear
7 1 Aluminium sleeve
8 1 Delrin washer
9 1 Gasket
10 2 Machine screw
11 1 6200–2 rsh ball bearing

ti in secods

G = Grease

S = Screw

C = 70 seconds

Figure 1. Two-stage gearbox instance to be solved.

The upper label in each task (node) is the task’s process time ti in seconds, and the
lower label is the activity that takes place in it. For example, the processing time of task
(node) 12 in which an assembly is produced is t12 = 10 s. The worker in task 1 loads a
70-tooth ring gear in t1 = 2 seconds. The 70-tooth ring gear is greased in t2 = 45 s in task 2.
Some nodes have a label below, such as the one in task 10 (7 7→ 3, S), which means that
element 7 (aluminium sleeve) is screwed (S) inside element 3 (brushless DC motor). In
another example, in task 5, 3 20–tooth planets (1a) are placed inside a three-pin output
carrier shaft and then the assembly is greased (G). The required cycle time is C = 70 s.

The cells resulting from solving the MIP model will be placed over a 20 × 10 m2

shop layout. Taking this into account is important because if workstations are located far
apart, this may result in excessive material handling or movement time between stations,
leading to inefficiencies and delays. As a result, the system will never achieve the required
cycle time.

Table 1 shows the four parameters of interest (Algorithm 1 line 5) used to include
variability in the resulting balancing.

Table 1. Parameter of interest to solve the instance in Figure 1.

r 1 2 3 4

Parameter Inter–Arrival Speed of Number of Process
Time Workers Workers Time

Discrete value (pr) p1 = 1
λ

p2 = s p3 = w p4 = ti

Stochastic value (pr) p1 = Exp
(

1
λ

)
p2 = (α2, β2) + ∆2 p3 = (α3, β3) + ∆3 p4 = Exp(ti)
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1. Inter-arrival time (IAT) [s] is the time that passes between subsequent raw-material
entities entering the first cell. To add variability to this parameter, it is assumed that
IAT ∼ Exp

(
1
λ

)
.

2. Speed of workers is the velocity [m/s] at which a worker is able to move inside the
cell. A worker must walk inside the cell to work on each task. The worker’s speed
increases to see if the cell time content decreases.

3. Number of workers in each cell. There is just one worker to validate the model
and this number is increased to reduce the cell time content. The workers move the
work-in-progress (entities or pieces) among the workstation and transport them from
station to station.

4. Process time ti [s] refers to the duration of a task to be completed within the cell. The
processing time is ∼ Exp(ti).

To test the behaviour of the system, some experiments are created based on the
nature of the parameters, e.g., the experiment u is run using Pu = {p1, p2, p3, p4}, which
means that the IAT is deterministic p1 = 1

λ while the speed, the number of workers,
and the processing time are stochastic; thus, p2 = (α2, β2) + ∆2, p3 = (α3, β3) + ∆3, and
p4 = Exp(ti), respectively. Another example is Pn = {p1, p2, p3, p4}; this means that the
number of workers is deterministic, meanwhile, the others are stochastic; see Table 1 for
the values of all the parameters.

3. Results

The findings of this work show that when all parameters except the inter-arrival time
are stochastic, the cycle time is 68 s. The cycle time is around 72.04 s if all the parameters are
stochastic. Regarding the three-part methodology, it is shown that the solution produced
by the mathematical model cannot obtain a cycle time of less than or equal to 70 s in the
presence of variability. Therefore, the simulation model finds the value of the stochastic
parameters, resulting in a very close 70 s cycle time.

The detailed results of solving the instance depicted in Section 2.3 are shown below.
In the first part of the proposed approach, the MIP model in Equation (1) is solved to
determine the assignment of the task among the cells. The maximum number of cells is
m = d255/70e = 4 (Equation (5). A summary of the results of lines 1–4 of Algorithm 1 is
shown in Table 2. The parameters of interest are summarised in Table 1 (see line 5), the
shop layout is plotted in Figrue 2 as required in line 6 of Algorithm 1, and the results of the
model verification are presented in Table 3 lines 7–13.

Table 2. Results of the MIP model in Equation (1).

Cell Task Assigned
Equation (2)

Time Content
Equation (3)

Cell Efficiency
Equation (4)

k Sk Tk (s) Ek (%)

1 {1, 2, 3, 4} 65 92.86

2 {5, 6, 7, 9} 64 91.43

3 {8, 10, 11, 12} 63 90.00

4 {13, 14, 15} 63 90.00

In the second part of the proposed approach (Algorithm 1 lines 14–17), five experi-
ments measure the effect of several stochastic parameters on the cycle time. The first one
is used to verify the simulation model; thus, all the parameters are deterministic. In the
second one, the effect of the inter-arrival time is measured by running the experiment with
stochastic IAT with the rest of the parameters being deterministic. Experiments 3, 4, and 5
are run, setting the inter-arrival time as deterministic and stochastic as well as the stochastic
processing time. In experiment 3, the IAT’s value is between 50 and 80 s and four workers’
speed at 2 m/s. The effect of two workers’ speed is measured in experiment 4; it ranges



AppliedMath 2023, 3 572

from 2 to 12 m/s, and the inter-arrival time is equal to 70 s. Finally, experiment 5 is run
using a different number of workers in a cell when the IAT is 90 s, and their speed is 4 m/s.

The experiment P1 = {p1, p2, p3, p4} = {70, ∞, 1, ti} is set to verify the model, i.e., the
raw materials arrive at the cell at a pace of 1

λ = 70 seconds, the workers’ speed is high to
avoid delays in travelling, there is one worker in each cell, and the processing times are
deterministic for all tasks. The physical locations of the four cells in the shop layout are
depicted in Figure 2. The simulation model is run for 200 h with a 20 h warm-up period.
The output of Algorithm 1 from lines 5–13 is shown in Table 3. As expected, the cells’ cycle
time (C) is less than 70 s (Tk ≤ 70). As shown, the model is verified given that there is a
percentage difference of less than 0.5% of the time contents and efficiency for all cells.

0m 5m 10m 15m 20m
0m

5m

10m

1

2 3

4 5

6 7

9

8

1011

1213

1415

Arrival 1
λ

(Source)

Exit
(Sink)

c1 = {1, 2, 3, 4} c2 = {5, 6, 7, 9}

c4 = {13, 14, 15} c3 = {8, 10, 11, 12}

Figure 2. 10× 20 m2 shop layout to place the cells.

Table 3. Results of the simulation model with P1 = {p1, p2, p3, p4} = {70, ∞, 1, ti}.

Cell Time Content Percentage Cell Percentage

k Tk (s) Difference (%) 1 Efficiency Ek
(%) Difference (%) 2

1 65.11 0.17 93.09 0.25
2 64.11 0.17 91.66 0.25
3 63.12 0.19 90.21 0.23
4 63.08 0.13 90.18 0.20

1 [(Tk − Tk)/Tk ]× 100 (see Table 2); 2 [(Ek − Ek)/Ek ]× 100 (see Table 2).

To compute the results in Table 3, it is supposed that all the parameters of inter-
est are deterministic. In a second experiment, the inter-arrival time is stochastic with
IAT∼ Exp( 1

λ ), and the rest of the parameters are deterministic; thus, P2 = {p1, p2, p3, p4} ={
Exp( 1

λ ), ∞, 1, ti

}
. Since the cycle time duration exceeds the maximum of 70 s for all cells,

as shown by the results in Figure 3, a variation in the inter-arrival time prevents on-time
product delivery when deterministic balancing is used during the real process. As a result,
the cycle time decreases as the inter-arrival time increases. The minimum cell time contents
are T1 = 97, T2 = 93, T3 = 104, and T4 = 100 s when the IAT ∼ Exp( 1

80 ), but the efficiency
is very low for the four cells; the highest one is 66.4% for cell 1, E1 = 66.4. Figure 3 shows a
clear correlation between cycle time and efficiency; the shorter the cycle time, the lower
the efficiency. For this particular instance, the time content of cell 2 appears constant
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(from 90 to 93 s) as the inter-arrival time increases; in addition, the efficiency in the four
cells declines at a consistent rate as the inter-arrival time rises by increments of 5 s.

Figure 3. Experiment P2 = (p1, p2, p3, p4) =
(

Exp
(

1
λ

)
, ∞, 1, ti

)
.

The third experiment is run when the IAT is p1 = Exp( 1
λ ) and p1 = 1

λ , solid and dotted
lines in Figure 4, respectively. The rest of the parameters are p2 = 2 m/s, p3 = 4 workers,
and the process times stochastic p4 = Exp(ti). As in Figure 4b, the cells’ time content
and efficiency decrease with increments in the inter-arrival time (see Figure 4). As shown,
when four workers are speeding at 2 m/s, the cells’ time content is lower in the presence of
stochastic inter-arrival time than when the IAT is deterministic. The efficiency is lower in
the presence of stochastic IAT; see Figure 4b. Thus, the objective of maximum utilisation is
reached by p1, but the cells’ time content (Tk) is less than 70 s when p1. In this experiment,
the minimum time contents are observed when IAT∼ Exp( 1

80 ) seconds; those are T1 = 88,
T2 = 82, T3 = 103, and T4 = 68 s. Only cell 4 satisfies the required cycle time of 70 s, and
the maximum efficiency is 27.5% (E1 = 27.5) when p1 = 50 s. Unfortunately, experiment
P3 fails to meet both the necessary cycle time and the decision-maker’s aim of decreasing
the cycle time and maximising usage.

Experiment 4 (P4) assesses the effect of the workers’ velocity on the system. The speed
is changed from 2 to 12 m/s with increments of 2. Figure 5a shows that while the speed
increases, the value of the cells’ time content is almost constant, e.g., the time content of
cell 3 is 134 s with 2 m/s, while it is 115 with 12 m/s when p1 = 70 s. Generally, if the
workers’ speed increases, the time content (Tk) should decrease. In the instance solved, the
maximum decrement in cycle time is about 10% for cell 2 when comparing between 2 and
12 m/s using p1 = 70 s. Concerning the efficiency (Figure 5b), it decreases fast between
2 and 4 m/s; after 4 m/s, the velocity decreases slowly; moreover, higher efficiency is
observed when the interarrival is deterministic.
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Figure 5. Effect of the workers speed, P4 = {[p1, p1], p2, p3, p4} = {[Exp(70), 70], p2, 2, Exp(ti)}.

Finally, in experiment five P5, the number of workers varies from 1 to 6. From previous
experiments, it looks like a long inter–arrival time and speed of 4 m/s returns short time
contents; thus, those values are used in this experiment (P5). The results in Figure 6 clearly
show that using more than two workers in each cell returns the same time contents for all
cells (Figure 6a), and the efficiency decreases (Figure 6b) when more workers are assigned
to a cell. Note that the number of workers is exactly the same in each cell; e.g., if the number
of workers is two, it means that two workers work in each open cell. Furthermore, if the
speed is set to 4 m/s, every worker will have the same speed.
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Figure 6. Effect of the number of workers, P5 = {[p1, p1], p2, p3, p4} = {[Exp(90), 90], 4, p3, Exp(ti)}.

In summary, when the IAT∼ Exp( 1
λ ) is the only stochastic parameter, the time con-

tent and the efficiency are minimal with long 1
λ (see Figure 3). From experiments 3 to 5

(Figures 4–6), it seems that the shortest cells’ time content is observed when the inter-arrival
time is stochastic. Still, the maximum efficiency is computed using deterministic IAT. None
of the experiments return cells time content of 70 s or less. The time content of cell 4 reaches
less than 70 s in experiments 3, 4, and 5.

The lowest cycle time for the five experiments is listed below:

• P1 = {70, ∞, 1, ti} is C1 = maxk{65.11, 64.11, 63.12, 63.08} = 65.11 s which satisfy the
required 70 s.

• P2 = {Exp(80), ∞, 1, ti} is C2 = maxk{97.01, 92.95, 103.78, 100.11} = 103.78 s. It is
longer than 70 s.

• P3 = {Exp(80), 2, 4, Exp(ti)} returns C3 = maxk{88.31, 81.61, 102.75, 68.06} = 102.75 s
which is not satisfactory.

• P4 = {Exp(70), 12, 2, Exp(ti)} is C4 = maxk{87.45, 85.84, 110.56, 65.03} = 110.56 s,
longer than 70 s.

• P5 = {Exp(90), 4, 3, Exp(ti)} is C5 = maxk{84.49, 77.05, 96.19, 65.79} = 96.19 s, which
does not satisfy the required 70 s.

In conclusion, the cells return time content of 70 s or less without stochastic parameters.
Real-world applications of industrial processes include intrinsic variability; as a result,
strategies for process engineering, like lean manufacturing, try to reduce it because total
eradication is essentially unachievable [37]. Therefore, experiment P1 is not achievable,
and the other experiments (with stochastic factors) do not satisfy the constraint of a 70 s
cycle time.

SIMIO OptQuest is used to find a likely scenario and search for a feasible solution that
provides a cycle time of 70 s or less. OptQuest for SIMIO simulation software is an add-on
module that provides strong optimisation capabilities (see [38]). It connects with SIMIO’s
simulation models to maximise or minimise one or more objectives while maximising or
minimising the value of specific variables.

Two models in the third part of the proposed algorithm (Algorithm 1 lines 18–22) are
implemented. In the first one, the efficiencies of the cells are maximised (Equation (7a))
given that the cells’ time content is less than the required cycle time (Equation (7b)) using
the following parameters: stochastic IAT between 240 and 300 s (Equation (7c)); all the
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process times are stochastic (Equation (7d)); and the workers’ speed ranges from 2 to
10 m/s and from 6 to 9 workers (Equation (7e)).

max (E1, E2, E3, E4) (7a)

s.t. Tk ≤ 70 s ∀ k ∈ K, (7b)

p1 = Exp
(

1
λ

)
1
λ
∈ (240, 300) + 10, (7c)

p4 = Exp(ti) ∀ i ∈ V, (7d)

p2 ∈ (2, 10) + 2, p3 ∈ (6, 9) + 1 (7e)

The second implemented model is similar to the one in Equation (7), but the constraint
in Equation (7c) is relaxed, as shown in Equation (8).

p1 =
1
λ

,
1
λ
∈ (120, 180) + 5 (8)

OptQuest finds a solution for model 1 with a cycle time equal to Cmodel 1 = 72.04 s, as
shown in Table 4, only two seconds above the required 70. To generate a 72 s cycle time,
nine people speeding at 10 m/s must be placed in each cell, and IAT must be Exp(300) s
(i.e., an arrival every Exp(5) min). Model 2 is model 1 with a constant IAT; thus, the cycle
time of model 2 is Cmodel 2 = 68.92 s, which is less than 70 s. As a result, the IAT time must
not exhibit variability if the decision-maker intends to deliver items on time.

Table 4. Solution of the two implemented models using OptQuest .

Efficiency (Ek) and Time Content (Tk) of Cell k Parameters a

Model
E1 E2 E3 E4 T1 T2 T3 T4 p1 p2 p3

1 b 2.4 2.36 2.32 2.33 72.04 67.4 70.45 64.56 300 c 10 9
2 b 6.71 6.62 6.50 6.51 67.22 66.05 68.62 64.39 165 c 6 8

a p4 = Exp(ti) for model 1 and 2. b Model 1 is Equation (7) and model 2 replaces Equation (7c) by Equation (8) in
model 1. c p1 = Exp(165) s to solve model 1 and p1 = 165 s to solve model 2.

4. Discussion

This work investigates the effect of variability in the simple assembly line balancing
the (SALB–1) problem, in which the cycle time is known and the number of cells and the
tasks’ assignations are known.

In this work, a three-part algorithm (Algorithm 1) is proposed in which commercial
solvers solve a MIP model; then, a set of parameters of interest is chosen according to the
decision-maker to experiment with the values of each parameter; finally, OptQuest is used
to optimise some controls, constraining the cells’ time content to the desired cycle time.

The proposed approach differs from those in [7,8] because it considers parameter
variability; furthermore, variables (such as a physical shop layout, in which one or more
workers speed to a certain velocity inside the cell) are taken into account; additionally,
stochastic process times are also considered. Some works, such as [15], consider variability
in the tasks’ process time, and the solution method is constraint programming, but variables
such as the inter-arrival time or others considered in this work are not taken into account.

The proposed method is much more flexible than those based on tailor- and meta-
heuristic or MIP models and constraint programming (see [6–8,15,39]) because the decision–
maker can set any number of stochastic parameters; moreover, he or she can test the
resulting balancing on a scaled shop layout.

According to the results, the real-world instance is solved in no time [31] by imple-
menting the MIP model in Pyomo and solving it using the GLPK solver. In the MIP model,
all the parameters are deterministic; thus, a simulation model is developed in SIMIO soft-
ware to include variability in the problem. Four stochastic parameters are set: IAT, workers’
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speed, number of workers, and tasks’ process times. Some experiments are created to find
cycle times with less than 70 s (the required cycle time). Finally, the add-on OptQuest
in SIMIO is utilised to locate cells’ time contents with less than 70 s in the presence of
variability in all the parameters.

In Table 2, the solution of the MIP model is presented; therefore, the SALB-1 prob-
lem is solved with deterministic parameters. Using the stochastic parameters shown in
Table 1, five experiments were set to find the values of the parameters that return the desired
cycle time. The results of experiment 1 (Table 3) were used to verify the model, comparing
the results of the MIP model with those of the simulation model. After that, Experiment 2
included variability just in the IAT. If variability is observed in the IAT, the shortest time
contents are obtained using a large IAT—in this case, about 80 s (Figure 3). From experi-
ments 3 to 5 (Figures 4–6), it is concluded that in the presence of variability, shorter cycle
times are obtained; meanwhile, the efficiency increases with the deterministic parameters.

Two models are solved in OptQuest (Equations (7) and (8)). As stated by the results
(Table 4), the proposed approach can find a solution that results in a cycle time of 68.62 s
when the IAT is deterministic and 72.04 s when the IAT is stochastic. According to this, it
seems that when the inter-arrival parameter is constant, the desired cycle time is attainable
in the solved instance, 70 s.

The results prove that when variability is observed, the results of the MIP model can
achieve the required cycle time when implemented in a real shop layout. It is shown that
using the add-on OptQuest in SIMIO, the desired solution is found. For the solved instance,
the proposed approach finds a solution with 2.04 s more than the desired cycle time.

This work is limited to a 15-task instance with 14 precedence relationships and four
parameters from which the IAT and the processing time fit an exponential distribution, and
an interval limits the value of the other two. Although the MIP model balances the system,
it is an open research area, as stated in [6], given the computational capacity nowadays and
the state-of-the-art commercial solvers.

In future, the proposed approach can be tested using bigger problems and can be
solved the SALB–2 problem and/or the General SALB problems. Another natural extension
is to use a different set of parameters and different distribution functions.

5. Conclusions

In conclusion, this work addresses a simple line-balancing problem when the cycle
time has already been determined (i.e., SALB-1 problem). Through simulations, it has been
shown that the solution of the MIP model cannot deliver products on time, i.e., the cycle
time is not satisfied. The three-part algorithm finds a solution in which, in the presence of
variability, the system could deliver products on time (before the cycle time). Using the
add-on OpQuest in SIMIO, the proposed approach finds a solution that satisfies the cycle
time given some parameters of interest and variability.

Through extensive experimentation and analysis, it was observed that in the presence
of variability, a long inter-arrival time is necessary, but this drastically decreases the cells’
efficiency. Some scenarios are created to experiment with the values of a set of stochastic
parameters. OptQuest determines the values of the stochastic parameter to satisfy the
required cycle time in the presence of variability in the process.

The findings of this study have significant practical implications for industries that
rely on assembly lines, particularly those seeking to improve productivity and reduce costs.
By achieving a balanced production line in which the intrinsic variability is considered, the
decision–maker delivers products on time; thus, the operation efficiency is enhanced.

In summary, this research contributes to the field of line balancing by presenting a
comprehensive approach that combines mathematical programming models and simulation
by first computing an optimal balancing line, then including variability via a set of stochastic
parameters, and finally optimising the values of the parameters to satisfy the cycle time. The
results obtained demonstrate the effectiveness of the proposed method in optimising line
balance and provide a foundation for further advancements in stochastic balancing lines.
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By addressing the line-balancing problem, industries can achieve improved productivity,
streamlined operations, and increased competitiveness in the marketplace.
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V Set of tasks.
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K Set of cells.
Pu Set of parameters used in experiment. u
i Task i.
(i, j) Precedence between task i and task j.
k Cell k.
m Maximum number of cells.
n Maximum number of tasks.
C Cycle time.
ti Process time of task i.
Sk Set of task i assigned to cell k.
Tk Time content of the cell k.
pr Stochastic parameter.
pr Deterministic parameter
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Appendix A

Listing A1. Python implementation to solve the MIP model using GLPK.

1 model = pyo.ConcreteModel ()
2

3 nu_cells = 4
4 cycle_time = 70
5 list_cells = list(range(1,nu_cells +1,1))
6

7 model.N = pyo.Set(initialize=list_nodes) # list of tasks (i.e., nodes); i=1,..,N
8 model.M = pyo.Set(initialize=list_cells) # list of cells; j=1,...,M
9 model.x = pyo.Var(model.N,model.M, domain=pyo.Binary)

10 model.y = pyo.Var(model.M, domain=pyo.Binary)
11

12 def objective_SALB1(model):
13 return sum(model.y[i] for i in model.M)
14 model.obj = pyo.Objective(rule=objective_SALB1 , sense=pyo.minimize)
15

16 def cycle_time_cell(model , j):
17 return sum(process_time[i]*model.x[i,j] for i in model.N) <= \\ cycle_time*model.y[j]
18 model.cycle_cell = pyo.Constraint(model.M, rule=cycle_time_cell)
19

20 def task_assignation(model , i):
21 return sum(model.x[i,j] for j in model.M) == 1
22 model.task_assig = pyo.Constraint(model.N, rule=task_assignation)
23

24 model.precedence_task = pyo.ConstraintList ()
25 for edge in precedence_relationships:
26 from_task = edge [0]
27 to_task = edge [1]
28 model.precedence_task.add(expr=sum(j*model.x[from_task ,j]\\ for j in model.M) <= sum(j*model.x[

to_task ,j] for j in model.M))
29

30 model.cells = pyo.ConstraintList ()
31 for j in range(nu_cells -1):
32 model.cells.add(expr=model.y[j+2] <= model.y[j+1])
33 #model.pprint ()
34

35 results = pyo.SolverFactory(’glpk’).solve(model)
36

37 print("The minimum number of cells is ", pyo.value(model.obj) )
38

39 for j in range(nu_cells):
40 cell_time = 0
41 print ()
42 print("Cell",j+1, "produces the tasks: ", end="")
43 for n in list_nodes:
44 if(pyo.value(model.x[n,j+1]) == 1.0):
45 cell_time += process_time[n]
46 print(n, end=", ")
47 print ()
48 print("The time content in cell",j+1," is", cell_time , end="")
49 print ()
50 print("Efficiency of cell",j+1," is",round(( cell_time/cycle_time)*100 ,2),"%", end="")
51 print ()
52
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