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Abstract: Graph and digraph decompositions are a fundamental part of design theory. Probably
the best known decompositions are related to decomposing the complete graph into 3-cycles (which
correspond to Steiner triple systems), and decomposing the complete digraph into orientations of a 3-
cycle (the two possible orientations of a 3-cycle correspond to directed triple systems and Mendelsohn
triple systems). Decompositions of the λ-fold complete graph and the λ-fold complete digraph have
been explored, giving generalizations of decompositions of complete simple graphs and digraphs.
Decompositions of the complete mixed graph (which contains an edge and two distinct arcs between
every two vertices) have also been explored in recent years. Since the complete mixed graph has
twice as many arcs as edges, an isomorphic decomposition of a complete mixed graph into copies
of a sub-mixed graph must involve a sub-mixed graph with twice as many arcs as edges. A partial
orientation of a 6-star with two edges and four arcs is an example of such a mixed graph; there are
five such mixed stars. In this paper, we give necessary and sufficient conditions for a decomposition
of the λ-fold complete mixed graph into each of these five mixed stars for all λ > 1.

Keywords: graph decomposition; mixed graph; orientations of stars; λ-fold complete mixed graph

1. Introduction
1.1. Outline

In this paper, we give necessary and sufficient conditions for the existence of mixed
6-star decompositions of the λ-fold complete mixed graph. In Section 1.2, we give well-
known definitions of graph and digraph. Based on the form of these definitions, we define the
less well-known objects of fuzzy graph and mixed graph. A broad description of applications
of these is mentioned. The main result of this paper concerns a mixed graph decomposition,
so in Section 1.3 we define decompositions of graphs/multigraphs, digraphs/multidigraphs,
and mixed graphs/multi-mixed graphs, and relate these concepts to each other. Section 2 is
the main body of the paper and includes a description of the proof technique, background
results, and a statement and proof of the main result. In Section 2.1, we explain the
primary proof technique (“difference methods”) used in a large part of the construction,
which establishes the validity of our main result. In Section 2.2, we elaborate on the
construction method and described a modified difference method that is also employed
in our construction. Section 2.3 includes a background result and a lemma containing
necessary conditions for the decomposition of interest. In Section 2.4, we give several
theorems that combine to give necessary and sufficient conditions for our main result,
namely a decomposition of the λ-fold complete mixed graph into mixed 6-stars. Section 3
discusses the applications of graph decompositions in general, the application of the proof
technique to other possible mixed graph structures, and suggests some future directions
for additional research.
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1.2. Graph Definitions

We largely follow the graph theoretic definitions set out in [1]. A (simple) graph is a
pair of (finite) sets G = (V, E), where the elements of E = E(G) are 2-element subsets of
V = V(G). The elements of V are called vertices (though the term nodes is also common)
and the elements of E are called edges. Edge {u, v} is said to join vertices u and v; we
will often denote edge {u, v} as uv. The complete graph on v vertices, denoted Kv, is the
graph with vertex set V, where |V| = v and E = {{u, v} | u, v ∈ V, u ̸= v}. A cycle
of length v, denoted Cv, is the graph with vertex set V = {v1, v2, . . . , vn} and edge set
E = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v0}}. A star on v + 1 vertices, denoted Sv, is a
graph with vertex set V = {v0, v1, . . . , vn} and edge set E = {{v0, vi} | i = 1, 2, . . . , n}. A
multigraph is a pair (V, E) where (finite) set V is the vertex set and E is a (finite) multiset
(that is, a finite collection that allows elements to appear a repeated number of times),
where the elements of E are multisets of two, not necessarily distinct, elements of V. An
element of E of the form {v, v} is a loop on v. The λ-fold complete graph on v vertices,
denoted λKv, is the multigraph with vertex set V, where |V| = v and E contains every edge
{u, v}, where u ̸= v, exactly λ times.

Applications have been part of the reason for the pursuit of graph theory since its
origins. One of the most famous graph theory problems (likely due to its difficulty and
wide-ranging applications) is the traveling salesman problem. Introduced to find a minimal
weighted spanning tree in a given weighted graph, applications of the problem appear in
genome mapping, aiming telescopes, guiding machines through a sequence of tasks, and
organizing data. In addition, the difficulty of the problem has had an impact on the study
of computational complexity and the study of algorithms; for details on this, see [2]. The
“assignment problem” (also called the “scheduling problem”) involves finding a maximal
matching in a bipartite graph and can be applied to matching a group of workers, each with
a certain set of skills, with a group of jobs, each of which requires a certain set of skills [3]
(see Section 7.2), ref. [4] (see Section 16.1 and Problem 16.2). The areas of application of
graph theory are growing rapidly in the 21st century. In particular, graph neural networks
(or “deep learning on graphs”) have received remarkable levels of attention. Applications
include computer vision, language recognition, automated planning, social networks,
bioinformatics, and cybersecurity [5] (page vii).

A (simple) digraph (or directed graph) is a pair of (finite) sets, D = (V, A), together
with two maps, init : A → V and ter : A → V. Again, the elements of V are called
vertices. The elements of A are called arcs (or directed edges). For arc a ∈ A, we call init(a)
the initial vertex of a and ter(a) the terminal vertex of a, and we denote a as the ordered
pair (init(a), ter(a)). The complete digraph on v vertices, denoted Dv, is the graph with
vertex set V, where |V| = v and A = {{u, v} | u, v ∈ V, u ̸= v}. A multidigraph is a pair,
D = (V, A), where (finite) set V is the vertex set and A is a (finite) multiset, where the
elements of A are arcs of the form (u, v), where u, v ∈ V. The λ-fold complete digraph
on v vertices, denoted λDv, is the multidigraph with vertex set V, where |V| = v and A
contains every arc (u, v), where u ̸= v, exactly λ times. A digraph (or multidigraph), D, is
an orientation of an (undirected) graph (or multigraph), G, if V(D) = V(G), and for each
uv ∈ E(G) we have either (u, v) ∈ A(D) or (v, u) ∈ A(D) (but not both, unless this results
from multiple appearances of edge uv in E(G)).

A mixed graph is a triple of finite sets M = (V, E, A), where V is a set of vertices, E is a
set of edges (as defined above for graph (V, E)), and A is a set of arcs (as defined above for
digraph (V, A)). A multi-mixed graph is a triple M = (V, E, A), where V is a set of vertices,
E is a multiset of edges (as defined above for multigraph (V, E)), and A is a multiset of
arcs (as defined above for multidigraph (V, A)). We note that Harary and Palmer, who first
introduced mixed graphs in 1966, defined a mixed graph as containing “both ordinary and
oriented lines” [6]. They followed a convention of combining two anti-parallel arcs into
a single edge. We deviate from this practice in our definition and allow the presence of
both an edge and two anti-parallel arcs between a pair of vertices (as has become more
common in recent years). The complete mixed graph on v vertices, denoted Mv, is the
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mixed graph Mv = (V, E, A), where |V| = v, edge set E contains each edge {u, v}, where
u ̸= v, exactly once, and arc set A contains every arc (u, v), where u ̸= v, exactly once.
The λ-fold complete multi-mixed graph on v vertices, denoted λMv, is the multi-mixed
graph with vertex set V, where |V| = v, multiset E contains every edge uv, where u ̸= v,
exactly λ times, and multiset A contains every arc (u, v), where u ̸= v, exactly λ times.
A multi-mixed graph, M, is a partial orientation of an (undirected) graph (or multigraph),
G, if V(M) = V(G), E(M) ⊂ E(G), and for every edge e = uv ∈ E(G) \ E(M) we have
either (u, v) ∈ A(M) or (v, u) ∈ A(M) (but not both, unless this results from multiple
appearances of edge e = uv in E(G)).

Of additional interest is the idea of a fuzzy graph. An outgrowth of fuzzy logic (which
has recently found a huge number of applications, particularly in the areas of machine
learning and artificial intelligence), the theory of fuzzy graphs involves structures that do
not fall into the binary relationships of “element of” and “not an element of”, but instead
involves a degree of membership (which can be interpreted as a probability of membership).
We rely on [7] for definitions and descriptions of this topic, though we modify the notation
slightly for consistency with our other definitions. For a given set, X, a fuzzy subset of X (or
simply a “fuzzy set”) is a function, µ, mapping X → [0, 1]. A fuzzy graph is a quadruple
F = (V, E, σ, µ), where V is a finite set of vertices, E is a set of edges (as defined above for
graph (V, E)), and σ and µ are functions, where σ : V → [0, 1] and µ : E → [0, 1], which
satisfy the condition µ(xy) ≤ min{σ(x), σ(y)} for all xy ∈ E. Fuzzy set σ is the fuzzy vertex
set of F and fuzzy set µ is the fuzzy edge set of F. Applications of fuzzy graph theory include
cluster analysis and decision analysis in statistical science, pattern classification, neural
networks, and social science [7] (page 1). Recent examples of applications of fuzzy graph
theory include the use of the concept of the “Randic index” in a connected system applied
to Indonesian tourism [8], and the use of Cartesian products, compositions, and unions of
“picture fuzzy graphs” applied to railway networks and medical science models [9].

1.3. Decomposition Definitions

A g-decomposition of graph G is a set of subgraphs of G, γ = {g1, g2, . . . , gn}, where
gi

∼= g for i ∈ {1, 2, . . . , n}, E(gi) ∩ E(gj) = ∅ for i ̸= j, and ∪n
i=1E(gi) = E(G). The gi are

called blocks of the decomposition. When G is a complete graph, the g-decomposition is
often called a graph design. A K3-decomposition of Kv is a Steiner triple system of order
v, and it is well known that such a triple system exists if and only if v ≡ 1 or 3 (mod 6)
(see [10] for references). Cycle graph designs were a topic of intense interest until the early
2000s, when necessary and sufficient conditions for a Cm-decomposition of Kv were given
for all m and v [11,12]. An easier and self-contained construction for odd cycle systems is
given in [13]. Necessary and sufficient conditions for decompositions of Kv into copies of
(not necessarily isomorphic) stars are given in [14]. To illustrate the potential application
of graph decompositions, consider a (hypothetical) machine that runs samples three at
a time. The machine can only make comparisons between samples that are run together
in the machine (it cannot be calibrated from run to run, say). If one desires to compare a
collection of samples of size v, can this be done optimally (that is, by comparing every pair
of samples exactly once)? By representing the samples as vertices of a graph, comparisons
of a pair of samples as an edge, and a run of the machine as a K3, an optimal solution is
equivalent to a Steiner triple system of order v, and the subgraphs in the decomposition
give the runs of the machine in the optimal solution. A g-decomposition of multigraph G is
defined similar to that of a g-decomposition of a graph, with the edges of G repeated an
appropriate number of times in the multiset of the gi. Necessary and sufficient conditions
for a K3-decomposition of λKv are given in [15]. Notice that the three-at-a-time comparison
application can be solved, if exactly λ comparisons per pair of samples is required, by
considering a K3-decomposition of λKv.

A d-decomposition of digraph D is a set of subdigraphs of D, γ = {d1, d2, . . . , dn},
where di

∼= d for i ∈ {1, 2, . . . , n}, A(di) ∩ A(dj) = ∅ for i ̸= j, and ∪n
i=1 A(di) = A(G).

The di are called blocks of the decomposition. When D is a complete digraph, the d-
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decomposition is often called a digraph design. There are two orientations of K3 = C3, a
3-circuit (in which case the three arcs are oriented in the “same” direction, say clockwise)
and the transitive triple (say, with two clockwise-oriented arcs and one counterclockwise-
oriented arc). A decomposition of Dv into 3-circuits is a Mendelsohn triple system of
order v, and a decomposition of Dv into transitive triples is a directed triple system of
order v. Each of these exists if and only if v ≡ 0 or 1 (mod 3), v ≥ 3, except in the case
of v = 6 for a Mendelsohn triple system [16,17]. A d-decomposition of multidigraph D
is defined similar to that of a d-decomposition of a digraph, with the arcs of D repeated
an appropriate number of times in the multiset of the di. Decompositions of λDv into
Mendelsohn triples are considered in [18] and decompositions of λDv into transitive triples
are considered in [19]. The literature on graph designs and graph decompositions (and of
digraph decompositions) is extensive [10,20], especially in the case of triple systems [21].

An m-decomposition of mixed graph M is a set of sub-mixed graphs of M, γ =
{m1, m2, . . . , mn}, where mi

∼= m for i ∈ {1, 2, . . . , n}, E(mi) ∩ E(mj) = ∅ and A(mi) ∩
A(mj) = ∅ for i ̸= j, ∪n

i=1E(mi) = E(M), and ∪n
i=1 A(mi) = A(M). The mi are called

blocks of the decomposition. When M is a complete mixed graph, the m-decomposition is
often called a mixed graph design. Since the complete mixed graph, Mv, has twice as many
arcs as edges, then for an m-decomposition of Mv we must have that m also has twice as
many arcs as edges. This gives a necessary condition for the existence of a mixed graph
design. For example, each partial orientation of C3 with two arcs and one edge could yield
a decomposition of Mv. Such a decomposition is called a mixed triple system of order v.
Necessary and sufficient conditions for the existence of the various types of mixed triple
systems of order v are given in [22]. A partial orientation of the star S3 with two arcs and
one edge could yield a decomposition of λMv. Necessary and sufficient conditions for
the existence of a decomposition of λMv is given for each such partial orientation of S3
in [23]. Of particular interest to the current work is the decomposition of Mv into partial
orientations of S6 with four arcs and two edges; such mixed graph designs are classified
in [24]. An m-decomposition of multi-mixed graph M is defined similar to that of an
m-decomposition of a mixed graph, with the arcs of M repeated an appropriate number of
times in the multiset of the mi. The purpose of this paper is to classify decompositions of
λMv into partial orientations of S6 with four arcs and two edges for all λ > 1. In this way,
the research gap between decompositions of simple mixed graphs and decompositions of
multi-mixed graphs is filled in the case of partial orientations of S6. There are five partial
orientations of S6 with four arcs and two edges, and these are given in Figure 1.

Figure 1. The five partial orientations of S6 with four arcs and two edges and the notation we use to
represent them.
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2. Decompositions of the λ-Fold Complete Mixed Graph into Mixed 6-Stars
2.1. Difference Methods

For the complete mixed graph Mv = (V, E, A), we take V = {0, 1, 2, . . . , v − 1}. Define
the edge difference associated with edge xy as min{(x − y)(mod v), (y − x)(mod v)}. Define
the arc difference associated with arc (x, y) as (y− x)(mod v). Notice that the total set of edge
differences associated with E is {1, 2, . . . , ⌊(v − 1)/2⌋}, and the total set of arc differences
associated with A is {1, 2, . . . , v − 1}. Under the permutation π = (0, 1, 2, . . . , v − 1), the
orbit of the edge xy includes all edges of Mv, with associated edge difference min{(x −
y)(mod v), (y− x)(mod v)}. Similarly, under permutation π, the orbit of arc (x, y) includes
all arcs of Mv, with associated arc differences (y − x)(mod v). Suppose {b1, b2, . . . , bk},
where bi

∼= m for i ∈ {1, 2, . . . , k}, is a collection of sub-mixed graphs of Mv, such that
every edge difference 1, 2, . . . , ⌊(v − 1)/2⌋ (respectively, arc difference 1, 2, . . . , v − 1) is
associated with exactly one edge (respectively, arc) in the edge sets (respectively, arc sets)
of the bi. Then, if we take all of the images of the bi under the powers of π, we obtain an
m-decomposition of Mv, with γ = {πi(b1), πi(b2), . . . , πi(bk) | i = 0, 1, . . . , v − 1}. The set
{b1, b2, . . . , bk} is a set of base blocks for the m-decomposition of Mv under π. Similarly, if
multiset {b1, b2, . . . , bk} contains edges and arcs that give each edge difference and each
arc difference exactly λ times, then the images of the bi under the powers of π give an
m-decomposition of λMv. This is the construction technique often used in the proof of the
main result of this paper when v is odd.

2.2. Automorphisms of Decompositions

An automorphism of a decomposition, γ = {g1, g2, . . . , gn}, of graph G = (V, E) is
a permutation of V that fixes set γ. Automorphisms of a digraph decomposition and
of a mixed graph decomposition (as well as the multigraph/multidigraph/multi-mixed
graph versions) are similarly defined. A decomposition admitting the automorphism π of
Section 2.1 is a cyclic decomposition. Cyclic automorphisms and difference methods are a
frequently used method of construction for various decompositions. For example, a cyclic
Steiner triple system of order v exists for all possible orders v ≡ 1 or 3 (mod 6), except
for v = 9. The construction of such systems, along with an explanation of the difference
methods used, is given in [10].

A decomposition of one of the classes of graphs discussed, where V = {∞, 0, 1, 2, . . . , v−2},
which admits the automorphism ρ = (∞)(0, 1, 2, . . . , v − 2), is a rotational decomposition.
Rotational Steiner triple systems were the first class of objects studied in terms of the
question: “For what orders does a graph decomposition admit a given type of permutation
as an automorphism?” [25]. The use of a rotational permutation in the construction of
a decomposition is related to the idea of difference methods, as discussed in Section 2.1.
However, the differences are associated with the cycle of length v − 1, and edges and/or
arcs to/from the fixed point ∞ must be taken into consideration. When using a rotational
permutation, a set of base blocks would need each edge/arc difference to be present an
appropriate number of times (either 1 or λ), and an edge/arc with ∞ as an end/terminal
end/initial end would need to be present an appropriate number of times (either 1 or λ
each). We often use rotational permutations in the proof of the main result of this paper
when v is even.

2.3. Background Result and a Lemma

The necessary and sufficient conditions for the existence of an Si
6-decomposition of

Mv are as follows [24].

Theorem 1. An Si
6-decomposition of Mv exists if and only if v ≥ 9,

1. if i ∈ {0, 4} then v ≡ 1 (mod 4), and
2. if i ∈ {1, 2, 3} then v ≡ 0 or 1 (mod 4).
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The next lemma gives necessary conditions for the existence of an Si
6-decomposition,

where 0 ≤ i ≤ 4, of λMv when λ is odd.

Lemma 1. For λ odd and 0 ≤ i ≤ 4, if an Si
6-decomposition of λMv exists then v ≡ 0 or 1

(mod 4).

Proof. First, notice that for λ odd and v ≡ 2 (mod 4), say v = 4k + 2, the number of edges
of λMv is λ(v

2) = λ(4k + 1)(2k + 1), which is odd. In this case, no Si
6-decomposition of

λMv exists since Si
6 has two edges.

Next, for λ odd and v ≡ 3 (mod 4), say v = 4k + 3, the number of edges of λMv is
λ(v

2) = λ(4k + 3)(2k + 1), which is odd. In this case, no Si
6-decomposition of λMv exists.

Therefore, if an Si
6-decomposition of λMv exists then v ≡ 0 or 1 (mod 4), as claimed.

2.4. The Decomposition Theorem and Proof

Since Si
6 has seven vertices for each i, then of course a necessary condition for an

Si
6-decomposition of any mixed graph on v vertices is v ≥ 7. In several of the following

constructions, we take {0, 1, 2, . . . , v − 1} as the vertex set of λMv. We will also use the
permutation π = (0, 1, 2, . . . , v − 1) in several of the constructions. We now give necessary
and sufficient conditions for the existence of an Si

6-decomposition of λMv in each case
(with the exception of the small cases v = 8 and v = 10 when λ = 2 and i = 1, which we
leave open).

Theorem 2. An S0
6-decomposition of λMv exists if and only if v ≥ 7 and

1. v ≡ 0 (mod 2) and λ ≡ 0 (mod 4), or
2. v ≡ 1 (mod 4) and λ ≥ 1, or
3. v ≡ 3 (mod 4) and λ ≡ 0 (mod 2).

Proof. Each vertex of λMv has out-degree λ(v − 1) and each vertex of S0
6 has out-degree 0

(mod 4) so, if an S0
6-decomposition of λMv exists, then λ(v − 1) ≡ 0 (mod 4) is necessary.

This observation, along with Lemma 1, gives the necessary conditions. We now show these
necessary conditions are sufficient.

Case 1. Suppose v ≡ 0 (mod 4), v ≥ 8, say v = 4k where k ≥ 2, and λ ≡ 0 (mod 4).
Consider the blocks:

{2 × [0, 2k − 2, 2k − 1; 2k, 4k − 3, 4k − 2; 4k − 1]06, 2 × [0, 2k + 1, 4k − 1; 1, 2, 3, 2k]06}

∪{[0, 4k − 1, 2k; 1, 2, 4k − 3; 4k − 2]06, [0, 2k + 2, 2k; 1, 2, 3, 4k − 1]06,

[0, 1, 2k − 2; 3, 4k − 3, 4k − 2, 4k − 1]06}

∪{4 × [0, 2 + 2i, 3 + 2i; 4 + 2i, 5 + 2i, 2k + 1 + 2i, 2k + 2 + 2i]06 for i = 0, 1, . . . , k − 3}.

These blocks, along with their images under powers of permutation π, form an S0
6-

decomposition of 4Mv. By taking λ/4 copies of the blocks of such a decomposition,
we obtain an S0

6-decomposition of λMv.
Case 2. Suppose v ≡ 1 (mod 4). Then by Theorem 1 an S0

6-decomposition of Mv exists
by Theorem 1. For any λ ≥ 1, we take λ copies of the blocks of such a decomposition and
this gives an S0

6-decomposition of λMv.
Case 3. Suppose v ≡ 2 (mod 4), v ≥ 10, say v = 4k + 2 where k ≥ 2, and λ ≡ 0

(mod 4). Consider the blocks

{2 × [0, 1, 2k − 2; 4k − 2, 4k − 1, 4k, 4k + 1]06, 2 × [0, 2k − 1, 2k + 2; 1, 2, 4, 2k + 1]06}

∪{[0, 1, 2k + 3; 2, 3, 4k, 4k + 1]06, [0, 2k − 2, 2k; 3, 2k + 1, 4k − 2, 4k]06,

[0, 2k + 1, 2k; 1, 2, 3, 4k − 2]06, [0, 1, 2k − 2; 3, 4, 2k + 1, 4k − 1]06

[0, 2k + 1, 2k + 2; 1, 4, 4k − 1, 4k + 1]06}
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∪{4 × [0, 2 + 2i, 3 + 2i; 5 + 2i, 6 + 2i, 2k + 2 + 2i, 2k + 3 + 2i]06 for i = 0, 1, . . . , k − 3}.

These blocks, along with their images under powers of permutation π, form an S0
6-

decomposition of 4Mv. By taking λ/4 copies of the blocks of such a decomposition,
we obtain an S0

6-decomposition of λMv.
Case 4a. Suppose v = 7. Consider the blocks

{[0, 1, 6; 2, 3, 4, 5]06, [0, 4, 5; 1, 2, 3, 6]06, [0, 2, 3; 1, 4, 5, 6]60}.

These blocks, along with their images under powers of permutation π, form an S0
6-

decomposition of 2M7. By taking λ/2 copies of the blocks of such a decomposition,
we obtain an S0

6-decomposition of λM7.
Case 4b. Suppose v ≡ 3 (mod 4), v ≥ 11, say v = 4k + 3 where k ≥ 2, and λ ≡ 2

(mod 4). Consider the blocks

{[0, 4k + 2, 4k + 1; 1, 2, 3, 4]06, [0, 2k + 1, 2k + 2; 1, 2, 4k + 1, 4k + 2]06}

∪[0, 1 + 2i, 2 + 2i; 3 + 4i, 4 + 4i, 5 + 4i, 6 + 4i]06 for i = 0, 1, . . . , k − 1}

∪{[0, 3 + 2i, 4 + 2i; 5 + 4i, 6 + 4i, 7 + 4i, 8 + 4i]06 for i = 0, 1, . . . , k − 2}.

These blocks, along with their images under powers of permutation π, form an S0
6-

decomposition of 2Mv. By taking λ/2 copies of the blocks of such a decomposition,
we obtain an S0

6-decomposition of λMv.

Since λMv is self-converse and the converse of S0
6 is S4

6, then an S4
6-decomposition of

λMv exists if and only if an S0
6-decomposition of λMv exists. So, the conditions for the

existence of an S0
6-decomposition of λMv, given in Theorem 2, are also the conditions for

the existence of an S4
6-decomposition of λMv.

Theorem 3. An S1
6-decomposition of λMv exists if and only if v ≥ 7 and

1. v ≡ 0 or 1 (mod 4) and λ ≥ 1, where v ̸= 8 when λ = 1, or
2. v ≡ 2 (mod 4) and λ ≡ 0 (mod 2), or
3. v ≡ 3 (mod 4) and λ ≡ 0 (mod 2),

with the possible exceptions of v = 8 and v = 10 when λ = 2, which we leave open.

Proof. Theorem 1 and Lemma 1 give the necessary conditions. We now show these
necessary conditions are sufficient.

Case 1a. Suppose v = 8. Consider the blocks

{[∞, 0, 1; 2, 3, 4, 5]16, [0, 1, 2; 3, 4, 5, 6]16, [0, 2, 3; 5, 6, 1, 4]16,

[0, 4, 3; ∞, 5, 2, 6]16, [0, 6, 2; ∞, 3, 1, 5]16, [0, 6, ∞; 4, 3, 1, 2]16}.

These blocks, along with their images under powers of permutation (∞)(0, 1, . . . , 7), form
an S1

6-decomposition of 3M8. Consider the blocks

{[∞, 0, 1; 2, 3, 4, 5]16, 2 × [0, ∞, 1; 6, 3, 4, 5]16, [0, 1, 5; ∞, 2, 3, 4]16, [0, 2, 4; ∞, 3, 5, 6]16,

[0, 1, 3; ∞, 2, 5, 6]16, [0, 2, 3; 5, ∞, 1, 6]16, [0, 2, 3; 5, 1, 4, 6]16}.

These blocks, along with their images under powers of permutation (∞)(0, 1, . . . , 7), form
an S1

6-decomposition of 4M8. Consider the blocks

{[∞, 0, 1; 2, 3, 4, 5]16, [0, ∞, 1; 6, 2, 3, 4]16, [0, ∞, 2; 6, 3, 4, 5]16, [0, ∞, 3; 4, 1, 2, 5]16,

[0, 1, 2; ∞, 3, 4, 5]16, [0, 2, 3; ∞, 4, 5, 6]16, [0, 1, 3; ∞, 2, 4, 6]16,

[0, 1, 2; ∞, 3, 5, 6]16, [0, 2, 3; 5, ∞, 1, 6]16, [0, 1, 3; 5, ∞, 1, 6]16}.
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These blocks, along with their images under powers of permutation (∞)(0, 1, . . . , 7), form
an S1

6-decomposition of 5M8. Since any λ ≥ 3 can be written as a sum of a multiple of 3
and a multiple of 4 (except for 5), then an S1

6-decomposition of λM8, where λ ≥ 3, exists
and can be constructed by taking appropriate numbers of copies of decompositions of 3M8
and 4M8 (with the exception of λ = 5, which we have dealt with separately).

Case 1b. Suppose v ≡ 0 or 1 (mod 4), v ≥ 9. Then by Theorem 1 an S1
6-decomposition

of Mv exists by Theorem 1. For any λ ≥ 1, we take λ copies of the blocks of such a
decomposition and this gives an S1

6-decomposition of λMv.
Case 2a. Suppose v = 10. Consider the blocks

{[∞, 0, 1; 2, 3, 4, 5]16, [0, 1, 2; 8, 3, 4, 5]16, [0, 2, 3; ∞, 1, 4, 5]16, [0, 3, 4; ∞, 1, 2, 5]16,

[0, 6, 4; ∞, 2, 3, 5]16, [0, 1, 2; 5, 6, 7, 8]16, [0, 1, 4; 3, 6, 7, 8]16,

[0, 1, 2; 6, ∞, 7, 8]16, [0, ∞, 3; 7, 6, 1, 2]16, [0, ∞, 5; 6, 4, 7, 8]16}.

These blocks, along with their images under powers of permutation (∞)(0, 1, . . . , 8), form
an S1

6-decomposition of 4M10. Consider the blocks

{2 × [∞, 0, 1; 2, 3, 4, 5]16, [0, 1, 2; 8, 3, 4, 5]16, [0, 2, 3; ∞, 1, 4, 5]16, [0, 3, 4; ∞, 1, 2, 5]16,

[0, 6, 4; ∞, 2, 3, 5]16, [0, 1, 2; ∞, 6, 7, 8]16, [0, 1, 4; 3, 6, 7, 8]16, [0, 1, 2; 6, 3, 7, 8]16,

[0, ∞, 1; 7, 2, 3, 4]16, [0, ∞, 8; , 1, 2, 3, 4]16, [0, 2, 3; 1, 8, 4, 5]16,

[0, 2, 3; 7, 1, 4, 5]16, [0, 3, 4; 2, 1, 6, 7]16, [0, 4, 5; 3, 1, 6, 7]16}.

These blocks, along with their images under powers of permutation (∞)(0, 1, . . . , 8), form
an S1

6-decomposition of 6M10. Since any even λ ≥ 4 can be written as a sum of a multiple
of 4 and a multiple of 6, then an S1

6-decomposition of λM8, where λ ≥ 4 is even, exists and
can be constructed by taking appropriate numbers of copies of decompositions of 4M8 and
6M8.

Case 2b. Suppose v = 18. Consider the blocks

[0, 1, ∞; 16, 2, 3, 4]16, [0, 1, ∞; 16, 2, 3, 4]16, [0, 2, 3; 12, 6, 7, ∞]16,

[0, 2, 3; 9, 8, 10, ∞]16, [0, 4, 5; 8, 9, 10, 11]16, [0, 4, 5; ∞, 11, 12, 13]16,

[0, 6, 7; ∞, 12, 13, 14]16, [0, 7, 8; 3, 15, 16, 5]16, [0, 6, 8; 11, 7, 15, 16]16.

These blocks, along with their images under powers of permutation (∞)(0, 1, . . . , 16), form
an S1

6-decomposition of 2M18. By taking λ/2 copies of the blocks of such a decomposition,
we obtain an S1

6-decomposition of λM18.
Case 2c. Suppose v ≡ 2 (mod 8), say v = 8k + 2 where k ≥ 3, and λ ≡ 0 (mod 2).

Consider the blocks

{2 × [0, ∞, 8k; 8k − 3, 1, 2, 3]16, 2 × [0, 2, 3; ∞, 5, 6, 7]16, [0, 4, 5; 8k − 9, 8, 9, ∞]16,

[0, 5, 6; 8k − 9, 8, 12, ∞]16, [0, 4, 6; 8k − 10, 9, 11, 12]16, [0, 7, 8k − 6; 8k − 12, 13, 17, 21]16,

[0, 8, 8k − 7; 8k − 13, 14, 15, 22]16, [0, 9, 8k − 8; 8k − 17, 18, 19, 22]16,

[0, 10, 8k − 9; 8k − 19, 17, 20, 24]16, [0, 11, 8k − 10; 8k − 15, 16, 21, 24]16,

[0, 12, 8k − 11; 8k − 22, 15, 19, 23]} ∪ {[0, 13 + 4i, 8k − 12 − 4i; 7 + 8i,

31 + 8i, 26 + 8i, 30 + 8i]16, [0, 14 + 4i, 8k − 13 − 4i; 8 + 8i, 28 + 8i, 25 + 8i, 29 + 8i]16,

[0, 15 + 4i, 8k − 14 − 4i; 1 + 8i, 28 + 8i, 29 + 8i, 32 + 8i]16, [0, 16 + 4i, 8k − 15 − 4i; 6 + 8i,

27 + 8i, 30 + 8i, 31 + 8i]16 for i = 0, 1, . . . , k − 4}.
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These blocks, along with their images under powers of permutation (∞)(0, 1, . . . , 8k), form
an S1

6-decomposition of 2Mv. By taking λ/2 copies of the blocks of such a decomposition,
we obtain an S1

6-decomposition of λMv.
Case 3. Suppose v ≡ 3 (mod 4), v ≥ 7, say v = 4k + 3 where k ≥ 1, and λ ≡ 0 (mod 2).

Consider the blocks

{[0, 4k + 2, 4k + 1; 4k − 1, 1, 2, 3]16, [0, 2k + 1, 2k + 2; 4k − 1, 2, 4k + 1, 4k + 2]16}

∪{[0, 3 + 2i, 4 + 2i; 4k − 4 − 4i, 8 + 4i, 9 + 4i, 10 + 4i]16 for i = 0, 1, . . . , k − 2 where

i ̸= (2k − 4)/3 and i ̸= (k − 3)/2} ∪ {[0, 4k + 2, 2; 4k, 1, 5, 6]16}

∪
{[

0,
4k + 1

3
,

8k + 5
3

;
4k + 4

3
,

8k + 8
3

,
8k + 11

3
,

8k + 14
3

]1

6
if i =

2k − 4
3

}

∪
{
[0, k, k + 1; 2k, 2k + 2, 2k + 1, 2k + 4]16 if i =

k − 3
2

}
∪{[0, 3 + 2i, 4 + 2i; 4k − 2 − 4i, 6 + 4i, 7 + 4i, 8 + 4i]16 for i = 0, 1, . . . , k − 2 where

i ̸= (2k − 3)/3 and i ̸= (k − 2)/2}

∪
{[

0,
4k + 3

3
,

8k + 3
3

;
4k + 6

3
,

8k + 6
3

,
8k + 9

3
,

8k + 12
3

]
if i = (2k − 3)/3

}
∪{[0, k + 1, k + 2; 2k, 2k + 2, 2k + 1, 2k + 4]16 if i = (k − 2)/2}.

These blocks, along with their images under powers of permutation π, form an S1
6-

decomposition of 2Mv. By taking λ/2 copies of the blocks of such a decomposition,
we obtain an S1

6-decomposition of λMv.
Case 4. Suppose v ≡ 6 (mod 8), v ≥ 14, say v = 8k + 6 where k ≥ 1, and λ ≡ 0

(mod 2). Consider the blocks

{2 × [0, ∞, 8k + 4; 8k + 1, 1, 2, 3]16, 2 × [0, 2, 3; ∞, 5, 6, 7]16, [0, 4, 5; 8k − 5, 8, 9, ∞]16,

[0, 5, 6; 8k − 5, 8, 12, ∞]16, [0, 4, 6; 8k − 6, 9, 11, 12]16} ∪ {[0, 7 + 4i, 8k − 2 − 4i; 8 + 8i, 16 + 8i,

13 + 8i, 17 + 8i]16, [0, 8 + 4i, 8k − 3 − 4i; 7 + 8i, 19 + 8i, 14 + 8i, 18 + 8i]16,

[0, 9 + 4i, 8k − 4 − 4i; 6 + 8i, 15 + 8i, 18 + 8i, 19 + 8i]16, [0, 10 + 4i, 8k − 5 − 4i;

1 + 8i, 16 + 8i, 17 + 8i, 20 + 8i]16 for i = 0, 1, . . . , k − 2}.

These blocks, along with their images under the powers of permutation (∞)(0, 1, . . . , 8k+ 4),
form an S1

6-decomposition of 2Mv. By taking λ/2 copies of the blocks of such a decomposi-
tion, we obtain an S1

6-decomposition of λMv.

Since λMv is self-converse and the converse of S1
6 is S3

6, then an S3
6-decomposition of

λMv exists if and only if an S1
6-decomposition of λMv exists. So, the conditions for the

existence of an S1
6-decomposition of λMv, given in Theorem 3, are also the conditions for

the existence of an S3
6-decomposition of λMv (with the exceptions of v = 8 and v = 10

when λ = 2).

Theorem 4. An S2
6-decomposition of λMv exists if and only if v ≥ 7 and

1. v ≡ 0 or 1 (mod 4) and λ ≥ 1, where v ̸= 8 in the case λ = 1, or
2. v ≡ 2 (mod 4) and λ ≡ 0 (mod 2), or
3. v ≡ 3 (mod 4) and λ ≡ 0 (mod 2).

Proof. Theorem 1 and Lemma 1 give the necessary conditions. We now show these
necessary conditions are sufficient.
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Case 1a. Suppose v ≡ 0 or 1 (mod 4), v ̸= 8. Then by Theorem 1 an S2
6-decomposition

of Mv exists by Theorem 1. For any λ ≥ 1, we take λ copies of the blocks of such a
decomposition and this gives an S2

6-decomposition of λMv.
Case 1b. Suppose v = 8. Take the blocks of an S2

6-decomposition of 2M7 (which
exists by Case 1a), where the vertices of 2M7 are 0, 1, . . . , 6. To this, add the images of
[∞, 0, 1; 2, 3, 4, 5]26 under the permutation (∞)(0, 1, . . . , 6). This gives an S2

6-decomposition
of 2M8, where the vertex set is {∞, 0, 1, . . . , 6}. Next, consider the blocks:

{[∞, 0, 1; 2, 3, 4, 5]26, [0, 1, 2; 3, 4, 5, 6]26, [0, 2, 3; 5, 6, 1, 4]26,

[0, 1, 3; 2, 4, ∞, 6]26, [0, ∞, 3; 5, 4, 1, 2]26, [0, 1, 2; 3, ∞, 5, 6]26}.

These blocks, along with their images under permutation (∞)(0, 1, . . . , 6), form an S2
6-

decomposition of 3M8. Since any λ ≥ 2 can be written as a sum of a multiple of 2 and a
multiple of 3, then an S2

6-decomposition of λM8, where λ ≥ 2, exists and can be constructed
by taking appropriate numbers of copies of decompositions of 2M8 and 3M8.

Case 2a. Suppose v = 10. Take the blocks of an S2
6-decomposition of 2M9 (which

exists by Case 1a), where the vertices of M9 are 0, 1, . . . , 8. To this, add the images of
[∞, 0, 1; 2, 3, 4, 5]26 under the permutation (∞)(0, 1, . . . , 8). This gives an S2

6-decomposition
of 2M10, where the vertex set is {∞, 0, 1, . . . , 8}. By taking λ/2 copies of the blocks of such
a decomposition, we obtain an S2

6-decomposition of λM10 for all even λ.
Case 2b. Suppose v = 18. Consider the blocks

{[0, 1, ∞; 16, 15, 3, 4]26, [0, 1, ∞; 16, 15, 3, 4]26, [0, 2, 3; 12, 11, 7, ∞]26,

[0, 2, 3; 9, 7, 8, ∞]26, [0, 4, 5; 8, 7, 9, 11]26, [0, 4, 5; ∞, 6, 12, 13]26,

[0, 6, 7; ∞, 5, 13, 14]26, [0, 7, 8; 3, 2, 16, 5]26, [0, 6, 8; 11, 10, 15, 16]26}.

These blocks, along with their images under permutation (∞)(0, 1, . . . , 16), form an S2
6-

decomposition of 2M18. By taking λ/2 copies of the blocks of such a decomposition, we
obtain an S2

6-decomposition of λM18 for all even λ.
Case 2c. Suppose v ≡ 2 (mod 8), say v = 8k + 2 where k ≥ 3, and λ ≡ 0 (mod 2).

Consider the blocks

{2 × [0, ∞, 8k; 8k − 3, 8k − 2, 1, 2]26, 2 × [0, 2, 3; ∞, 8k − 4, 6, 7]26, [0, 4, 5; 8k − 9, 8k − 7, 9, ∞]26,

[0, 5, 6; 8k − 9, 8k − 7, 12, ∞]26, [0, 4, 6; 8k − 10, 8k − 8, 11, 12]26,

[0, 7, 8k − 6; 8k − 12, 8k − 16, 13, 21]26, [0, 8, 8k − 7; 8k − 13, 8k − 14, 14, 22]26,

[0, 9, 8k − 8; 8k − 17, 8k − 18, 18, 22]26, [0, 10, 8k − 9; 8k − 19, 8k − 16, 20, 24]26,

[0, 11, 8k − 10; 8k − 15, 8k − 20, 16, 24]26, [0, 12, 8k − 11; 8k − 22, 8k − 14, 19, 23]26}

∪{[0, 13 + 4i, 8k − 12 − 4i; 7 + 8i, 8k − 29 − 8i, 31 + 8i, 26 + 8i]26 for i = 0, 1, . . . , k − 4}

∪{[0, 14 + 4i, 8k − 13 − 4i; 8 + 8i, 8k − 27 − 8i, 25 + 8i, 29 + 8i]26

for i = 0, 1, . . . , k − 4 and i ̸= (k − 7)/2}

∪{[0, 2k, 6k + 1; 4k − 20, 4k + 4, 4k, 4k + 1]26 if i = (k − 7)/2}

∪{[0, 15 + 4i, 8k − 14 − 4i; 1 + 8i, 8k − 27 − 8i, 29 + 8i, 32 + 8i]26

for i = 0, 1, . . . , k − 4, and i ̸= (k − 7)/2}

∪{[0, 2k + 1, 6k; 4k − 27, 4k − 3, 4k + 1, 4k]26 if i = (k − 7)/2}

∪{[0, 16 + 4i, 8k − 15 − 4i; 6 + 8i, 8k − 29 − 8i, 27 + 8i, 31 + 8i]26

for i = 0, 1, . . . , k − 4, and i ̸= (k − 7)/2}
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∪{[0, 2k + 2, 6k − 1; 4k − 22, 4k − 2, 4k − 1, 4k + 2]26 if i = (k − 7)/2}.

These blocks, along with their images under the powers of permutation (∞)(0, 1, . . . , 8k+ 4),
form an S2

6-decomposition of 2Mv. By taking λ/2 copies of the blocks of such a decomposi-
tion, we obtain an S2

6-decomposition of λMv.
Case 3. Suppose v ≡ 3 (mod 4), v ≥ 7, say v = 4k + 3 where k ≥ 1, and λ ≡ 0 (mod 2).

Consider the blocks

{[0, 4k + 2, 4k + 1; 4k − 1, 4k, 1, 2]26, [0, 2k + 1, 2k + 2; 4k − 1, 4k + 2, 2, 4k + 1]26,

[0, 1, 2; 4k, 4k − 3, 4k + 2, 5]26} ∪ {[0, 3 + 2i, 4 + 2i; 4k − 4 − 4i, 4k − 5 − 4i, 9 + 4i, 10 + 4i]26

for i = 0, 1, . . . , k − 2 where i ̸= (2k − 4)/3}

∪{[0, (4k + 1)/3, (8k + 5)/3; (4k + 4)/3, (4k − 5)/3, (8k + 8)/3, (8k + 11)/3]26

if i = (2k − 4)/3}

∪{[0, 3 + 2i, 4 + 2i; 4k − 2 − 4i, 4k − 3 − 4i, 7 + 4i, 8 + 4i]26

for i = 0, 1, . . . , k − 2 where i ̸= (2k − 3)/3}

∪{[0, (4k + 3)/3, (8k + 3)/3; (4k + 6)/3, (4k − 3)/3, (8k + 6)/3, (8k + 9)/3]26

if i = (2k − 3)/3}.

These blocks, along with their images under powers of permutation π, form an S2
6-

decomposition of 2Mv. By taking λ/2 copies of the blocks of such a decomposition,
we obtain an S2

6-decomposition of λMv.
Case 4. Suppose v ≡ 6 (mod 8), v ≥ 14, say v = 8k + 6 where k ≥ 1, and λ ≡ 0

(mod 2). Consider the blocks

{2 × [0, ∞, 8k + 4; 8k + 1, 8k + 2, 1, 2]26, 2 × [0, 2, 3; ∞, 8k, 6, 7]26, [0, 5, 6; 8k − 3, 8k − 5, 12, ∞]26

[0, 4, 5; 8k − 5, 8k − 3, 9, ∞]26, [0, 4, 6; 8k − 6, 8k − 4, 11, 12]26}

{[0, 7 + 4i, 8k − 2 − 4i; 8 + 8i, 8k − 11 − 8i, 13 + 8i, 17 + 8i]26

for i = 0, 1, . . . , k − 2 and i ̸= (k − 3)/2}

∪{[0, 2k + 1, 6k + 4; 4k − 4, 4k, 4k + 1, 4k + 4]26 if i = (k − 3)/2}

∪{[0, 8 + 4i, 8k − 3 − 4i; 7 + 8i, 8k − 14 − 8i, 14 + 8i, 18 + 8i]26

for i = 0, 1, . . . , k − 2 and i ̸= (k − 4)/2}

∪{[0, 2k, 6k + 5; 4k − 9, 4k + 7, 4k + 3, 4k + 2]26 if i = (k − 4)/2}

∪{[0, 9 + 4i, 8k − 4 − 4i; 6 + 8i, 8k − 10 − 8i, 18 + 8i, 19 + 8i]26

for i = 0, 1, . . . , k − 2 and i ̸= (k − 2)/2}

∪{[0, 2k + 5, 6k; 4k − 5, 4k − 2, 4k + 7, 4k + 11] if i = (k − 2)/2}

∪{[0, 10 + 4i, 8k − 5 − 4i; 1 + 8i, 8k − 11 − 8i, 17 + 8i, 20 + 8i]26 for i = 0, 1, . . . , k − 2}.

These blocks, along with their images under powers of permutation (∞)(0, 1, . . . , 8k + 4),
form an S2

6-decomposition of 2Mv. By taking λ/2 copies of the blocks of such a decomposi-
tion, we obtain an S2

6-decomposition of λMv.

In conclusion, Theorems 2–4 (along with the observations about converses) give
necessary and sufficient conditions for an Si

6-decomposition of λMv for each 0 ≤ i ≤ 4,
with the exceptions of the small cases v = 8 and v = 10 when i ∈ {1, 3} and λ = 2.
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3. Discussion

In this paper, a classification of mixed 6-star decompositions of the complete λ-fold
mixed graph is given for all λ > 1.

Graph decompositions have applications in coding theory, crystallography, radio
astronomy, radio location, communication networks, and other fields [20]. Graph designs
have their beginning in the design and analysis of statistical experiments, but now also
have applications in tournament scheduling, mathematical biology, algorithmic design, and
cryptography [26]. There has been a flurry of recent activity in applications of graph theory
in general to neural networks [5]. The study of mixed graph decompositions and mixed
graph designs is relatively new, but it is expected that they will have similar applications.
For example, a network of roads can be represented by a mixed graph, where the edges
represent two-way roads and arcs represent one-way roads. Notice that, in the event of
a two-way main road connecting two locations where there are one-way access roads
on either side of the main road, these connections can be represented by an edge and
two anti-parallel arcs joining the locations. This example shows that there is potential for
applications of mixed graphs in network theory, where now only graphs and digraphs play
a role [27] (notice Chapters 2 and 3 on graphs and digraphs).

Since the area of mixed graph decompositions is little studied, there is significant poten-
tial for future research. The approach presented here, as explained in Sections 2.1 and 2.2,
could be applied, for example, to additional mixed star decompositions of complete mixed
graphs and λ-fold complete mixed graphs. Since a mixed star in such a decomposition
must have twice as many arcs as edges, then this requires a partially oriented mixed
star, S3n, with 2n arcs. There are 2n + 1 such partial orientations of S3n. Constructions
of S3n-decompositions of Mv (and of λMv) should lend themselves, at least in part, to
the approach used here. Decompositions of complete bipartite mixed graphs (and λ-fold
versions thereof) are unsolved; in fact, they could form part of a recursive construction
for decompositions of Mv and λMv. The complete mixed graph with a hole also offers
an opportunity for various decompositions. When considering these different types of
complete mixed graphs, or any other type (in which any two vertices are either not adjacent
or are joined by one edge and two distinct arcs), there is the possibility for a decomposition
into partial orientations of stars.

We have used cyclic and rotational permutations in our approach to the constructions
of Section 2. This motivates the study of star decompositions of Mv (and λMv), which admit
certain permutations as automorphisms. In addition to cyclic and rotational permutations,
Steiner triple systems have been studied for the existence of k-rotational automorphisms
(such automorphisms consist of one fixed point and k disjoint cycles of the same length;
therefore a “rotational” automorphism is a special case of a k-rotational automorphism,
since it is just a 1-rotational automorphism) [25]. The question of k-rotational mixed star
designs is unaddressed (except for the parts of the special case k = 1, which appears in this
work). A reverse permutation on a set of even size 2n consists of n disjoint transpositions,
and on an odd set of size 2n + 1 consists of one fixed point and n disjoint transpositions.
Steiner triple systems admitting a reverse automorphism have been considered [28]. A
bicyclic permutation is one consisting of two disjoint cycles, and a tricyclic permutation
is one consisting of three disjoint cycles. Future research on mixed star designs (closely
related to the topic of this paper) could include the conditions under which they admit
reverse, bicyclic, or tricyclic automorphisms. Many of the other design theory ideas, such
as automorphism groups, packings, coverings, and embeddings, are available for study in
the setting of mixed star designs. The area is fertile for further exploration.
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List of Symbols
The following table includes the symbols used in this paper and their meaning.

G = (V, E) Graph with vertex set V and edge set E
{u, v} = uv Edge joining vertices u and v
Kv Complete graph on v vertices
Cv Cycle of length v
Sv Star on v + 1 vertices
λKv The λ-fold complete graph on v vertices
D = (V, A) Digraph with vertex set V and arc set A
init(a) Initial vertex of arc a
ter(a) Terminal vertex of arc a
(u, v) The arc with initial vertex u and terminal vertex v
Dv The complete digraph on v vertices
λDv The λ-fold complete digraph on v vertices
M = (V, E, A) Mixed graph with vertex set V, edge set E, and arc set A
Mv The complete mixed graph on v vertices
λMv The λ-fold complete mixed graph
F = (V, E, σ, µ) Fuzzy graph with vertex set V, edge set E,

fuzzy edge set σ, and fuzzy vertex set µ

γ = {g1, . . . , gn} A g-decomposition of graph G
γ = {d1, . . . , dn} A d-decomposition of digraph D
γ = {m1, . . . , mn} A m-decomposition of mixed graph M
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