Article

Inverses for Fourth-Degree Permutation Polynomials Modulo 32Ψ or 96Ψ, with Ψ as a Product of Different Prime Numbers Greater than Three

Lucian Trifina * (D) Daniela Tărniceriu (D) and Ana-Mirela Rotopănescu

Department of Telecommunications and Information Technologies, "Gheorghe Asachi" Technical University, 700506 Iasi, Romania; tarniced@etti.tuiasi.ro (D.T.); mrotopanescu@etti.tuiasi.ro (A.-M.R.)

* Correspondence: luciant@etti.tuiasi.ro

Citation: Trifina, L.; Tărniceriu, D.; Rotopănescu, A.-M. Inverses for Fourth-Degree Permutation Polynomials Modulo 32 Ψ or 96Ψ with Ψ as a Product of Different Prime Numbers Greater than Three AppliedMath 2024, 4,383-393. https:// doi.org/10.3390/appliedmath4010020

Academic Editor: Libor Pekař
Received: 15 January 2024
Revised: 20 February 2024
Accepted: 3 March 2024
Published: 16 March 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In this paper, we address the inverse of a true fourth-degree permutation polynomial (4-PP), modulo a positive integer of the form $32 k_{L} \Psi$, where $k_{L} \in\{1,3\}$ and Ψ is a product of different prime numbers greater than three. Some constraints are considered for the 4-PPs to avoid some complicated coefficients' conditions. With the fourth- and third-degree coefficients of the form $k_{4, f} \Psi$ and $k_{3, f} \Psi$, respectively, we prove that the inverse PP is (I) a 4 -PP when $k_{4, f} \in\{1,3\}$ and $k_{3, f} \in\{1,3,5,7\}$ or when $k_{4, f}=2$ and (II) a 5-PP when $k_{4, f} \in\{1,3\}$ and $k_{3, f} \in\{0,2,4,6\}$.

Keywords: permutation polynomial (PP); fourth-degree PP; inverse PP

1. Introduction

Permutation polynomials (PPs) have been studied for a long time [1]. Possible applications of PPs include those in cryptography, those used for sequence generation, or those used for interleavers in turbo codes [2-5].

A well-known result is that a permutation induced by a $\mathrm{PP}, \pi(x)$, modulo a positive integer L, has an inverse permutation induced also by a PP, $\rho(x)$, modulo L. The PP $\rho(x)$ that generates the inverse permutation is named the inverse PP modulo L of $\mathrm{PP} \pi(x)$. The inverse of a PP is particularly useful for deriving upper bounds of the minimum distance of a turbo code when using a PP interleaver [6].

1.1. Main Contributions

In the following, we list the main contributions of this paper:

- We derive the inverse PPs for fourth-degree PPs (4-PPs) modulo a positive integer of the form 32Ψ or 96Ψ, with Ψ as a product of different prime numbers greater than three. To avoid some complicated conditions on the coefficients, we impose some restrictions when the condition $3 \nmid\left(p_{i}-1\right)$ or $p_{i}=7$ is fulfilled for a prime $p_{i} \mid \Psi$. In these cases, we consider only the fourth-, third-, and second-degree coefficients that are multiples of p_{i}. If Ψ is a product of different prime numbers $p_{i}>7$ so that $3 \mid\left(p_{i}-1\right)$, the result in this paper is fully general with respect to the possible coefficients of the 4-PP.
- We give examples showing how to compute the inverse of a 4-PP. If the fourth-, third-, and second-degree coefficients of the 4-PP are of the forms $k_{4, f} \Psi, k_{3, f} \Psi$, and $k_{2, f} \Psi$, respectively, the second-to-the highest-degree coefficients of the inverse PP are immediately found using the results obtained depending on the values of $k_{4, f}, k_{3, f}$, and $k_{2, f}$. The first-degree coefficient of the inverse PP can be found from a first-degree congruence equation involving the first-degree coefficient of the 4-PP.
- In the "Remarks" section, we show how the inverse of a 4-PP can be found by means of the inverse normalized PPs modulo each factor from the prime decomposition of
L. We have made remarks regarding the facilities of finding the inverse PP using the results derived in this paper.

1.2. Structure of This Paper

The structure of this paper is as follows. Some basic results about 4-PPs are given in Section 2. The main results are obtained in Section 3. Four examples illustrating how we can find the inverse of 4-PP are given in Section 4, and some remarks are made in Section 5.

2. Preliminaries

2.1. Notations

The following notations are used in the paper:

- $\quad \mathbb{N}^{*}$ stands for the set of positive integers (i.e., the set of natural numbers greater than zero).
- $(\bmod L)$, with $L \in \mathbb{N}^{*}$, stands for the modulo L operation.
- $\quad a \mid b$, with $a, b \in \mathbb{N}^{*}$, stands for a divides b.
- $\quad a \nmid b$, with $a, b \in \mathbb{N}^{*}$, stands for a does not divide b.
- $\quad \operatorname{gcd}(a, b)$, with $a, b \in \mathbb{N}^{*}$, stands for the greatest common divisor of a and b.
- $\quad a$!, with $a \in \mathbb{N}^{*}$, stands for the factorial of a (i.e., the product $1 \cdot 2 \cdot 3 \cdots a$).

2.2. Results about 4-PPs

A fourth-degree polynomial

$$
\begin{equation*}
\pi(x)=\left(f_{1} x+f_{2} x^{2}+f_{3} x^{3}+f_{4} x^{4}\right)(\bmod L), \tag{1}
\end{equation*}
$$

is 4-PP modulo L if for $x \in\{0,1, \ldots, L-1\}$, values $\pi(x)(\bmod L)$ produce a permutation of the set $\{0,1, \cdots, L-1\}$.

A 4-PP is true if the permutation it performs cannot be accomplished by a permutation polynomial of a degree smaller than four.

Two 4-PPs with different coefficients are called different if they perform different permutations.

In [7], conditions on coefficients f_{1}, f_{2}, f_{3}, and f_{4} are derived so that the fourth-degree polynomial in (1) is a 4-PP modulo L. As we are interested in positive integers, L, of the form $32 \cdot \prod_{i=1}^{N_{p}} p_{i}$ or $96 \cdot \prod_{i=1}^{N_{p}} p_{i}$, with N_{p} as a positive integer, we give in Table 1 conditions for the coefficients only for the primes 2,3 , and $p_{i}, i=1,2, \ldots, N_{p}$, when L is of the form

$$
\begin{gather*}
L=2^{n_{L, 2}} \cdot 3^{n_{L, 3}} \cdot \prod_{i=1}^{N_{p}} p_{i}, \text { with } n_{L, 2}>1, n_{L, 3} \in\{0,1\}, \tag{2}\\
\\
p_{i}>3, i=1,2, \ldots, N_{p}, p_{1}<p_{2}<\cdots<p_{N_{p}} .
\end{gather*}
$$

Table 1. Conditions for coefficients $f_{1}, f_{2}, f_{3}, f_{4}$ so that $\pi(x)$ in (1) is a 4-PP modulo L of the form (2).

$p=2$	$n_{L, 2}>1$	$f_{1} \neq 0,\left(f_{2}+f_{4}\right)=0, f_{3}=0(\bmod 2)$
$p=3$	$n_{L, 3}=1$	$\left(f_{1}+f_{3}\right) \neq 0,\left(f_{2}+f_{4}\right)=0(\bmod 3)$
$3 \mid\left(p_{i}-1\right)\left(p_{i}>7\right)$	$n_{L, p_{i}}=1$	$f_{1} \neq 0, f_{2}=0, f_{3}=0, f_{4}=0\left(\bmod p_{i}\right)$
$3 \nmid\left(p_{i}-1\right)\left(p_{i} \geq 5\right)$	$n_{L, p_{i}}=1$	$f_{1} \neq 0, f_{2}=0, f_{3}=0, f_{4}=0\left(\bmod p_{i}\right)$ or $f_{2}^{2}=3 f_{1} f_{3}\left(\bmod p_{i}\right), f_{3} \neq 0, f_{4}=0\left(\bmod p_{i}\right)$

A d-PP modulo L

$$
\begin{equation*}
\rho(x)=\left(\rho_{1} x+\rho_{2} x^{2}+\cdots+\rho_{d} x^{d}\right)(\bmod L), d \in \mathbb{N}^{*} \tag{3}
\end{equation*}
$$

is an inverse of the 4-PP in (1) if

$$
\begin{equation*}
\pi(\rho(x))=x(\bmod L), \forall x \in\{0,1, \cdots, L-1\} . \tag{4}
\end{equation*}
$$

3. Main Results

The positive integers L will be considered of the form

$$
\begin{equation*}
L=32 \cdot \prod_{i=1}^{N_{p}} p_{i}=2^{5} \cdot \prod_{i=1}^{N_{p}} p_{i} \text { or } L=96 \cdot \prod_{i=1}^{N_{p}} p_{i}=2^{5} \cdot 3 \cdot \prod_{i=1}^{N_{p}} p_{i} \tag{5}
\end{equation*}
$$

with $p_{1}, p_{2}, \ldots, p_{N_{p}}$ different prime numbers so that $3<p_{1}<p_{2}<\cdots<p_{N_{p}}$.
To avoid some complicated conditions for the coefficients, if p_{i} is a prime such that $3 \nmid\left(p_{i}-1\right)$ and $p_{i} \geq 5, i \in\left\{1,2, \ldots, N_{p}\right\}$, or if $p_{i}=7$, only the following conditions

$$
\begin{equation*}
f_{1} \neq 0, f_{2}=0, f_{3}=0, f_{4}=0\left(\bmod p_{i}\right) . \tag{6}
\end{equation*}
$$

will be considered for the 4-PPs' coefficients.
We denote

$$
\begin{equation*}
\prod_{i=1}^{N_{p}} p_{i}=\Psi \tag{7}
\end{equation*}
$$

3.1. Coefficients of 4-PPs Modulo a Positive Integer of the Form 32Ψ or 96Ψ

The next lemma gives the possible values of the coefficients for a 4-PP modulo a positive integer of the form (5).

Lemma 1. Let a positive integer L be of the form given in (5). Then, the possible values for coefficients f_{4}, f_{3}, and f_{2} for a true different 4-PP fulfilling conditions (6) when $3 \nmid\left(p_{i}-1\right)$ or when $p_{i}=7$ are equivalent to those given in Table 2 . Coefficient f_{1} will always be odd.

Table 2. Possible values for coefficients f_{4}, f_{3}, and f_{2} so that $\pi(x)$ in (1) is a true 4-PP modulo L of the form (5) (Ψ is as in (7)).

L	f_{4}	f_{3}	f_{2}
324	Ψ or 3 ${ }^{\text {I }}$	0 or 2Ψ or 4Ψ or 6Ψ or 8Ψ or 10Ψ or 12Ψ or 14Ψ	Ψ or 3Ψ or 5Ψ or 7Ψ or 9Ψ or 11Ψ or 13Ψ or 15Ψ
	2Ψ	0 or 2Ψ or 4Ψ or 6Ψ or 8Ψ or 10Ψ or 12Ψ or 14Ψ	0 or 2Ψ or 4Ψ or 6Ψ or 8Ψ or 10Ψ or 12Ψ or 14Ψ
96Ψ	Ψ	0 or 2Ψ or 4Ψ or 6Ψ or 8Ψ or 10Ψ or 12Ψ or 14Ψ	5Ψ or 11Ψ or 17Ψ or 23Ψ or 29Ψ or 35Ψ or 41Ψ or 47Ψ
	2Ψ	0 or 2Ψ or 4Ψ or 6Ψ or 8Ψ or 10Ψ or 12Ψ or 14Ψ	4Ψ or 10Ψ or 16Ψ or 22Ψ or 28Ψ or 34Ψ or 40Ψ or 46Ψ
	3Ψ	0 or 2Ψ or 4Ψ or 6Ψ or 8Ψ or 10Ψ or 12Ψ or 14Ψ	3Ψ or 9Ψ or 15Ψ or 21Ψ or 27Ψ or 33Ψ or 39Ψ or 45Ψ

Proof of Lemma 1. According to Section 3 from [8], a true 4-PP is equivalent to a $4-\mathrm{PP}$ which has the coefficient $f_{k}<\frac{L}{\operatorname{gcd}(L, k!)}, k=2,3,4$. Thus, for the positive integer L of the form $L=32 \Psi$, a true 4-PP is equivalent to a 4-PP for which $f_{2}<L / 2=16 \Psi, f_{3}<L / 2=16 \Psi$, and $f_{4}<L / 8=4 \Psi$. For the positive integer L of the form $L=96 \Psi$, a true 4-PP is equivalent to a 4-PP for which $f_{2}<L / 2=48 \Psi, f_{3}<L / 6=16 \Psi$, and $f_{4}<L / 24=4 \Psi$. From the coefficient conditions of a 4-PP in Table 1 and because Ψ is odd, we obtain coefficients f_{2}, f_{3}, and f_{4} from Table 2.

We note that when $L=32 \Psi$ or $L=96 \Psi$, from condition 1) in Table 1, f_{1} is odd.
Because $\pi(x)$ is a true 4-PP, from Lemma 1, we have that

$$
\begin{cases}f_{4}=k_{4, f} \cdot \Psi, & \text { with } k_{4, f} \in\{1,2,3\} \tag{8}\\ f_{3}=k_{3, f} \cdot 2 \Psi, & \text { with } k_{3, f} \in\{0,1,2,3,4,5,6,7\} \\ f_{2}=k_{2, f} \cdot \Psi, & \text { with } k_{2, f}=c_{2} \cdot k_{L}+k_{4, f, L, L}, k_{L} \in\{1,3\}, \\ & c_{2} \in\{1,3,5,7,9,11,13,15\}\end{cases}
$$

The values of $k_{4, f, L}$ from (8) are as follows:

$$
\begin{cases}k_{4, f, L}=0, & \text { when } k_{L}=1 \text { and } k_{4, f} \in\{1,3\}, \tag{9}\\ k_{4, f, L}=-1, & \text { when } k_{L}=1 \text { and } k_{4, f}=2, \\ k_{4, f, L}=3-k_{4, f}, & \text { when } k_{L}=3 .\end{cases}
$$

Because p_{i} is odd $\forall i \in\left\{1,2, \ldots, N_{p}\right\}, \Psi$ from (7) is also odd.
From Table 1 in reference [7], we can see that, if for a prime $p_{i} \mid \Psi$ with $3 \nmid\left(p_{i}-1\right)$ and $p_{i}>3$, coefficient $f_{3} \neq 0\left(\bmod p_{i}\right)$, condition $\left(f_{2}\right)^{2}=3 f_{1} f_{3}\left(\bmod p_{i}\right)$ has to be fulfilled. A similar remark is valid for $p_{i}=7$ when $f_{4} \neq 0(\bmod 7)$. Thus, in these cases, coefficients f_{2} and f_{3} are not multiples of Ψ and the results derived in the next subsection are not applicable.

3.2. The Inverse PP of a 4-PP Modulo a Positive Integer of the Form 32Ψ or 96Ψ

The next lemma gives the coefficients of an inverse true 4-PP or 5-PP for a true 4-PP, fulfilling conditions (6) when $3 \nmid\left(p_{i}-1\right)$ or when $p_{i}=7$, modulo an integer of the form given in (5). In a previous result, we proved that a 4-PP modulo a positive integer of the form 16Ψ or 48Ψ always has an inverse true 4-PP. It is interesting that, unlike this previous result, for a 4-PP modulo, a positive integer of the form 32Ψ or 96Ψ, the inverse can be a true 4-PP or a true 5-PP.

In this lemma, an inverse true 4-PP is denoted as in Equation (3), with $d=4$, and it has the possible coefficients

$$
\begin{cases}\rho_{4}=k_{4, p} \cdot \Psi, & \text { with } k_{4, p} \in\{1,2,3\} \tag{10}\\ \rho_{3}=k_{3, p} \cdot 2 \Psi, & \text { with } k_{3, p} \in\{0,1,2,3,4,5,6,7\} \\ \rho_{2}=k_{2, p} \cdot \Psi, & \text { with } k_{2, p}=c_{2} \cdot k_{L}+k_{4, \rho, L,}, k_{L} \in\{1,3\}, \\ & c_{2} \in\{1,3,5,7,9,11,13,15\}\end{cases}
$$

and the values of $k_{4, \rho, L}$ from (10) as follows:

$$
\begin{cases}k_{4, \rho, L}=0, & \text { when } k_{L}=1 \text { and } k_{4, p} \in\{1,3\} \tag{11}\\ k_{4, p, L}=-1, & \text { when } k_{L}=1 \text { and } k_{4, p}=2 \\ k_{4, \rho, L}=3-k_{4, \rho}, & \text { when } k_{L}=3\end{cases}
$$

Similarly, an inverse true 5-PP is denoted as in Equation (3), with $d=5$, and has the following possible coefficients:

$$
\begin{cases}\rho_{5}=k_{5, p} \cdot \Psi, & \text { with } k_{5, p} \in\{1,2,3\} \tag{12}\\ \rho_{4}=k_{4, \rho} \cdot \Psi, & \text { with } k_{4, p} \in\{0,1,2,3\} \\ \rho_{3}=k_{3, p} \cdot \Psi, & \text { with } k_{3, p} \in\{1,3,5, \ldots, 15\} \text { when } k_{5, p} \in\{1,3\} \\ & \text { and } k_{3, p} \in\{0,2,4, \ldots, 14\} \text { when } k_{5, p}=2 \\ \rho_{2}=k_{2, \rho} \cdot \Psi, & \text { with } k_{2, p} \in\{1,3,5, \ldots, 15\} \text { when } k_{4, p} \in\{1,3\} \\ & \text { and } k_{2, p} \in\{0,2,4, \ldots, 14\} \text { when } k_{4, p} \in\{0,2\}\end{cases}
$$

We note that a 5-PP modulo a positive integer of the form (5) has more possible coefficients, but as we will see, the inverse 5-PP of a 4-PP has coefficients only of the form in (12). The particular conditions for coefficients of a 5-PP, as in (12), are given in Table 3.

Table 3. Particular conditions for coefficients $\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}, \rho_{5}$ so that $\rho(x)$ in (3), with $d=5$, is a 5 -PP modulo L of the form (2).

$p=2$	$n_{L, 2}>1$	$\rho_{1} \neq 0,\left(\rho_{2}+\rho_{4}\right)=0,\left(\rho_{3}+\rho_{5}\right)=0(\bmod 2)$
$p=3$	$n_{L, 3}=1$	$\left(\rho_{1}+\rho_{3}+\rho_{5}\right) \neq 0,\left(\rho_{2}+\rho_{4}\right)=0(\bmod 3)$
$p=5$	$n_{L, 5}=1$	$\left(\rho_{1}+\rho_{5}\right) \neq 0, \rho_{2}=0, \rho_{3}=0, \rho_{4}=0(\bmod 5)$
$p_{i}>5$	$n_{L, p_{i}}=1$	$\rho_{1} \neq 0, \rho_{2}=0, \rho_{3}=0, \rho_{4}=0, \rho_{5}=0\left(\bmod p_{i}\right)$

We note that, when $5 \mid \Psi$, a true $5-\mathrm{PP}$ is equivalent to a $5-\mathrm{PP}$ which has the coefficient $\rho_{5}<\frac{L}{\operatorname{gcd}(L, 5!)}$. For $L=32 \cdot k_{L} \cdot \Psi, k_{L} \in\{1,3\}$, this means that $\rho_{5}<4 \cdot \frac{\Psi}{5}$. But, from (12), $\rho_{5}=k_{5, \rho} \cdot \Psi$, with $k_{5, \rho} \in\{1,2,3\}$, and thus, we have $\rho_{5}>4 \cdot \frac{\Psi}{5}$. However, from Section 3 in [8], an equivalent PP with $\rho(x)$, with the coefficient $\rho_{5}<4 \cdot \frac{\Psi}{5}$, can be obtained if we subtract from $\rho(x)$ a null polynomial modulo $L, z(x)$, with the coefficient $z_{5}=k_{5, \rho} \cdot 4 \cdot \frac{\Psi}{5}$. Then, the resulting 5-PP has the coefficient $\rho_{5}=k_{5, \rho} \cdot \frac{\Psi}{5}$, with $k_{5, \rho} \in\{1,2,3\}$, and thus, it is a true 5-PP.

Lemma 2. Let a positive integer be of the form $L=32 \cdot k_{L} \cdot \Psi$, with $k_{L} \in\{1,3\}$ and Ψ as in (7). Then, a true 4-PP $\pi(x)=f_{1} x+f_{2} x^{2}+f_{3} x^{3}+f_{4} x^{4}(\bmod L)$, fulfilling conditions (6) when $3 \nmid\left(p_{i}-1\right)$ or when $p_{i}=7$, has

1. A true inverse 4-PP $\rho(x)=\rho_{1} x+\rho_{2} x^{2}+\rho_{3} x^{3}+\rho_{4} x^{4}(\bmod L)$ when $k_{4, f} \in\{1,3\}$ and $k_{3, f} \in\{1,3,5,7\}$ or when $k_{4, f}=2$;
2. \quad A true inverse 5-PP $\rho(x)=\rho_{1} x+\rho_{2} x^{2}+\rho_{3} x^{3}+\rho_{4} x^{4}+\rho_{5} x^{5}(\bmod L)$ when $k_{4, f} \in\{1,3\}$ and $k_{3, f} \in\{0,2,4,6\}$.

Proof of Lemma 2. $\pi(x)$ has the inverse $\operatorname{PP} \rho(x)$ if

$$
\begin{equation*}
\pi(\rho(x))=x(\bmod L), \forall x \in\{0,1, \ldots, L-1\} . \tag{13}
\end{equation*}
$$

With Lemma 1, for $\rho(x)$ a 5-PP, after some algebraic manipulations, Equation (13) is equivalent to

$$
\begin{equation*}
\left(f_{1} \rho_{1}-1\right) \cdot x+\Theta(x)=0(\bmod L), \forall x \in\{0,1, \ldots, L-1\}, \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
& \Theta(x)=\left(f_{1} \rho_{2}+f_{2} \rho_{1}^{2}\right) \cdot x^{2}+\left(f_{1} \rho_{3}+2 f_{2} \rho_{2} \rho_{1}+f_{3} \rho_{1}^{3}\right) \cdot x^{3}+ \\
& \left(f_{4} \rho_{1}^{4}+3 f_{3} \rho_{1}^{2} \rho_{2}+2 f_{2} \rho_{3} \rho_{1}+f_{2} \rho_{2}^{2}+f_{1} \rho_{4}\right) \cdot x^{4}+ \\
& \left(4 f_{4} \rho_{1}^{3} \rho_{2}+3 f_{3} \rho_{1}^{2} \rho_{3}+3 f_{3} \rho_{1} \rho_{2}^{2}+2 f_{2} \rho_{4} \rho_{1}+2 f_{2} \rho_{3} \rho_{2}+f_{1} \rho_{5}\right) \cdot x^{5}+ \\
& \left(4 f_{4} \rho_{1}^{3} \rho_{3}+6 f_{4} \rho_{1}^{2} \rho_{2}^{2}+3 f_{3} \rho_{4} \rho_{1}^{2}+6 f_{3} \rho_{1} \rho_{2} \rho_{3}+2 f_{2} \rho_{5} \rho_{1}+f_{3} \rho_{2}^{3}+2 f_{2} \rho_{4} \rho_{2}+f_{2} \rho_{3}^{2}\right) \cdot x^{6}+ \\
& \left(4 f_{4} \rho_{4} \rho_{1}^{3}+12 f_{4} \rho_{1}^{2} \rho_{2} \rho_{3}+3 f_{3} \rho_{5} \rho_{1}^{2}+4 f_{4} \rho_{1} \rho_{2}^{3}+6 f_{3} \rho_{4} \rho_{1} \rho_{2}+\right. \\
& \left.3 f_{3} \rho_{1} \rho_{3}^{2}+3 f_{3} \rho_{2}^{2} \rho_{3}+2 f_{2} \rho_{5} \rho_{2}+2 f_{2} \rho_{4} \rho_{3}\right) \cdot x^{7}+ \\
& \left(4 f_{4} \rho_{5} \rho_{1}^{3}+12 f_{4} \rho_{1}^{2} \rho_{2} \rho_{4}+6 f_{4} \rho_{1}^{2} \rho_{3}^{2}+12 f_{4} \rho_{1} \rho_{2}^{2} \rho_{3}+6 f_{3} \rho_{5} \rho_{1} \rho_{2}+6 f_{3} \rho_{1} \rho_{3} \rho_{4}+\right. \\
& \left.f_{4} \rho_{2}^{4}+3 f_{3} \rho_{2}^{2} \rho_{4}+3 f_{3} \rho_{2} \rho_{3}^{2}+2 f_{2} \rho_{5} \rho_{3}+f_{2} \rho_{4}^{2}\right) \cdot x^{8}+ \\
& \left(12 f_{4} \rho_{5} \rho_{1}^{2} \rho_{2}+12 f_{4} \rho_{1}^{2} \rho_{3} \rho_{4}+12 f_{4} \rho_{1} \rho_{2}^{2} \rho_{4}+12 f_{4} \rho_{1} \rho_{2} \rho_{3}^{2}+6 f_{3} \rho_{5} \rho_{1} \rho_{3}+\right. \\
& \left.3 f_{3} \rho_{1} \rho_{4}^{2}+4 f_{4} \rho_{2}^{3} \rho_{3}+3 f_{3} \rho_{5} \rho_{2}^{2}+6 f_{3} \rho_{2} \rho_{3} \rho_{4}+f_{3} \rho_{3}^{3}+2 f_{2} \rho_{5} \rho_{4}\right) \cdot x^{9}+ \\
& \left(12 f_{4} \rho_{1}^{2} \rho_{3} \rho_{5}+6 f_{4} \rho_{1}^{2} \rho_{4}^{2}+12 f_{4} \rho_{1} \rho_{2}^{2} \rho_{5}+24 f_{4} \rho_{1} \rho_{2} \rho_{3} \rho_{4}+4 f_{4} \rho_{1} \rho_{3}^{3}+6 f_{3} \rho_{1} \rho_{4} \rho_{5}+\right. \\
& \left.4 f_{4} \rho_{2}^{3} \rho_{4}+6 f_{4} \rho_{2}^{2} \rho_{3}^{2}+6 f_{3} \rho_{2} \rho_{3} \rho_{5}+3 f_{3} \rho_{2} \rho_{4}^{2}+3 f_{3} \rho_{3}^{2} \rho_{4}+f_{2} \rho_{5}^{2}\right) \cdot x^{10}+ \\
& \left(12 f_{4} \rho_{1}^{2} \rho_{4} \rho_{5}+24 f_{4} \rho_{1} \rho_{2} \rho_{3} \rho_{5}+12 f_{4} \rho_{2}^{2} \rho_{3} \rho_{4}+4 f_{4} \rho_{2} \rho_{3}^{3}+12 f_{4} \rho_{1} \rho_{2} \rho_{4}^{2}+\right. \tag{15}\\
& \left.12 f_{4} \rho_{1} \rho_{3}^{2} \rho_{4}+3 f_{3} \rho_{1} \rho_{5}^{2}+6 f_{3} \rho_{2} \rho_{4} \rho_{5}+3 f_{3} \rho_{3}^{2} \rho_{5}+3 f_{3} \rho_{3} \rho_{4}^{2}\right) \cdot x^{11}+ \\
& \left(6 f_{4} \rho_{1}^{2} \rho_{5}^{2}+24 f_{4} \rho_{1} \rho_{2} \rho_{4} \rho_{5}+12 f_{4} \rho_{1} \rho_{3}^{2} \rho_{5}+6 f_{4} \rho_{2}^{2} \rho_{4}^{2}+12 f_{4} \rho_{2} \rho_{3}^{2} \rho_{4}+\right. \\
& \left.f_{4} \rho_{3}^{4}+12 f_{4} \rho_{1} \rho_{3} \rho_{4}^{2}+12 f_{4} \rho_{2}^{2} \rho_{3} \rho_{5}+3 f_{3} \rho_{2} \rho_{5}^{2}+6 f_{3} \rho_{3} \rho_{4} \rho_{5}+f_{3} \rho_{4}^{3}\right) \cdot x^{12}+ \\
& \left(12 f_{4} \rho_{2}^{2} \rho_{4} \rho_{5}+12 f_{4} \rho_{2} \rho_{3}^{2} \rho_{5}+4 f_{4} \rho_{3}^{3} \rho_{4}+12 f_{4} \rho_{2} \rho_{3} \rho_{4}^{2}+12 f_{4} \rho_{1} \rho_{2} \rho_{5}^{2}+\right. \\
& \left.24 f_{4} \rho_{1} \rho_{3} \rho_{4} \rho_{5}+3 f_{3} \rho_{3} \rho_{5}^{2}+4 f_{4} \rho_{1} \rho_{4}^{3}+3 f_{3} \rho_{4}^{2} \rho_{5}\right) \cdot x^{13}+ \\
& \left(6 f_{4} \rho_{2}^{2} \rho_{5}^{2}+24 f_{4} \rho_{2} \rho_{3} \rho_{4} \rho_{5}+6 f_{4} \rho_{3}^{2} \rho_{4}^{2}+4 f_{4} \rho_{2} \rho_{4}^{3}+4 f_{4} \rho_{3}^{3} \rho_{5}+\right. \\
& \left.12 f_{4} \rho_{1} \rho_{3} \rho_{5}^{2}+12 f_{4} \rho_{1} \rho_{4}^{2} \rho_{5}+3 f_{3} \rho_{4} \rho_{5}^{2}\right) \cdot x^{14}+ \\
& \left(12 f_{4} \rho_{3}^{2} \rho_{4} \rho_{5}+4 f_{4} \rho_{3} \rho_{4}^{3}+12 f_{4} \rho_{2} \rho_{3} \rho_{5}^{2}+12 f_{4} \rho_{2} \rho_{4}^{2} \rho_{5}+12 f_{4} \rho_{1} \rho_{4} \rho_{5}^{2}+f_{3} \rho_{5}^{3}\right) \cdot x^{15}+ \\
& \left(6 f_{4} \rho_{3}^{2} \rho_{5}^{2}+12 f_{4} \rho_{3} \rho_{4}^{2} \rho_{5}+f_{4} \rho_{4}^{4}+12 f_{4} \rho_{2} \rho_{4} \rho_{5}^{2}+4 f_{4} \rho_{1} \rho_{5}^{3}\right) \cdot x^{16}+ \\
& \left(4 f_{4} \rho_{4}^{3} \rho_{5}+12 f_{4} \rho_{3} \rho_{4} \rho_{5}^{2}+4 f_{4} \rho_{2} \rho_{5}^{3}\right) \cdot x^{17}+ \\
& \left(6 f_{4} \rho_{4}^{2} \rho_{5}^{2}+4 f_{4} \rho_{3} \rho_{5}^{3}\right) \cdot x^{18}+\left(4 f_{4} \rho_{4} \rho_{5}^{3}\right) \cdot x^{19}+\left(f_{4} \rho_{5}^{4}\right) \cdot x^{20} .
\end{align*}
$$

For $\rho(x)$ a 4-PP, Equation (13) is equivalent to Equation (14) with $\rho_{5}=0$ in $\Theta(x)$.
We note that the polynomial of degree 20 from the left-hand side of (14) (i.e., $\left(f_{1} \rho_{1}-1\right) \cdot x+$ $\Theta(x)$) can be easily found by means of a symbolic calculus software.

Because all the coefficients of PPs $f(x)$ and $\rho(x)$, except for f_{1} and ρ_{1}, are multiples of Ψ, we have that $\Psi \mid \Theta(x)$. Therefore, from (14), we have that

$$
\begin{equation*}
\left(f_{1} \rho_{1}-1\right) \cdot x=0(\bmod \Psi), \forall x \in\left\{0,1, \ldots, 32 k_{L}-1\right\} . \tag{16}
\end{equation*}
$$

From (16), we have that

$$
\begin{equation*}
f_{1} \rho_{1}=1(\bmod \Psi) \Leftrightarrow f_{1} \rho_{1}=\Psi \cdot k_{1}+1\left(\bmod 32 k_{L} \Psi\right), \text { with } k_{1} \in\left\{0,1,2, \ldots, 32 k_{L}-1\right\} \tag{17}
\end{equation*}
$$

If $k_{L}=1$, then $\operatorname{gcd}\left(f_{1}, 32 \Psi\right)=1$. From Theorem 57 in [9], we see that congruence (17) has only one solution in variable ρ_{1}. If $k_{L}=3$, then $\operatorname{gcd}\left(f_{1}, 96 \Psi\right)=3$. In this case, congruence (17) has three solutions. From these three solutions, only one of them will be valid.

With (17), Equation (14) is fulfilled if and only if

$$
\begin{equation*}
k_{1} \cdot x+\Theta(x) / \Psi=0\left(\bmod 32 k_{L}\right), \forall x \in\left\{0,1, \ldots, 32 k_{L}-1\right\}, \tag{18}
\end{equation*}
$$

We denote $\Psi\left(\bmod 32 k_{L}\right)=k_{\Psi}$ and write the coefficients f_{2}, f_{3}, and f_{4} as in (8) and the coefficients $\rho_{2}, \rho_{3}, \rho_{4}$, and ρ_{5} as in (10) or (12). The solutions of Equation (18) in terms of $k_{5, \rho}, k_{4, \rho}, k_{3, \rho}, k_{2, \rho}, \rho_{1}\left(\bmod 32 k_{L}\right)$, and k_{1} can be found by means of software exhaustive searching for each set of values for $k_{L}, k_{\Psi}, k_{4, f}, k_{3, f}, k_{2, f}$, and $f_{1}\left(\bmod 32 k_{L}\right)$. These solutions are given in the file available at the link in [10] for $L=32 \Psi$ and at the link in [11] for $L=96 \Psi$. As we can see from these files, the inverse PP of a 4-PP modulo a positive integer of the form (5) is a true 4-PP when $k_{4, f} \in\{1,3\}$ and $k_{3, f} \in\{1,3,5,7\}$ or when $k_{4, f}=2$, and a true 5-PP when $k_{4, f} \in\{1,3\}$ and $k_{3, f} \in\{0,2,4,6\}$.

We note that if at least one of the coefficients f_{2}, f_{3}, and f_{4} is not a multiple of Ψ, we cannot derive Equation (18). Thus, in this case, the solutions of Equation (15) in terms of $\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}$, and ρ_{5} are much more complicated.

4. Examples

In this section, we give two examples showing how we can find the inverse 4-PP or 5 -PP for a 4-PP modulo a positive integer of the form (5) with $k_{L}=1$ (Examples 1 and 2) and two examples for a positive integer of the form (5) with $k_{L}=3$ (Examples 3 and 4).

Example 1. Let $\pi(x)=187 x^{4}+1122 x^{3}+2431 x^{2}+5975 x(\bmod 5984)$ be the $4-P P$. Because $L=5984=2^{5} \cdot 11 \cdot 17$, we have $k_{L}=1, \Psi=11 \cdot 17=187, k_{\Psi}=187(\bmod 32)=27$, $k_{4, f}=f_{4} / \Psi=1, k_{3, f}=f_{3} /(2 \Psi)=3, k_{2, f}=f_{2} / \Psi=13$, and $f_{1}(\bmod 32)=23$. From the file available at the link in [10], we see that the inverse PP is a 4-PP $\rho(x)=\rho_{1} x+\rho_{2} x^{2}+\rho_{3} x^{3}+$ $\rho_{4} x^{4}(\bmod L)$, with the coefficients derived from $k_{4, \rho}=\rho_{4} / \Psi=1, k_{3, p}=\rho_{3} /(2 \Psi)=1, k_{2, p}=$ $\rho_{2} / \Psi=5, \rho_{1}(\bmod 32)=7$, and $k_{1}=0$. Thus, we have that $\rho_{4}=\Psi=187, \rho_{3}=2 \Psi=374$, and $\rho_{2}=5 \Psi=935$. The coefficient ρ_{1} results from Equation (17), with $f_{1}=5975, \Psi=187$, and $k_{1}=0$, i.e., $5975 \cdot \rho_{1}=1(\bmod 5984)$. This equation has only the solution modulo 5984, $\rho_{1}=5319$. So, the inverse 4-PP is $\rho(x)=187 x^{4}+374 x^{3}+935 x^{2}+5319 x(\bmod 5984)$.

Example 2. Now, let $\pi(x)=561 x^{4}+748 x^{3}+935 x^{2}+3059 x(\bmod 5984)$ be the $4-P P$. We have again $k_{L}=1, \Psi=187$, and $k_{\Psi}=27$, but $k_{4, f}=f_{4} / \Psi=3, k_{3, f}=f_{3} /(2 \Psi)=2$, $k_{2, f}=f_{2} / \Psi=5$, and $f_{1}(\bmod 32)=19$. From the file available at the link in [10], we have that the inverse PP is a 5-PP $\rho(x)=\rho_{1} x+\rho_{2} x^{2}+\rho_{3} x^{3}+\rho_{4} x^{4}+\rho_{5} x^{5}(\bmod L)$, with the coefficients derived from $k_{5, \rho}=\rho_{5} / \Psi=2, k_{4, \rho}=\rho_{4} / \Psi=3, k_{3, p}=\rho_{3} / \Psi=10, k_{2, \rho}=\rho_{2} / \Psi=5$, $\rho_{1}(\bmod 32)=11$, and $k_{1}=16$. Thus, we have that $\rho_{5}=2 \Psi=374, \rho_{4}=3 \Psi=561$, $\rho_{3}=10 \Psi=1870$, and $\rho_{2}=5 \Psi=935$. The coefficient ρ_{1} results from Equation (17), with $f_{1}=3059, \Psi=187$, and $k_{1}=16$, i.e., $3059 \cdot \rho_{1}=2993(\bmod 5984)$. This equation has only
the solution modulo 5984, $\rho_{1}=4555$. So, the inverse 5-PP is $\rho(x)=374 x^{5}+561 x^{4}+1870 x^{3}+$ $935 x^{2}+4555 x(\bmod 5984)$.

Example 3. Let $\pi(x)=759 x^{4}+2530 x^{3}+2277 x^{2}+10,815 x(\bmod 24,288)$ be the $4-P P$. Because $L=24,288=2^{5} \cdot 3 \cdot 11 \cdot 23$, we have $k_{L}=3, \Psi=11 \cdot 23=253, k_{\Psi}=253(\bmod 96)=61$, $k_{4, f}=f_{4} / \Psi=3, k_{3, f}=f_{3} /(2 \Psi)=5, k_{2, f}=f_{2} / \Psi=9$, and $f_{1}(\bmod 96)=63$. From the file available at the link in [11], we have that the inverse PP is a 4-PP $\rho(x)=\rho_{1} x+\rho_{2} x^{2}+$ $\rho_{3} x^{3}+\rho_{4} x^{4}(\bmod L)$, with the coefficients derived from $k_{4, \rho}=\rho_{4} / \Psi=3, k_{3, \rho}=\rho_{3} /(2 \Psi)=1$, $k_{2, \rho}=\rho_{2} / \Psi=33, \rho_{1}(\bmod 96)=47$, and $k_{1}=80$. Thus, we have that $\rho_{4}=3 \Psi=759$, $\rho_{3}=2 \Psi=506$, and $\rho_{2}=33 \Psi=8349$. The coefficient ρ_{1} results from Equation (17), with $f_{1}=10,815, \Psi=253$, and $k_{1}=80$, i.e., $10,815 \cdot \rho_{1}=20,241(\bmod 24,288)$. This equation has the next three solutions modulo $24,288, \rho_{1} \in\{3119 ; 11,215 ; 19,311\}$. But, from the file available at the link [11], we have that $\rho_{1}(\bmod 96)=47$. Thus, the only valid solution is $\rho_{1}=3119$. So, the inverse 4-PP is $\rho(x)=759 x^{4}+506 x^{3}+8349 x^{2}+3119 x(\bmod 24,288)$.

Example 4. Now, let $\pi(x)=253 x^{4}+2024 x^{3}+11,891 x^{2}+12,087 x(\bmod 24,288)$ be the 4-PP. We have again $k_{L}=3, \Psi=253$, and $k_{\Psi}=61$, but $k_{4, f}=f_{4} / \Psi=1, k_{3, f}=f_{3} /(2 \Psi)=4$, $k_{2, f}=f_{2} / \Psi=47$, and $f_{1}(\bmod 96)=87$. From the file available at the link in [11], we have that the inverse PP is a 5-PP $\rho(x)=\rho_{1} x+\rho_{2} x^{2}+\rho_{3} x^{3}+\rho_{4} x^{4}+\rho_{5} x^{5}(\bmod L)$, with the coefficients derived from $k_{5, \rho}=\rho_{5} / \Psi=2, k_{4, \rho}=\rho_{4} / \Psi=1, k_{3, p}=\rho_{3} / \Psi=14, k_{2, p}=\rho_{2} / \Psi=47$, $\rho_{1}(\bmod 96)=79$, and $k_{1}=56$. Thus, we have $\rho_{5}=2 \Psi=506, \rho_{4}=\Psi=253, \rho_{3}=14 \Psi=$ 3542 , and $\rho_{2}=47 \Psi=11,891$. The coefficient ρ_{1} results from Equation (17), with $f_{1}=12,087$, $\Psi=253$, and $k_{1}=56$, i.e., $12,087 \cdot \rho_{1}=14,169(\bmod 24,288)$. This equation has the next three solutions modulo $24,288, \rho_{1} \in\{2095 ; 10,191 ; 18,287\}$. But, from the file available at the link [11], we have that $\rho_{1}(\bmod 96)=79$. Thus, the only valid solution is $\rho_{1}=2095$. So, the inverse 5-PP is $\rho(x)=506 x^{5}+253 x^{4}+3542 x^{3}+11,891 x^{2}+2095 x(\bmod 24,288)$.

5. Remarks

We note that the inverse of a PP can be found by means of the Chinese Remainder Theorem (CRT), finding, firstly, the inverses of the PPs modulo $p_{i}^{N, p_{i}}$, for each factor $p_{i}^{N, p_{i}}$ from the prime decomposition of the positive integer L. For L decomposed as in (2), we denote the following:

$$
\left\{\begin{array}{l}
\pi^{(2)}(x)=\pi(x)\left(\bmod 2^{n_{L, 2}}\right) \tag{19}\\
\pi^{(3)}(x)=\pi(x)\left(\bmod 3^{n_{L, 3}}\right) \\
\pi^{\left(p_{i}\right)}(x)=\pi(x)\left(\bmod p_{i}\right), \forall i=1,2, \ldots, N_{p}
\end{array}\right.
$$

Then, if the inverses of the PPs in (19) are

$$
\left\{\begin{array}{l}
\rho^{(2)}(x)=\left(\pi^{(2)}(x)\right)^{-1}=\sum_{i=0}^{d_{\rho, 2}} \rho_{i}^{(2)} \cdot x^{i}\left(\bmod 2^{n_{L, 2}}\right) \tag{20}\\
\rho^{(3)}(x)=\left(\pi^{(3)}(x)\right)^{-1}=\sum_{i=0}^{d_{\rho, 3}} \rho_{i}^{(3)} \cdot x^{i}\left(\bmod 3^{n_{L, 3}}\right) \\
\rho^{\left(p_{i}\right)}(x)=\left(\pi^{\left(p_{i}\right)}(x)\right)^{-1}=\sum_{i=0}^{d_{\rho, p}} \rho_{i}^{\left(p_{i}\right)} \cdot x^{i}\left(\bmod p_{i}\right), \forall i=1,2, \ldots, N_{p}
\end{array}\right.
$$

and the maximum degree of the inverse PPs is $d=\max \left\{d_{\rho, 2}, d_{\rho, 3}, d_{\rho, p_{1}}, d_{\rho, p_{2}}, \ldots, d_{\rho, p_{N p}}\right\}$, the coefficients of the inverse PP modulo L are derived by means of the solutions of the next system:

$$
\left\{\begin{array}{l}
\rho_{i}=\rho_{i}^{(2)}\left(\bmod 2^{n_{L, 2}}\right) \tag{21}\\
\rho_{i}=\rho_{i}^{(3)}\left(\bmod 3^{n_{L, 3}}\right) \\
\rho_{i}=\rho_{i}^{\left(p_{1}\right)}\left(\bmod p_{1}\right) \\
\rho_{i}=\rho_{i}^{\left(p_{2}\right)}\left(\bmod p_{2}\right) \\
\cdots \\
\rho_{i}=\rho_{i}^{\left(p_{N_{p}}\right)}\left(\bmod p_{i}\right)
\end{array}\right.
$$

for every $i=0,1, \ldots, d$. In (21), if $d_{\rho, p_{i}}<d$, then the coefficients $\rho_{i}^{\left(p_{i}\right)}=0, \forall i>d_{\rho, p_{i}}$.
In the following, we explain how the inverse PPs of the 4-PPs can be found from Examples 1 and 4.

Example 1 (continued). For the 4-PP $\pi(x)=187 x^{4}+1122 x^{3}+2431 x^{2}+5975 x(\bmod 5984)$, because $5984=2^{5} \cdot 11 \cdot 17$, we have the following:

$$
\left\{\begin{array}{l}
\pi^{(2)}(x)=\pi(x)\left(\bmod 2^{5}\right)=27 x^{4}+2 x^{3}+31 x^{2}+23 x(\bmod 32) \tag{22}\\
\pi^{(11)}(x)=\pi(x)(\bmod 11)=2 x(\bmod 11) \\
\pi^{(17)}(x)=\pi(x)(\bmod 17)=8 x(\bmod 17)
\end{array}\right.
$$

The inverses of the PPs from (22) are as follows:

$$
\left\{\begin{array}{l}
\rho^{(2)}(x)=\left(\pi^{(2)}(x)\right)^{-1}=3 x^{4}+6 x^{3}+15 x^{2}+7 x(\bmod 32) \tag{23}\\
\rho^{(11)}(x)=\left(\pi^{(11)}(x)\right)^{-1}=2^{-1} x(\bmod 11)=6 x(\bmod 11) \\
\rho^{(17)}(x)=\left(\pi^{(17)}(x)\right)^{-1}=8^{-1} x(\bmod 17)=15 x(\bmod 17)
\end{array}\right.
$$

Then, the degree of the inverse PP modulo 5984 is $d=\max \{4,1,1\}=4$, and the coefficients of this $P P(\rho(x))$ result from the following systems:

$$
\begin{align*}
& \left\{\begin{array}{l}
\rho_{1}=\rho_{1}^{(2)}(\bmod 32)=7(\bmod 32) \\
\rho_{1}=\rho_{1}^{(11)}(\bmod 11)=6(\bmod 11) \quad, \text { with solution } \rho_{1}=5319(\bmod 5984) \\
\rho_{1}=\rho_{1}^{(17)}(\bmod 17)=15(\bmod 17)
\end{array}\right. \tag{24}\\
& \left\{\begin{array}{l}
\rho_{2}=\rho_{2}^{(2)}(\bmod 32)=15(\bmod 32) \\
\rho_{2}=\rho_{2}^{(11)}(\bmod 11)=0(\bmod 11) \\
\rho_{2}=\rho_{2}^{(17)}(\bmod 17)=0(\bmod 17)
\end{array}, \text { with solution } \rho_{2}=5423(\bmod 5984)\right. \tag{25}\\
& \left\{\begin{array}{l}
\rho_{3}=\rho_{3}^{(2)}(\bmod 32)=6(\bmod 32) \\
\rho_{3}=\rho_{3}^{(11)}(\bmod 11)=0(\bmod 11), \text { with solution } \rho_{3}=3366(\bmod 5984) \\
\rho_{3}=\rho_{3}^{(17)}(\bmod 17)=0(\bmod 17)
\end{array}\right. \tag{26}
\end{align*}
$$

and

$$
\left\{\begin{array}{l}
\rho_{4}=\rho_{4}^{(2)}(\bmod 32)=3(\bmod 32) \tag{27}\\
\rho_{4}=\rho_{4}^{(11)}(\bmod 11)=0(\bmod 11), \text { with solution } \rho_{4}=4675(\bmod 5984) \\
\rho_{4}=\rho_{4}^{(17)}(\bmod 17)=0(\bmod 17)
\end{array}\right.
$$

Thus, the inverse PP is $\rho(x)=4675 x^{4}+3366 x^{3}+5423 x^{2}+5319 x(\bmod 5984)$. This polynomial is different from that in Section 4, but the permutation induced by it modulo 5984 is the same. If we add to it the null polynomial $z(x)=1496 x^{4}+2992 x^{3}+1496 x^{2}+0 x(\bmod 5984)$ (i.e., $z(x)=0, \forall x=0,1, \ldots, 5983)$, we obtain the same polynomial: $\rho(x)+z(x)(\bmod 5984)=$
$187 x^{4}+374 x^{3}+935 x^{2}+5319 x(\bmod 5984)$.
Example 4 (continued). For the 4-PP $\pi(x)=253 x^{4}+2024 x^{3}+11,891 x^{2}+12,087 x$ $(\bmod 24,288)$, because $24,288=2^{5} \cdot 3 \cdot 11 \cdot 23$, we have the following:

$$
\left\{\begin{array}{l}
\pi^{(2)}(x)=\pi(x)\left(\bmod 2^{5}\right)=29 x^{4}+8 x^{3}+19 x^{2}+23 x(\bmod 32) \tag{28}\\
\pi^{(3)}(x)=\pi(x)(\bmod 3)=x^{4}+2 x^{3}+2 x^{2}(\bmod 3)=2 x(\bmod 3) \\
\pi^{(11)}(x)=\pi(x)(\bmod 11)=9 x(\bmod 11) \\
\pi^{(23)}(x)=\pi(x)(\bmod 23)=12 x(\bmod 23)
\end{array}\right.
$$

The inverses of the PPs from (28) are as follows:

$$
\left\{\begin{array}{l}
\rho^{(2)}(x)=\left(\pi^{(2)}(x)\right)^{-1}=2 x^{5}+x^{4}+6 x^{3}+15 x^{2}+23 x(\bmod 32) \tag{29}\\
\rho^{(3)}(x)=\left(\pi^{(3)}(x)\right)^{-1}=2^{-1} x(\bmod 3)=2 x(\bmod 3) \\
\rho^{(11)}(x)=\left(\pi^{(11)}(x)\right)^{-1}=9^{-1} x(\bmod 11)=5 x(\bmod 11) \\
\rho^{(23)}(x)=\left(\pi^{(23)}(x)\right)^{-1}=12^{-1} x(\bmod 23)=2 x(\bmod 23)
\end{array}\right.
$$

Then, the degree of the inverse PP modulo 24,288 is $d=\max \{5,1,1,1\}=5$, and the coefficients of this PP $(\rho(x))$ result from the following systems:

$$
\begin{align*}
& \left\{\begin{array}{l}
\rho_{1}=\rho_{1}^{(2)}(\bmod 32)=23(\bmod 32) \\
\rho_{1}=\rho_{1}^{(3)}(\bmod 3)=2(\bmod 3) \\
\rho_{1}=\rho_{1}^{(11)}(\bmod 11)=5(\bmod 11) \\
\rho_{1}=\rho_{1}^{(23)}(\bmod 23)=2(\bmod 23)
\end{array}, \text { with solution } \rho_{1}=12,215(\bmod 24,288)\right. \tag{30}\\
& \left\{\begin{array}{l}
\rho_{2}=\rho_{2}^{(2)}(\bmod 32)=15(\bmod 32) \\
\rho_{2}=\rho_{2}^{(3)}(\bmod 3)=0(\bmod 3) \\
\rho_{2}=\rho_{2}^{(11)}(\bmod 11)=0(\bmod 11) \\
\rho_{2}=\rho_{2}^{(23)}(\bmod 23)=0(\bmod 23)
\end{array}, \text { with solution } \rho_{2}=6831(\bmod 24,288)\right.
\end{align*}
$$

$$
\left\{\begin{array}{l}
\rho_{3}=\rho_{3}^{(2)}(\bmod 32)=6(\bmod 32) \tag{32}\\
\rho_{3}=\rho_{3}^{(3)}(\bmod 3)=0(\bmod 3) \\
\rho_{3}=\rho_{3}^{(11)}(\bmod 11)=0(\bmod 11) \\
\rho_{3}=\rho_{3}^{(23)}(\bmod 23)=0(\bmod 23)
\end{array}, \text { with solution } \rho_{3}=7590(\bmod 24,288)\right.
$$

$$
\left\{\begin{array}{l}
\rho_{4}=\rho_{4}^{(2)}(\bmod 32)=1(\bmod 32) \tag{33}\\
\rho_{4}=\rho_{4}^{(3)}(\bmod 3)=0(\bmod 3) \\
\rho_{4}=\rho_{4}^{(11)}(\bmod 11)=0(\bmod 11) \\
\rho_{4}=\rho_{4}^{(23)}(\bmod 23)=0(\bmod 23)
\end{array}, \text { with solution } \rho_{4}=5313(\bmod 24,288)\right.
$$

and

$$
\left\{\begin{array}{l}
\rho_{5}=\rho_{5}^{(2)}(\bmod 32)=2(\bmod 32) \tag{34}\\
\rho_{5}=\rho_{5}^{(3)}(\bmod 3)=0(\bmod 3) \\
\rho_{5}=\rho_{5}^{(11)}(\bmod 11)=0(\bmod 11) \\
\rho_{5}=\rho_{5}^{(23)}(\bmod 23)=0(\bmod 23)
\end{array}, \text { with solution } \rho_{4}=10,626(\bmod 24,288) .\right.
$$

Thus, the inverse PP is $\rho(x)=10,626 x^{5}+5313 x^{4}+7590 x^{3}+6831 x^{2}+12,215 x(\bmod 24,288)$. This polynomial is different from that in Section 4, but the permutation induced by it modulo 24,288 is the same. If we add to it the null polynomial $z(x)=14,168 x^{5}+19,228 x^{4}+20,240 x^{3}+$ $5060 x^{2}+14,168 x(\bmod 24,288)$, we obtain the same polynomial: $\rho(x)+z(x)(\bmod 24,288)=$
$506 x^{5}+253 x^{4}+3542 x^{3}+11,891 x^{2}+2095 x(\bmod 24,288)$.
In [12], Table I shows the inverses of the normalized PPs of degree ≤ 5. For the positive integers of the form in (2), the normalized PP modulo p_{i}, with $p_{i} \geq 3$, is $x\left(\bmod p_{i}\right)$ with the simple inverse $x\left(\bmod p_{i}\right)$. Additionally, the PP $a \cdot x\left(\bmod p_{i}\right), a \neq 0$, has the inverse $\mathrm{PP} a^{-1} \cdot x\left(\bmod p_{i}\right)$. However, the normalized PP modulo 32 is $x^{4}+c x^{3}+b x^{2}+a x$, where $a(\bmod 2)=b(\bmod 2)=1$ and $c(\bmod 2)=0$, and it is not given in that table. Further, finding the inverse PPs by means of normalized PPs and the CRT is not appropriate for deriving the upper bounds of the minimum distance of the turbo codes using PP interleavers, which is the main goal of the results obtained in this paper.

Author Contributions: Conceptualization, L.T. and D.T.; methodology, L.T.; software, L.T.; validation, L.T., D.T. and A.-M.R.; formal analysis, L.T.; investigation, L.T.; resources, L.T.; data curation, L.T.; writing-original draft preparation, L.T.; writing-review and editing, L.T.; visualization, L.T., D.T., and A.-M.R.; supervision, D.T.; project administration, L.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Data Availability Statement: Publicly available datasets were analyzed in this study. This data can be found here: http://telecom.etti.tuiasi.ro/tti/ papers/Text_files/solutii_kL_kp_k1_f1_r1_inv_4PP_ or_5PP_for_4PP_L_32p.txt and http:/ / telecom.etti.tuiasi.ro/tti/ papers/Text_files/solutii_kL_kp_ k1_f1_r1_inv_4PP_or_5PP_for_4PP_L_96p.txt.
Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

```
PP Permutation polynomial
4-PP Fourth-degree permutation polynomial
5-PP Fifth-degree permutation polynomial
d-PP Permutation polynomial of degree d
CRT Chinese Remainder Theorem
```


References

1. Dickson, L.E. The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group. Ann. Math. 1896-1897, 11, 65-120. [CrossRef]
2. Cohen, S.D. Permutation Group Theory and Permutation Polynomials. Algebras and Combinatorics; Springer: Singapore, 1999; pp. 133-146.
3. Lidl, R.; Niederriter, H. Finite Fields; Cambridge University Press: Cambridge, UK, 1997.
4. Sun, J.; Takeshita, O.Y.; Fitz M.P. Permutation polynomials based deterministic interleavers for turbo codes. In Proceedings of the IEEE International Symposium on Information Theory, Yokohama, Japan, 29 June-4 July 2003; p. 319. [CrossRef]
5. Sun, J.; Takeshita, O.Y. Interleavers for turbo codes using permutation polynomials over integer ring. IEEE Trans. Inform. Theory 2005, 51, 101-119. [CrossRef]
6. Rosnes, E. On the minimum distance of turbo codes with quadratic permutation polynomial interleavers. IEEE Trans. Inform. Theory 2012, 58, 4781-4795. [CrossRef]
7. Trifina, L.; Tarniceriu, D. A coefficient test for fourth degree permutation polynomials over integer rings. AEU Int. J. Electron. Comтип. 2016, 70, 1565-1568. [CrossRef]
8. Trifina, L.; Tarniceriu, D. The number of different true permutation polynomial based interleavers under Zhao and Fan sufficient conditions. Telecommun. Syst. 2016, 63, 593-623. [CrossRef]
9. Hardy, G.H.; Wright, E.M. An Introduction to the Theory of Numbers, 4th ed.; Oxford University Press: Oxford, UK, 1975.
10. A Text File with the Variables that Give the Inverse 4-PP or the Inverse 5-PP for a 4-PP Modulo 32 Ψ, with Ψ a Product of Prime Numbers Greater than Three. Available Online: http://telecom.etti.tuiasi.ro/tti/papers/Text_files/solutii_kL_kp_k1_f1_r1_inv_ 4PP_or_5PP_for_4PP_L_32p.txt (accessed on 30 December 2023).
11. A Text File with the Variables That Give the Inverse 4-PP or the Inverse 5-PP for a 4-PP Modulo 96Ψ, with Ψ a Product of Prime Numbers Greater than Three. Available Online: http://telecom.etti.tuiasi.ro/tti/papers/Text_files/solutii_kL_kp_k1_f1_r1_inv_ 4PP_or_5PP_for_4PP_L_96p.txt (accessed on 30 December 2023).
12. Zheng, Y. ;Wang, Q. ;Wei, W. On inverses of permutation polynomials of small degree over finite fields. IEEE Trans. Inform. Theory 2020, 66, 914-922. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

