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Life at the Landau Pole
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Abstract: If a quantum field theory has a Landau pole, the theory is usually called ‘sick’ and dismissed
as a candidate for an interacting UV-complete theory. In a recent study on the interacting 4d O(N)
model at large N, it was shown that at the Landau pole, observables remain well-defined and finite.
In this work, I investigate both relevant and irrelevant deformations of the said model at the Landau
pole, finding that physical observables remain unaffected. Apparently, the Landau pole in this theory
is benign. As a phenomenological application, I compare the O(N) model to QCD by identifying ΛMS
with the Landau pole in the O(N) model.
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1. Motivation

In the early days of quantum field theory, Landau and collaborators studied quantum
electrodynamics in perturbation theory [1]. They found that QED has a positive β-function
in perturbation theory, recognizing that this would lead to an uncontrolled growth of the
theory’s coupling constant as a function of energy. In modern notation, the QED running
coupling to leading order in perturbation theory becomes

α(µ̄) =
1

2
3π ln ΛLP

µ̄

, (1)

where it is customary to fix ΛLP = mee
3π
2α0 with me, the electron mass, and α0 ≃ 1

137 .
Landau noted that besides the dependence of the fine-structure constant α on the

momentum scale µ̄, the form (1) implied that the running coupling is diverging (has a pole)
at a finite momentum scale µ̄ = ΛLP. Since the coupling diverges at this scale, it seems that
one cannot meaningfully probe momentum scales µ̄ > ΛLP in QED, so the theory does
not have a well-defined continuum limit. It has even been suggested that Landau was so
disturbed by this feature that he quit working on quantum field theory (I thank Bill Zajc for
pointing out that this statement is not true, assuming the the publication dates of papers
are chronologically matched to his actual work. However, Landau’s view of QFT seems
to have been fairly negative after 1954, e.g., in Ref. [2], the authors write “This brings us
to the conclusion that point interaction is impossible in pure electrodynamics.” and in Ref. [3]
Kirzhnits and Linde write about Ref. [4], “. . . , which even led some authors to the conclusion
that the hamiltonian quantum field theory “is dead” . . . ”. See Ref. [5] (chapter 8) for a first-hand
historical account of Landau’s approach to QED).

Modern physics deals with the issue of the Landau pole through a mix of denial
and shoulder shrugging. Denial adherents will rightly point out that (1) was derived in
perturbation theory, requiring α ≪ 1, so that as a consequence, (1) cannot be expected to
correctly capture features such as the Landau pole, where, by definition, α → ∞. Shrugging
adherents will (also rightly) point out that

ΛLP = mee
3π
2α0 ≃ 10280 MeV (2)
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puts the scale of the Landau pole beyond the Planck scale, so that in practice, it is entirely
pointless to understand QED in that regime anyway. (However, it should be noted that in
the full Standard Model, ΛLP ≃ 1034 GeV is much lower than (2) but still extremely high [6].)
The prevailing dogma in both cases is that theories with a Landau pole should be viewed
as ‘UV-incomplete’, or cut-off theories, that cannot be used to describe continuum physics.

In this work, I will entertain an entirely different perspective, namely that physical
observables of a quantum field theory could be well-behaved even when the coupling
diverges at the Landau pole and beyond.

Unfortunately, I am unable to test my perspective in QED (yet), even though other
groups have proposed similar ideas [7,8]. Instead, I will focus on a quantum field theory
that can be solved non-perturbatively in the limit of a large number of components, namely
the O(N) model [9], using critically important input from PT -symmetric field theory [10].
I will work in 3 + 1 dimensions, where the O(N) model is known to possess a Landau pole
in the large N limit.

In a quantum field theory, the renormalized coupling is not directly observable, as
is apparent through the fact that it will depend on the fictitious renormalization scale µ̄.
For this reason, finite and well-defined physical observables at an infinite renormalized
coupling are certainly possible. Indeed, the idea that physical observables turn out to be
finite even when the coupling diverges is well supported by several quantum field theory
examples, such as N = 4 SYM in 3 + 1 dimensions [11,12], bosonic and fermionic large N
field theories in 2 + 1 dimensions [13–16], as well as non-relativistic fermions at a Feshbach
resonance where experimental confirmation is available [17].

In this work, I build upon and extend this idea: if physical observables remain finite
when the renormalized coupling parameter diverges, maybe observables remain finite and
well-defined when the renormalized coupling parameter becomes negative or even complex.
After all, the renormalized coupling parameter is not directly observable, so nothing should
protect it from becoming complex as long as the physical observables remain well-defined.
Of course this type of idea cannot be tested in perturbation theory, which is inherently a
weak-coupling expansion around non-interacting field theory. For this reason, I heavily
employ large N expansion techniques (which do not rely on a small perturbative coupling
in order to be applicable), as well as results from PT -symmetric field theory (which allow
calculations for negative or complex couplings via analytic continuation).

While this study is exploratory, I nevertheless hope that certain aspects merit further
consideration when trying to interpret quantum field theory in four dimensions.

2. Calculation—The O(N) Model in 3 + 1 Dimensions at Large N

Let me first consider the case of the massless theory with quartic interactions, which
is essentially a repeat of the calculation in Ref. [9] but is included here for completeness.
The partition function for this theory is defined through the path integral

Z(λ, β) =
∫

Dϕe−SE , (3)

with the Euclidean action

SE =
∫

d3x
∫ β

0
dτ

[
1
2

∂µϕ⃗ · ∂µϕ⃗ +
λ

N
(
ϕ⃗ · ϕ⃗

)2
]

, (4)

where ϕ⃗ = (ϕ1, ϕ2, . . . , ϕN) is an N-component scalar field, and the theory is defined on the
thermal cylinder, with β = 1

T being the inverse temperature.
The partition function may be rewritten in a more convenient form by introducing

two auxiliary fields σ, ζ with (cf. Ref. [18])

1 =
∫

Dσδ(σ − ϕ⃗2) =
∫

Dσ
∫

Dζei
∫

ζ(σ−ϕ⃗2) . (5)
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The resulting path integral for σ has quadratic action such that σ can be integrated out.
One finds

Z(λ, β) =
∫

DϕDζe−Seff , Seff =
∫

d3x
∫ β

0
dτ

[
1
2

ϕ⃗[−□+ 2iζ]ϕ⃗ + N
ζ2

4λ

]
. (6)

Separating the auxiliary field into zero modes and fluctuations such that ζ(x) =
ζ0
2 + ζ ′(x), one can verify that the path integral over fluctuations does not contribute to the

leading order in large N to the partition function. Since ζ0 is a constant, the path integral
over fields ϕ⃗ is quadratic and can be carried out in closed form. One finds Z(λ, β) =∫

dζ0eNβVp(
√

2iζ0), with the pressure per component in dimensional regularization

p(m) =
m4

16λ
+

m4

64π2

(
1
ε
+ ln

µ̄2e
3
2

m2

)
+

m2T2

2π2

∞

∑
n=1

K2(nβm)

n2 , (7)

where βV is the space–time volume, µ̄ is the MS renormalization scale, Ki(x) denotes
modified Bessel functions of the second kind, and I have rewritten iζ0 = m2

2 to simplify
the appearance.

The expression (7) is divergent in the continuum lim ε → 0. However, it may be
non-perturbatively renormalized as

1
λ
+

1
4π2ε

=
1

λR(µ̄)
, (8)

which is standard procedure for large N field theories [19]. The resulting running coupling
is given by

λR(µ̄) =
4π2

ln Λ2
LP

µ̄2

, (9)

which has a Landau pole at µ̄ = ΛLP, cf. Figure 1.

-80

-60

-40

-20

 0

 20

 40

 60

 80

 0.5  1  1.5  2  2.5  3

R
e
n
o
rm

a
liz

e
d

 c
o
u
p

lin
g

µ/ΛLP

Running coupling for O(N) model at large N

original: λR(µ)

PT-sym.: gR(µ)

Figure 1. Running coupling in the O(N) model in 3 + 1 dimensions. Shown are results for the
coupling λR in the original theory (9), as well as for the coupling gR in the analytically continued
theory (PT -symmetric theory). Adapted from Ref. [9].

In order to make sense of the theory at the Landau pole, a procedure for analytically
continuing the theory beyond the Landau pole is necessary. This procedure has been
provided in the form of a conjecture in Ref. [10] for so-called PT -symmetric field theory
(note that the conjecture in Ref. [10] has been formulated at zero temperature and checks
exist only for d = 1 (quantum mechanics); I thank W. Ai for pointing this out to me).
Naively continuing (9) for µ̄ > ΛLP, the sign of λR becomes negative. Thus, in order to
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make sense of the O(N) model beyond the Landau pole, one is led to consider a theory
where the sign of the coupling is flipped:

λ → −g + i0+ , (10)

where the small imaginary part has been included in order to be able to ‘go around’
the Landau pole. Following standard nomenclature [20], the theory with flipped-sign
coupling is referred to as PT -symmetric field theory, and its partition function is denoted
by ZPT (g, β). Following Ref. [10], the analytic continuation of Z(λ, β) is given by

ln ZPT (g, β) = Re ln Z(λ = −g + i0+, β) . (11)

To evaluate ZPT (g, β), one may directly employ the pressure function (7), where
now the sign of the coupling has been flipped. Regardless of the sign of the coupling,
the expression for the pressure (7) is divergent in the 4d continuum lim ε → 0. The PT -
coupling renormalization, given by

1
g
− 1

4π2ε
=

1
gR(µ̄)

, (12)

differs from (8) by a sign, making the PT -symmetric theory asymptotically free. Using the
renormalized coupling gR(µ̄), one can express the renormalized pressure function as

p(m) = − m4

16gR(µ̄)
+

m4

64π2 ln
µ̄2e

3
2

m2 +
m2T2

2π2

∞

∑
n=1

K2(nβm)

n2 . (13)

The pressure, being a physical observable, cannot depend on the choice of renormal-
ization scale µ̄, so dp

d ln µ̄ = 0. This fixes the running for the renormalized coupling gR(µ̄)

and, as a consequence, the form of the running coupling itself as

gR(µ̄) =
4π2

ln µ̄2

Λ2
LP

, (14)

which is the same as (9) up to a sign. Both running couplings are shown in Figure 1, where
it can be seen that they diverge at µ̄ = ΛLP. Whereas µ̄ = ΛLP is the Landau pole in
the O(N) model, when interpreted through PT-symmetric field theory, ΛLP has all the
trappings of an infrared scale parameter reminiscent of QCD (cf. Section 3).

For completeness, the β-function for the PT -symmetric theory in d = 4 − 2ε dimen-
sions with ε ≪ 1 is explicitly calculated as

β(gR) =
∂gR(µ̄)

∂ ln µ̄2 = −gR

(
gR(µ̄)

4π2 + ε

)
, (15)

which is seen to be negative in d = 4. A comparison with the perturbative (weak-coupling)
result for β (Equation (10.54) in [21]) shows that the large N β-function is only 1/9th of
the N = 1 weak-coupling result. The remainder of the complete perturbative contribution
arises at next-to-leading order in the large N expansion.

From the form (15), it is also easy to discuss the fixed-point structure of the theory.
In d = 4− 2ε dimensions, the PT -symmetric O(N) model possesses two fixed points, one at
gR = 0 and the other at gR = −4π2ε. From the running coupling gR(µ̄) shown in Figure 1,
it is clear that gR = −4π2ε corresponds to the IR fixed point of the theory. Flipping the sign
of both the coupling and ε, one finds that this fixed point is the same as the UV fixed point
of the original theory specified by (4) in d = 4 + 2ε dimensions. This is consistent with the
known critical dimensions 4 < d < 6 for which the O(N) model can be non-perturbatively
renormalized [22]; see also [23].
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Inserting the form (14) of the running coupling into (13), one obtains

p(m) =
m4

64π2 ln
Λ2

LPe
3
2

m2 +
m2T2

2π2

∞

∑
n=1

K2(nβm)

n2 . (16)

At this point, it is worthwhile to pause and consider the following observations:

• Any dependence of p(m) on the unphysical renormalization scale µ̄ has dropped out;
• The expression (16) is identical to (13) evaluated at a the Landau pole, µ̄ = ΛLP;
• The pressure in the (flipped sign coupling and asymptotically free) PT -symmetric

theory (16) is identical to the pressure in the original O(N) model (7), as can be seen by
inserting Equations (8) and (9) into (7);

• For generic values of m, the pressure at the Landau pole will be finite rather than infinite.

As a consequence of these observations, the O(N) model and the PT -symmetric O(N)
model are identical at large N, even though from Figure 1, one of these has a Landau pole,
and the other one is asymptotically free. For this reason, I will refer to the scale µ̄ = ΛLP as
‘the Landau pole’ in the PT -symmetric theory.

One can calculate the pressure for any temperature T by noting that the remaining
single integral over ζ0 in the partition function is again dominated by the saddle points at
large N, so that the physical pressure of the theory per component is given by (16), with
m = m̄ being the solution to

0 =
dp(m)

dm2 =
m2

32π2 ln
Λ2

LPe1

m2 − mT
4π2

∞

∑
n=1

K1(nβm)

n
. (17)

If (17) has more than one solution (as it generically does), then in the large N limit,
the solution with the biggest real part of p(m̄) will dominate over all others.

At zero temperature (a.k.a. the vacuum), a simple solution to (17) is m̄ = 0, which
corresponds to the usual starting point for perturbative calculations. However, there is a
second solution to (17) located at m̄ = ΛLP

√
e, which is usually dismissed as ‘being too

close to the Landau pole’ [19]. However, the physical pressure per component for this
second solution is given by

p(m = ΛLP
√

e, T = 0) =
Λ4

LPe2

128π2 , (18)

which is perfectly finite. In addition, since p(m = ΛLP
√

e) > p(m = 0), the solution (18) is
thermodynamically preferred over the perturbative vacuum. (It is perhaps worth mention-
ing that some early studies of the O(N) model in 3 + 1 dimensions came to the conclusion
that it contains tachyons or an instability to spontaneous generation of a large vacuum
expectation value ⟨ϕ⃗⟩ [24,25]. However, as pointed out already in Ref. [26], none of these
are expected to happen for the thermodynamically preferred phase at large N.)

Despite the presence of the Landau pole, observables in the bosonic theory seem to
make physical sense. For instance, one can calculate thermodynamic properties at finite
temperatures by tracking solutions to (17) numerically and evaluating p(m̄). As discussed
in Ref. [9], at small temperatures, the numerical solution m̄ of the thermodynamically
preferred phase is continuously connected to m̄(T = 0) =

√
eΛLP. The numerical solution

m̄ becomes complex above a critical temperature T = Tc ≃ ΛLP/
√

e, but using results from
PT -symmetric field theory [10], the analytically continued pressure is continuous across
T = Tc. A plot of the pressure as a function of temperature from Ref. [9] is reproduced in
Figure 2, and results for the entropy and specific heat can be found in Ref. [9].

Besides the pressure, one may look at other observables. For instance, one can calculate
the spectral function for the auxiliary field ζ ′, finding a stable bound state in the low-
temperature phase [26,27]. This is different from the situation in QED, where one encounters
a tachyon (also sometimes called Landau’s ghost) instead of a stable bound state [3]. This
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is the main reason why this work is concerned with the Landau pole in the O(N) model
rather than QED.
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Figure 2. Pressure per component as a function of temperature for the O(N) model at large N, adapted
from Ref. [9]. Tc ≃ 0.616ΛLP denotes the location in temperature where the solution to (17) for m
becomes complex.

2.1. Adding Relevant Deformations

One might worry that the results from the previous sections are an artifact of tuning
away all relevant and irrelevant operators. For this reason, it is useful to consider repeating
the analysis for the Euclidean action

SE =
∫

d3xdτ

[
1
2

∂µϕ⃗ · ∂µϕ⃗ +
1
2

m2
bareϕ⃗2 − g

N
(
ϕ⃗ · ϕ⃗

)2
]

. (19)

Introducing the auxiliary fields as before in (5), one may again integrate out σ, and one
finds in complete analogy with the previous section the PT -symmetric pressure function

p(m) = −
(m2 − m2

bare)
2

16g
+

m4

64π2

(
1
ε
+ ln

µ̄2e
3
2

m2

)
+

m2T2

2π2

∞

∑
n=1

K2(nβm)

n2 . (20)

The explicit ε → 0 divergence can again be taken care of by using the same non-
perturbative renormalization as before (12). This leads to

p(m) =
2m2m2

bare − m4
bare

16g
+

m4

64π2 ln
Λ2

LPe
3
2

m2 +
m2T2

2π2

∞

∑
n=1

K2(nβm)

n2 . (21)

Since the bare coupling 1
g diverges as ε → 0, there are residual divergences remain-

ing in (21). The first one of these can be taken care of by renormalizing the bare mass
parameter as

m2
bare
g

=
m2

R(µ̄)

gR(µ̄)
, (22)

The running of the renormalized mass mR(µ̄) is again fixed by requiring that dp(m)
d ln µ̄ = 0,

which leads to

m2
R(µ̄) =

const

ln µ̄2

Λ2
LP

, or
m2

R(µ̄)

gR(µ̄)
= m2

0 , (23)

with constant and finite mass scale m0. This leads to

p(m) =
m2m2

0
8

−
m4

bare
16g

+
m4

64π2 ln
Λ2

LPe
3
2

m2 +
m2T2

2π2

∞

∑
n=1

K2(nβm)

n2 . (24)
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For the remaining term, note that in the limit ε → 0,

m4
bare
g

= m2
0m2

bare = m4
0g =

m4
0

1
gR(µ̄)

+ 1
4π2ε

→ 0 , (25)

so that the pressure function becomes

p(m) =
m2m2

0
8

+
m4

64π2 ln
Λ2

LPe
3
2

m2 +
m2T2

2π2

∞

∑
n=1

K2(nβm)

n2 . (26)

For small values of m0, the properties of this theory are close to the unmodified version
considered in the previous section. The second-order phase transition at finite temperature
persists but is pushed to higher values of Tc

ΛLP
.

2.2. Adding Irrelevant Deformations

Now let us consider what happens when adding irrelevant operators to the theory.
In this case, I study

SE =
∫

d3xdτ

[
1
2

∂µϕ⃗ · ∂µϕ⃗ − g
N
(
ϕ⃗ · ϕ⃗

)2
+

α

N2

(
ϕ⃗ · ϕ⃗

)3
]

, (27)

where α is the bare sextic coupling parameter. Introducing the auxiliary fields as before
in (5), it is possible, but not very enlightening, to integrate out σ exactly. Instead, in the
large N limit, it is again permissible to replace σ(x) by just its global zero mode σ0 so that

ZPT(g, β) =
∫

dσ0dζ0eNβVp(m=
√

iζ0,σ0) , (28)

where

p(m, σ0) =
gσ2

0
N2 −

ασ3
0

N3 +
σ0m2

2N
+

m4

64π2

(
1
ε
+ ln

µ̄2e
3
2

m2

)
+

m2T2

2π2

∞

∑
n=1

K2(nβm)

n2 . (29)

At large N, the integral over σ0 is carried out with the saddle point method, with two
saddles located at

σ
(1,2)
0 =

gN
3α

(
1 ±

√
1 +

3αm2

2g2

)
. (30)

For small 3αm2

2g2 (justified below), one can expand the square root in this expression
to obtain

σ
(1)
0
N

= −m2

4g
+

3αm4

32g3 − 9α2m6

128g5 +
∞

∑
n=3

O
(

α2n

g2n+1

)
,

σ
(2)
0
N

=
2g
3α

+
m2

4g
− 3αm4

32g3 +
9α2m6

128g5 +
∞

∑
n=3

O
(

α2n

g2n+1

)
, (31)

for the two solutions. Inserting σ
(1)
0 into (29), one finds

p(m) = − m4

16g
+

αm6

64g3 +
m4

64π2

(
1
ε
+ ln

µ̄2e
3
2

m2

)
+

m2T2

2π2

∞

∑
n=1

K2(nβm)

n2 +
∞

∑
n=1

O
(

m2n+6α2n

g2n+3

)
. (32)

Renormalizing the coupling g as in (12) leads to

p(m) = − m4

16gR(µ̄)
+

αm6

64g3 +
m4

64π2 ln
µ̄2e

3
2

m2 +
m2T2

2π2

∞

∑
n=1

K2(nβm)

n2 +
∞

∑
n=1

O
(

m2n+6α2n

g2n+3

)
, (33)
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but this implies that α
g3 is divergent. Thus, the bare sextic coupling parameter also needs to

be renormalized as
α

g3 =
αR(µ̄)

g3
R(µ̄)

. (34)

This leaves the whole tower of additional terms α2n

g2n+3 , n ≥ 1 that are potentially
divergent. However, one finds that, in the ε → 0 limit,

α2n

g2n+3 =
α2n

R (µ̄)

g6n
R (µ̄)

1
g3−4n =

α2n
R (µ̄)

g6n
R (µ̄)

1(
1

gR(µ̄)
+ 1

4π2ε

)4n−3 → 0 , (35)

because n ≥ 1. Therefore, none of these terms contribute, and one is left with

p(m) =
m6

M2 +
m4

64π2 ln
Λ2

LPe
3
2

m2 +
m2T2

2π2

∞

∑
n=1

K2(nβm)

n2 , (36)

where I have used the renormalization group invariance of the pressure to express

αR(µ̄)

64g3
R(µ̄)

=
1

M2 , (37)

with a constant mass scale M. One observes that for the same reason as (35), expanding the
square root in (30) is justified for σ

(1)
0 .

For the second solution σ0 = σ
(2)
0 , (29) becomes

p(m) =
4g3

27α2 +
gm2

3α
+

m4

16g
− αm6

64g3 +
m4

64π2

(
1
ε
+ ln

µ̄2e
3
2

m2

)
+

m2T2

2π2

∞

∑
n=1

K2(nβm)

n2 + . . . (38)

The explicit 1
ε divergence can by renormalizing the coupling g, but the sign of the

counterterm must be flipped (and, as a consequence, so must the sign of the running
coupling). One obtains

p(m) =
4g3

27α2 +
gm2

3α
+

m4

16gR(µ̄)
− αm6

64g3 +
m4

64π2 ln
µ̄2e

3
2

m2 +
m2T2

2π2

∞

∑
n=1

K2(nβm)

n2 + . . . (39)

Renormalizing the sextic coupling α as in (37), the square-root expansion in (30) is
justified also for σ

(2)
0 . Similar to (35), terms with positive powers of the bare coupling g in

the numerator vanish so that one finds

p(m) =
M4

27, 648 g3 − m6

M2 +
m4

64π2 ln
Λ2

LPe
3
2

m2 +
m2T2

2π2

∞

∑
n=1

K2(nβm)

n2 (40)

This expression still has a divergent term ∝ 1
g3 , but this term is independent from m.

For this reason, this last divergence can be canceled by a vacuum pressure counterterm in
the Lagrangian, leading to

p(m) = − m6

M2 +
m4

64π2 ln
Λ2

LPe
3
2

m2 +
m2T2

2π2

∞

∑
n=1

K2(nβm)

n2 . (41)

Inspecting (36) and (41), one finds that the two saddle point solutions for σ0 give rise
to the same form for the pressure function, except for the sign of the m6 term, which can be
attributed to the fact that the sign of gR(µ̄) is flipped for the solution σ

(1)
0 .
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The final integral over ζ0 is carried out by finding the saddle point solution

0 =
dp

dm2 = ±3m4

M2 +
m2

32π2 ln
Λ2

LPe1

m2 − mT
4π2

∞

∑
n=1

K1(nβm)

n
, (42)

where ± corresponds to the solutions σ
(1,2)
0 , respectively. At zero temperature, where

the contribution from the modified Bessel function vanishes, there is a different number
of solutions depending on the sign in (42) and magnitude of M2. For a positive sign
(corresponding to solution σ

(1)
0 above) and large M2, there are three solutions: m̄ = 0,

m̄ ≃ ΛLP
√

e, and m̄ ∝ M up to logarithmic corrections. Of these, the saddle with the largest
pressure (lowest free energy) is m̄ ≃ ΛLP

√
e; hence, this is the dominant saddle point at

large N. One thus again recovers the solution (18). As M2 decreases, the situation remains
qualitatively the same until M ≲ 84ΛLP, at which point solutions (except for m̄ = 0)
become complex-valued. However, close to the Landau pole where gR(µ̄ = ΛLP) → ∞,
(37) suggests that M2 → ∞, so I will not consider small values of M in the following.

For the negative sign in (42) and large M2, there are two solutions, m̄ = 0 and
m̄ ≃ ΛLP

√
e, where again the second solution is thermodynamically preferred. Therefore,

one also recovers the unmodified theory solution (18) for the second solution σ
(2)
0 .

2.3. Observables and Running Coupling

As mentioned above, the running coupling of a quantum field theory is not directly ob-
servable because it is a renormalization-scheme-dependent quantity. However, observables
in a quantum field theory can depend in a non-trivial manner on the coupling parameter of
the theory.

For instance, it is possible to calculate scattering amplitudes in the O(N) model, which
are closely related to observables, such as cross-sections. It turns out that the Euclidean
momentum s-wave scattering amplitude to the leading order in large N is given by the
propagator of the auxiliary field ζ ′ introduced in (5), which, for the PT -symmetric theory,
becomes [9]

M(k) = −D(k) =
32π2

N
1

4π2

gR(µ̄)
− ln µ̄2e2

m2 + 2
√

k2+4m2

k2 atanh
√

k2

k2+4m2

. (43)

I will use M(k) as an example of an observable quantity.
In weak-coupling perturbation theory, one can expand M(k) for gR ≪ 1 so

M(k) ∼ 8
N

gR(µ̄) +O(g2
R) . (44)

From a perturbative QFT point of view, one can therefore define an “observable” or
“effective” coupling as

gR,e f f (µ̄ ≃ k) ≡ N
8
M(k) , (45)

where the identification µ̄ ≃ k is expected to hold only approximately. This is a reasonable
thing to do as long as the resulting gR,e f f is small enough in order for the observable M to
be well-approximated by perturbation theory.

However, since M(k) is an observable, it cannot depend on µ̄, and indeed, it does not.
Using the explicit form of gR(µ̄) from (14), one finds

M(k) =
32π2

N
1

− ln Λ2
LPe2

m2 + 2
√

k2+4m2

k2 atanh
√

k2

k2+4m2

. (46)
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This result is fully non-perturbative and can be further simplified by noting that,
to this order in the 1/N expansion, the value of m is given by its saddle point value
m = m̄ =

√
eΛLP, such that

M(k) =
32π2

N
1

−1 + 2
√

k2+4m̄2

k2 atanh
√

k2

k2+4m̄2

. (47)

For sufficiently large Euclidean momenta k ≫ m̄ where M(k) becomes small, this
leads to

M(k ≫ m̄) =
8
N

4π2

ln k2

Λ2
LPe2

. (48)

Comparing this to (45) and (14) informs the refined definition for the effective coupling

gR,e f f (µ̄ = k) ≡ N
8
M(ke1) . (49)

I am now in a position to compare the “physical” definition of the coupling gR,e f f (µ̄ = k)
to the running coupling of the theory (14), which I carry out in Figure 3. From this figure,
it can be seen that the effective coupling gR,e f f (µ̄) is positive and finite for all energy
scales µ̄. Secondly, one finds that the effective coupling gR,e f f (µ̄) reaches a finite value in
the infrared:

lim
µ̄→0

gR,e f f (µ̄) = 4π2 . (50)
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Figure 3. “Effective” running coupling (49) vs. MS coupling (14) for the PT -symmetric O(N) model
at large N. The effective coupling gR,e f f is defined from the “physical” scattering amplitude M and
is positive and finite for all values of µ̄. See text for details.

It is trivial to see that these properties of the effective coupling gR,e f f are a direct
consequence of Definition (49) in terms of a “physical” quantity (the scattering amplitude).
In particular, gR,e f f does not exhibit any remarkable feature near µ̄ = ΛLP despite the fact
that the O(N) model possesses a Landau pole at this scale.

This makes sense; since the running coupling itself is not an observable, one can
always find some “physical” definition of a coupling that agrees with perturbation theory
whenever the coupling is small and has any set of properties one would want, such as
positiveness and finiteness in the IR.

2.4. Conclusions

The O(N) model in 3 + 1 dimensions has a Landau pole at large N. Physical observables
at the Landau pole remain finite and well-behaved. This feature does not change when
adding either relevant operators (e.g., mass terms) or irrelevant operators (e.g., sextic
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interactions) to the theory. I therefore conclude that, for the O(N) model in 3 + 1 dimensions
at large N, the Landau pole is a harmless feature of the theory and not a sign that the
theory itself is ‘sick’. Most importantly, using the analytic continuation provided by PT -
symmetric field theory, the O(N) model does not need to be treated as a cut-off theory.
It is UV complete, and asymptotically free, despite (or perhaps because of ) the negative
coupling constant.

An important omission in the present study is the question about 1
N corrections—

will they destroy the features of the large N limit? While this question is without doubt
important, I cannot resist pointing out that (almost) the entirety of holography is built upon
the strict large N limit of field theory without systematic discussion of 1

N corrections [28].
Yet even without a systematic understanding of 1

N terms, holography has indisputably
been useful in building our understanding of quantum field theory, so maybe a similar
attitude could be extended to the large N limit of the O(N) model.

3. A Landau Pole in QCD?

Let me conclude the discussion by advancing a provocative idea: a Landau pole in
quantum chromodynamics. According to lore, QCD does not have a Landau pole, so
it seems that it should not be discussed here. But then again, there is no hard evidence
against a Landau pole in QCD, so I would argue that the idea should be considered (see
Section “On the Evidence against a Landau Pole in QCD” for more discussion on this point).
QCD does have asymptotic freedom, and since the PT -symmetric O(N) model at large N
shares this property, one can nevertheless ask how different or similar these theories are.

It would seem more appropriate to attempt a comparison to QED rather than QCD,
but the experimental determination of the QED fine-structure constant does not extend
much beyond the Z-pole mass µ̄ = MZ ≃ 91 GeV. Since the QED Landau pole (2) is at
vastly higher energy, the resulting QED information (shown in Figure 4) is not particu-
larly illuminating.
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Instead of QED, in Figure 4, I compare the running coupling from QCD to that in
the PT -symmetric O(N) model. For the QCD running coupling, I am using the 3-loop
perturbative QCD expression resulting from numerically integrating

∂as

∂ ln µ̄2 = −β0a2
s − β1a3

s − β2a4
s + . . . , (51)
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where as =
αs(µ̄)

4π , β0 = 11 − 2
3 N f , β1 = 102 − 38

3 N f , and β2 = 2857
2 − 5033

18 N f +
325
54 N2

f , and
I am taking N f = 5 [30,31]. As can be seen from Figure 4, the QCD running coupling
obtained from perturbation theory becomes very large at small scales µ̄. In fact, one
finds that the perturbative solution for αs(µ̄) thus obtained diverges for a particular value
of µ̄ = ΛMS ≃ 0.3 GeV. This value is consistent with similar values reported by other
methods [32], and indeed, the running coupling αs(µ̄) is consistent with calculations from
lattice QCD [29] at values as low as µ̄ ≃ 5ΛMS (also shown in Figure 4).

In my opinion, Figure 4 indicates a certain qualitative similarity between QCD and
the O(N) model. Pushing the similarity further, this would lead to the interpretation that
αs(µ̄) actually does diverge at a finite momentum scale ΛMS and that deep in the infrared,
αs should be analytically continued to negative (or complex) values.

It is well-known that QCD becomes confining in the infrared and that physical ob-
servables are well-behaved and finite for all momentum scales. In particular, thermody-
namic quantities, such as the pressure, are continuous as a function of temperature for
QCD, with a broad analytic crossover from the confined to quark–gluon plasma phase
around Tc ≃ 170 MeV [33]. Normalizing the pressure by the Stefan–Boltzmann pressure
pSB(T) = π2T4

90

(
2(N2

c − 1) + 7
2 NcN f

)
with Nc = N f = 3 for QCD and pSB(T) = π2T4 N

90 for
the O(N) model, a comparison is shown in Figure 5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  1  1.5  2  2.5  3

(p
(T

)-
p
(0

))
/p

S
B
(T

)

√eT/Λ

Pressure per Component

lattice QCD, Λ=0.3 GeV

PT-sym O(N)

Figure 5. Pressure as a function of temperature for QCD (with Λ ≡ ΛMS = 0.3 GeV) and large N
PT -symmetric O(N) model. The QCD pressure is from a lattice QCD with N f = 2 + 1 flavors of
quarks with physical masses [34] with a cross-over temperature reported as Tc = 170(4)(3) MeV [33]
(full vertical line). Massless O(N) model results with a second-order phase transition located at
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Similar to the case of the running coupling shown in Figure 4, thermodynamic prop-
erties for QCD and the O(N) model shown in Figure 5 seem to have a certain qualitative
similarity when expressed in units of ΛMS. Upon closer inspection, however, it becomes
clear that there are certain qualitative differences between QCD and the O(N) model,
as evident when considering the energy density and speed of sound for both theories
shown in Figure 6. The parameters relevant for the equation of state shown in this figure
clearly exhibit the second-order phase transition in the O(N) model, which is absent in
real-world QCD.

This was to be expected; the O(N) model simply is not the same as QCD, despite
sharing the property of asymptotic freedom. At best, the O(N) model may serve as a
crude approximation of QCD, similar to how N = 4 SYM has been used as a model for
QCD [11,12]. Nevertheless, given the successes of applying results from N = 4 SYM
to QCD phenomenology [35], it is possible that the O(N) model can serve as a useful
phenomenological model, one which possesses a property that N = 4 SYM simply does
not have: asymptotic freedom.
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Figure 6. Speed of sound squared c2
s (left panel) and energy density ϵ(T) (right panel) as a function

of temperature from a lattice QCD [34] (with Λ ≡ ΛMS = 0.3 GeV) and large N PT -symmetric O(N)
model. Unlike the pressure, both c2

s and ϵ(T) clearly show the second-order phase transition in the
O(N) model as compared to the analytic cross-over in QCD. See text for details.

On the Evidence against a Landau Pole in QCD

There are multiple claims in the literature that in QCD, the Landau pole in the running
coupling is cured by non-perturbative effects; see, e.g., Refs. [36–38]. While some of these
claims do not seem to withstand rigorous scrutiny [39], others are based on careful studies
of non-perturbative results in QCD, e.g., in Refs. [40,41].

As a representative example, let me consider the observation that certain quantities
such as the gluon polarization tensor appear to “freeze” in the infrared for QCD [36]. This
is analogous to the behavior of the scattering amplitude discussed for the O(N) model
in Section 2.3. As in (49), the authors of Ref. [36] define an “effective” running coupling
αs,e f f (µ̄) for QCD and show that it is well-behaved and finite even in the zero momentum
limit µ̄ → 0.

From the O(N) model example discussed in Section 2.3, it is clear that the approach
taken in Ref. [36] is perfectly reasonable and useful as a practical definition for αs. However,
from the O(N) model discussion, it should also be clear that the observed infrared “freezing”
of the coupling is entirely unrelated to the absence of a Landau pole. In fact, the O(N) model
example shows that infrared freezing for an effective running coupling can occur in a theory
with a Landau pole. To reiterate the point made in Section 2.3, the QCD running coupling
is not an observable, so it is always possible to find some “physical” definition for αs that
agrees with perturbative QCD in the UV and has any set of properties in the infrared. While
certain authors attribute great importance to the apparent “infrared fixed-point” property
based on the IR freezing of some suitably defined αs,e f f , I personally do not believe that it
helps in our understanding of QCD.

Of course, it is important to state that the similarities between the O(N) model, which
possesses a Landau pole, and QCD do not constitute evidence for the presence of a Landau
pole in QCD. It could simply be that observables in a theory with a “benign” Landau pole,
such as the O(N) model, are similar to a theory without a Landau pole.

To summarize, while there is no guarantee that a Landau pole exists for QCD, I am
not aware of any hard evidence against one, either.

4. Summary

In this work, I have considered the O(N) model in 3 + 1 dimensions at large N, which
has a Landau pole. Using technology borrowed from PT -symmetric field theories, I have
extended the theory beyond the Landau pole, and I have found that adding relevant and
irrelevant operators does not qualitatively change the behavior of the theory close to the
Landau pole. Physical observables in the O(N) model are finite and well-behaved at and
close to the Landau pole.

I take this to constitute evidence that at least at large N, the Landau pole in the
O(N) model is harmless, and the theory does constitute a UV-complete interacting and
asymptotically free theory.

Moreover, I compared results from the large N O(N) model for the running coupling
and the finite temperature pressure to QCD, finding qualitative similarities between these
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two theories. Both the O(N) model and QCD are asymptotically free theories, but there is a
key difference between these two theories. For QCD, the high-energy regime possesses an
intuitive interpretation as a weakly coupled equilibrium quantum field theory with well-
defined particle states (quarks and gluons), whereas the infrared limit of QCD is notoriously
difficult to formulate as an equilibrium continuum quantum field theory. By contrast, for the
O(N) model, it is the low-energy regime that lends itself to an intuitive equilibrium quantum
field theory formulation (with the vector and scalar bound state the perturbative degrees of
freedom), whereas the high-energy region is difficult to interpret. Coming full circle, while
the respective “perturbative” and “non-perturbative” regimes are different for QCD and
the O(N) model, it is curious to note that both theories contain both phases, and that the
Landau pole acts as a the phase boundary for the O(N) model.

Based on these observations, my interpretation is as follows: Landau poles are common
features for quantum field theories in 3 + 1 dimensions, since the O(N) model at large N,
QED, and even QCD possess diverging coupling constants at a finite momentum scale
µ̄ = Λ. For two of these theories (O(N) model and QCD), we know that nothing ‘bad’
happens at this scale. Instead, µ̄ = Λ merely marks the scale at which the O(N) model and
QCD seem to transition from a low-temperature phase to a high-temperature phase.

Perhaps it would be time to critically reassess the current dogma that Landau poles
constitute fatal flaws of interacting quantum field theories.
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