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Abstract: In this paper, an analytical exact form of the ramp function is presented. This seminal
function constitutes a fundamental concept of the digital signal processing theory and is also involved
in many other areas of applied sciences and engineering. In particular, the ramp function is performed
in a simple manner as the pointwise limit of a sequence of real and continuous functions with
pointwise convergence. This limit is zero for strictly negative values of the real variable x, whereas it
coincides with the independent variable x for strictly positive values of the variable x. Here, one may
elucidate beforehand that the pointwise limit of a sequence of continuous functions can constitute
a discontinuous function, on the condition that the convergence is not uniform. The novelty of
this work, when compared to other research studies concerning analytical expressions of the ramp
function, is that the proposed formula is not exhibited in terms of miscellaneous special functions,
e.g., gamma function, biexponential function, or any other special functions, such as error function,
hyperbolic function, orthogonal polynomials, etc. Hence, this formula may be much more practical,
flexible, and useful in the computational procedures, which are inserted into digital signal processing
techniques and other engineering practices.
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1. Introduction

The ramp function, the notation of which is R(x), is a discontinuous, single-valued
function of a real variable with a point discontinuity located at zero. For negative argu-
ments, R(x) vanishes, whilst for positive arguments, R(x) is simply x [1]. In addition, its first
derivative is the Heaviside step function, also known as the unit step function, whereas
its second derivative is the Dirac delta distribution (or δ distribution), also known as the
unit impulse [2]. Step, ramp, and parabolic functions are called singularity functions [2,3].
In fact, the ramp function has many applications in applied sciences/engineering and
is mainly involved in digital signal processing and electrical engineering. Actually, it
constitutes a signal, the amplitude of which varies linearly with respect to time and can be
expressed by several definitions [4,5]. In digital signal processing, the unit ramp function is
a discrete time signal that starts from zero and increases linearly. Here one may empha-
size that the basic continuous-time (CT) and discrete-time (DT) signals include impulse,
step, ramp, parabolic, rectangular pulse, triangular pulse, signum function, Sinc function,
sinusoid (also known as sine wave, sinusoidal wave), and finally, real, along with complex
exponentials [4–6]. The ramp function states that the signal will start from time zero and
instantly will take a slant shape, and depending upon given time characteristics (i.e., either
positive or negative, with it being positive here), the signal will follow the straight slant
path either towards the right or the left, with it being towards the right here [6,7]. In this
context, the ramp function constitutes a type of elementary function which exists only
for the positive side and is zero for negative [8–10]. Moreover, the impulse function, the
role of which is also very important in these fields, is obtained by differentiating the ramp
function twice [9–11]. Apart from the previously mentioned examples highlighting the
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pivotal role of this function in digital signal processing and electrical engineering, it is
important to note that the ramp function finds diverse applications, extending into areas
such as finance and applied statistics (e.g., regression models) [2,4,12]. The currents through
and voltages across these elements are obtained by solving integro-differential equations.
Alternatively, the elements in the network are transformed from the time domain, and an
algebraic equation is obtained, which is expressed in terms of input and output [11,12]. The
commonly used inputs are impulse, step, ramp, sinusoids, exponentials, etc. In addition to
the aforementioned applications above that demonstrate the central role of this function
in digital signal processing and electrical engineering, one may also point out that the
ramp function has many other applications in finance, as well as in applied statistics (e.g.,
regression models), etc. [2,4,12]. Actually, there are many explicit forms of this significant
function that can be found in literature.

Especially in reference [4], a sophisticated and clear representation of this function
was suggested through the following explicit form:

R(x) =
x
2
+

x
π

(
arctan(x) + arctan

(
1
x

))
(1)

In ref. [13], the following exact form of this function was performed:

R(x) =
x
2
+ i

ln (x)− ln (−x)
2π

(2)

Nonetheless, a shortcoming of the above formula is that it cannot be defined for zero
argument, i.e., at x = 0.

Furthermore, building upon the analysis presented in reference [14], which involved
the analytical treatment of the Heaviside step function, a distinct closed-form expression
for the ramp function can be derived, as indicated by the following formula:

R(x) =
3x
4

+
x
π
·(arctan(x− 1) + arctan(

x− 2
x

)) (3)

Here, one may emphasize that according to the approach adopted in ref. [14], the
singularity structure was left ambiguous. Evidently, the same problem will remain if the
ramp function is derived by the aid of this formula, i.e., by multiplying the right-hand side
of Equation (3) with the variable x.

Further, on the basis of ref. [15], the ramp function can be calculated as:

R(x) =
x
π
·
(

arctan(xn) + 2 arctan(
xn

x2n + 1
) + arctan(

1
xn ) + 2 arctan(

x2n − xn + 1
x2n + xn + 1

)

)
(4)

Meanwhile, there are many smooth analytical approximations to the ramp function,
as can be seen in the literature [16–19]. One of the simplest approximations to this function
is the following [16]:

R(x) = 1 +
x
2
+

x√
x2 + ε2

(5)

where ε ∈ (0, 1), such that ε� 1.
On the other hand, in ref. [20], an analytical form of the unit step function was

proposed, and a qualitative study on the ramp and signum functions was carried out.
Concurrently, as it was signified beforehand, there are numerous applications of the

ramp function in applied sciences and engineering, as can be observed in literature.
In ref. [21], a detailed study on neural networks operators by the aid of ramp functions

was carried out, whilst an analogous valuable investigation took place in ref. [22], where
an interpolation by neural network operators was activated by means of ramp functions.

Ref. [23] conducted a notable investigation into the utilization of fixed-point neuron
models incorporating thresholds, emphasizing the significance of ramp and sigmoid acti-
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vation functions. For a comprehensive exploration of approximate solutions for Volterra
integral equations using an interpolation method centered on ramp functions, one can
consult ref. [24].

In ref. [25], the role of smooth ramp functions on the activation of network interpolation
operators was examined.

In ref. [26], quadratic programming by the aid of ramp functions and fast online
Quadratic Programming–Model Predictive Control (QP-MPC) solutions was performed.

In ref. [27], a new and prominent implementation of the simplex method for solving
linear programming problems was developed. In addition, its application for solving MPC
problems on the basis of ramp functions was described.

In ref. [28], an implementation of the ramp function to a fundamental problem of
fracture mechanics concerning multi-cracked simply supported beams was carried out,
where the determination of the response of the beams was addressed under static loads and
in the presence of multiple cracks, whilst in ref. [29], a substructure elimination method
for evaluating the bending vibration of beams was performed. In this valuable work,
a vibration analysis method was presented on the basis of the substructure elimination
method for a general class of Bernoulli–Euler beams. Here, discontinuities were treated by
the use of the Heaviside step function, whereas the non-smooth points were approached by
means of the ramp function. In fact, referring to Euler–Bernoulli beams and Timoshenko
beams, many remarkable investigations can be found in literature, where singularity
functions, such as the unit step function and the ramp function, have been taken into
consideration to carry out analytical treatments of discontinuity problems.

In refs. [30–32], the jump discontinuities on Euler–Bernoulli beams and Timoshenko
beams were analytically treated by the aid of singularity functions, whereas in refs. [33,34],
some basic concepts of the well–known Timoshenko beam theory were revisited and
discussed in depth.

In ref. [35], a considerable study on the dynamics of viscoelastic discontinuous beams
was accomplished. This investigation dealt with the dynamics of beams with an arbitrary
number of Kelvin–Voigt viscoelastic rotational joints, translational supports, and attached,
lumped masses.

In ref. [36], the Heaviside step function was implemented to approximate the disconti-
nuities in Euler–Bernoulli discontinuous beams, where the analytical solution was finally
carried out by means of uniform-beam Green’s functions.

In ref. [37], an analytical treatment for Euler–Bernoulli vibrating discontinuous elastic
beams was carried out. Heaviside step function and Dirac’s delta distribution (also known
as the unit impulse) were taken into account towards the analytical approach of the beam
discontinuities.

In ref. [38], a remarkable study concerning the achievement of closed-form solutions
for stochastic Euler–Bernoulli discontinuous beams was carried out, whilst in ref. [39], a
valuable theoretical investigation on a general category of Euler–Bernoulli simply sup-
ported discontinuous beams was performed.

In ref. [40], a Euler–Bernoulli-like finite element method (FEM) for a general class of
Timoshenko beams was presented and discussed, whereas in ref. [41], an exact stochastic
solution for a general class of linear elastic beams subjected to delta-correlated loads was
accomplished. In addition, in ref. [42], a considerable analytical study on the effects of axial
load and thermal heating on the dynamic characteristics of axially moving Timoshenko
beams was presented. On the other hand, there are many other engineering problems
where the ramp function (along with other singularity functions) is involved and indeed
plays a key role. For instance, the wavemaker problem is a fundamental and important
issue in the study of marine and coastal engineering. In this context, in ref. [43], the
transient waves were generated by a vertical, flexible wavemaker plate by means of a
general ramp function. Moreover, in ref. [44], a numerical modeling framework based on
complex analysis meshless (meshfree) methods, which can accurately and efficiently track
arbitrary crack paths in two-dimensional linear elastic solids, was introduced and discussed.
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In particular, the ramp function was applied in compatibility conditions in order to warrant
that the deformations will leave the elastic continuum body in a compatible state. In ref. [45],
a mathematical approach resulting in an implicit representation aiming at the analysis of
piecewise affine discrete-time systems was carried out. In particular, a new framework was
presented towards the stability analysis of discrete-time piecewise affine (PWA) systems. To
this end, a novel implicit representation of PWA functions was introduced on the basis of
ramp functions. Next, by exploiting some properties of ramp functions as a set of identities
and inequalities, the authors obtained Lyapunov inequalities related to piecewise quadratic
Lyapunov functions candidates. In ref. [46] the problem of assessing the stability of the
origin of uncertain PWA systems was treated. In this framework, the authors extended the
use of an implicit representation based on vector-valued ramp functions to continuous-time
PWA systems. The main advantage of this method is that the robust stability analysis can
be performed for the case where the uncertainties modify both the shape of the partition
and the number of regions. In ref. [47], a mathematical treatment of the harmonic oscillator,
which was considered to consist of a step function and a ramp function, was performed
in a rigorous and straightforward manner. In ref. [48], a remarkable investigation on the
use of multi-zone modeling for tunnel fires was carried out. In this approach, the fire
and the ventilation conditions were specified by the aid of ramp functions. In ref. [49], an
extended phase-field approach was performed to warrant the efficiency of the simulation
of fatigue fracture processes. In this valuable work, the ramp function played a key role,
since it participated in the mathematical derivations concerning the proposed interpolation
method, which was adopted in order to avoid discontinuities. In ref. [50], a sound and
effective finite element modeling (FEM) strategy, in order to determine the directivity of
a thermoelastically generated laser ultrasound, was performed. Here, a smooth ramp
function was applied to the free surface displacement in the time domain, to suppress the
initial displacement, without introducing extra bulk waves by keeping the first derivatives
of the displacements continuous.

Now, in the present study, which constitutes a theoretical investigation on this special
function, the ramp function is exhibited as the pointwise limit of a sequence of real and
continuous functions with pointwise convergence. This limit is proved to be zero for strictly
negative values of the real variable x, whereas it is proved to be simply x for strictly positive
values of x. To signify the novelty of the mathematical formula introduced in the current
approach when compared to other analytical expressions of the ramp function existing in
literature, let us remark that if this function is derived by the aid of the formula obtained in
ref. [14], the singularity structure will be left ambiguous. This fact constitutes an advantage
of the proposed formula in comparison to this approach. Also, another dominance of
the formula proposed in the present work, when compared with formulae consisting of
finite combinations of inverse trigonometric functions, is that the latter do not have unique
definitions. In addition, one may elucidate that the formula performed here holds over the
set (−∞, 0) ∪ [0,+∞), in opposition to the analytical representation of the ramp function
obtained in ref. [13], which cannot be defined at x = 0. On the other hand, one may point
out that the closed-form expression of the Heaviside step function obtained in ref. [20]
cannot be measured, either in the Lebesgue sense or Riman’s sense. Hence, it cannot be
differentiated with respect to the variable x, and therefore, one cannot obtain Dirac’s delta
function on the basis of this formula. Obviously, the same conclusion holds if one tries
to derive the ramp function by the aid of this formula, a fact that renders the proposed
expression for the ramp function more flexible.

Further, one may also emphasize that the proposed exact formula is not expressed
in terms of miscellaneous special functions, (elliptic integrals, etc.), a fact that may render
this formula much more practical and helpful in the computational procedures which are
inserted into digital signal processing techniques, along with other engineering practices.
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2. Towards an Explicit Form of Ramp Function
2.1. Theorem

Let R, R+, and N denote the sets of real numbers, positive real numbers, and positive
integers, respectively. Further, let x ∈ R and n ∈ N. The following single-valued function f:
R→ R+, with

f (x) = lim
n→+∞

(
x· n|x|+1 + ln

(
n2· (|x|+ 2n)

)
2n|x|+1

+
x·(exp(n·x) − 1)

2exp(n·x) + 2

)
(6)

coincides with the ramp function over the set (−∞, 0) ∪ [0,+∞).

2.2. Proof

In this subsection, we will give rigorous proof to the theorem formulated in Section 2.1.
In particular, we will show that the values of the single-valued function f introduced by
Equation (6) vanish for strictly negative arguments, whilst they coincide with the values of
the real variable x for strictly positive arguments, as well as at x = 0. To this end, let us
distinguish the following three cases concerning the independent variable x.

(i) x ∈ (0,+∞)

In this context, one may deduce that

lim
n→+∞

(n·x) = +∞ ⇒ lim
n→+∞

exp (n·x) = +∞ (7)

and therefore,

lim
n→+∞

1
exp (n·x) = 0 (8)

Next, to calculate the infinitesimal quantity lim
n→+∞

x· n|x|+1+ln (n2· (|x|+2n))
2n|x|+1 , one may

primarily observe that the above fraction, which the limiting operation is applied to, can be
equivalently expanded as follows:

x· n|x|+1+ln (n2· (|x|+2n))
2n|x|+1 = x

2 + ln (n)
n|x|+1 + ln (|x|+2n)

2n|x|+1 ⇔
x· n|x|+1+ln (n2· (|x|+2n))

2n|x|+1 = x
2 + ln (n)

n|x|+1 + ln (|x|+2n)
2n|x|+1 ⇔

x· n|x|+1+ln (n2· (|x|+2n))
2n|x|+1 = x

2 + ln (n)
n|x|+1 + ln (n)

2n|x|+1 +
ln
(
|x|
n +2

)
2n|x|+1

(9)

Now, since the exponent (|x|+ 1), which appears upon the denominator of the
fractions appearing on both sides of Equation (9), is always a strictly positive quantity,
i.e., |x|+ 1 > 0 ∀ x ∈ (−∞, 0) ∪ [ 0,+∞), one may also deduce that

lim
n→+∞

ln (n)
n|x|+1

= 0 (10)

In addition, since the positive term |x| does not vary with respect to the integer variable
n, which is a natural number, as it was clarified beforehand, the quotient |x|n vanishes, letting
n tend to infinity. In fact, it is known from calculus [51] that every sequence in the general
form a(n) = c

n , where c denotes an arbitrary constant real number, is always a convergent
sequence. In this framework, one may also infer:

lim
n→+∞

ln
(
|x|
n + 2

)
2n|x|+1

= 0 (11)
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Hence, one obtains

lim
n→+∞

x· n|x|+1 + ln
(
n2· (|x|+ 2n)

)
2n|x|+1

=
x
2

(12)

Equation (6) can be combined with Equations (7), (8) and (12) respectively, to yield

f (x) =
x
2
+

1
2

lim
n→+∞

x− x
exp (n·x)

1 + 1
exp (n·x)

(13)

Moreover, since the real variable x does not vary with respect to the integer variable n,
one may also deduce that

lim
n→+∞

x− x
exp (n·x)

1 + 1
exp (n·x)

= x (14)

Then, Equation (13) can be combined with Equation (14) to yield

f (x) = x
2 + 1

2 ·
x−0
1+0 ⇒

f (x) = x
(15)

Thus, it was proved that for strictly positive arguments, i.e., when x ∈ (0,+∞), the
function f in Equation (6) returns the value that was used as its argument, unchanged.
Hence, f (x) is simply x.

(ii) x ∈ (−∞, 0)

In this context, since the real variable x and the natural number n (which evidently is
an integer variable) do not agree in sign, their product is strictly negative. Thus, one may
deduce that

lim
n→+∞

(n·x) = −∞ ⇒ lim
n→+∞

exp (n·x) = 0 (16)

Here, one may also pinpoint that Equation (12), which was previously derived when
we considered the variable x to be strictly positive, still holds. This significant observation
is attributed to a fact that we will interpret and discuss just below. By focusing on the

fraction
x· n|x|+1+ln (n2· (|x|+2n))

2n|x|+1 , which appears on Equation (12), one may pinpoint that the
real variable x occurs in the denominator of this fraction only by its absolute value, i.e., |x|.

Thus, the sign of this real variable cannot influence the sign of the limit of the denomi-
nator in this aforementioned fraction, i.e., the term 2n|x|+1, letting the integer variable n
tend to infinity.

In fact, the limit of the real quantity 2n|x|+1, letting n tend to infinity, is always equal
to +∞, i.e., it constitutes an infinitesimal quantity as well, regardless of the sign and the
values of the real variable x, even if the variable x equals zero.

Further, Equation (6) can be combined with Equations (12) and (16), respectively,
to yield

(x) = x
2 + 1

2 ·
lim

n→+∞
(x·exp(n·x)−x)

lim
n→+∞

(exp(n·x)+1) ⇒

f (x) = x
2 + 1

2 ·
x· lim

n→+∞
(exp(n·x))−x

lim
n→+∞

(exp(n·x))+1

(17)

At this point, we should elucidate that we have taken into account the fact that the
real variable x does not vary with respect to the integer variable n. In this framework, the
variable x was able to be pulled out of the limiting operation, letting n tend to infinity.

Thus, on the basis of Equation (17), it implies that

f (x) = x
2 + 1

2 ·
0·x−x
0+1 ⇒

f (x) = x
2 −

x
2 = 0

(18)
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Hence, it was rigorously proved that the values of f (x) introduced in Equation (6)
vanish for strictly negative arguments, i.e., when the real variable x ∈ (−∞, 0). In
addition, we have to emphasize that Equation (12), which was derived in the first case
of the problem we studied, i.e., when x ∈ (0,+∞), is always valid over the set of real
numbers (−∞, 0) ∪ [ 0,+∞), as we have previously shown. Moreover, we have also taken
into consideration the fact that the real variable x and the integer variable n are always
independent of each other. In this context, the real variable x can be pulled out of the
limiting operations, letting n tend to infinity, since it can be roughly said that this variable
practically behaves as a real constant during the limiting operation.

(iii) x = 0

In this ultimate case, one may deduce that

lim
n→+∞

exp (n·x) = lim
n→+∞

exp (n·0) (19)

and therefore,
lim

n→+∞
exp (n·x) = lim

n→+∞
exp (0) = 1 (20)

Moreover, one may notice that Equation (12) still holds.
Now, Equation (6) can be combined with Equations (20) and (12), respectively, to yield

(x) = lim
n→+∞

(
ln (2n3)

2n + 0
2+2

)
⇒

f (x) = lim
n→+∞

(
ln (2n3)

2n

)
+ 0

4

(21)

and therefore,

f (x) = 0 +
0
4
= 0 (22)

Thus, it was proved that the value of f (x) vanishes at x = 0 as the ramp function
also does. After all, one may come to the conclusion that the single-valued real function
introduced by Equation (6) is definitely identical to the ramp function over the set of
real numbers.

3. Discussion

In Section 2, a mathematical analysis approach concerning the ramp function was
carried out. Specifically, in Section 2.1, an explicit form of the ramp function was pro-
posed as the limit of a sequence of real functions, letting n tend to infinity. Next, in
Section 2.2, this limit was rigorously proved to be zero for strictly negative values of the
real variable x, whereas it was proved to be simply x for strictly positive values of x. In
fact, the proposed single-valued function coincides with the ramp function over the set
(−∞, 0) ∪ (0,+∞). Moreover, one may also observe that the single-valued function f
introduced by Equation (6) vanishes at x = 0. Indeed, the ramp function (by its definition)
vanishes at x = 0 as well, since it is just x for positive arguments. In this framework, one
may also conclude that the single-valued function introduced by Equation (6) coincides
with the ramp function over the set of real numbers (−∞, 0) ∪ [ 0,+∞).

In addition, by focusing on the infinitesimal quantity lim
n→+∞

(
x·(exp(n·x)−1)

2exp(n·x)+2

)
, which

can be equivalently written as: 1
2 lim

n→+∞

(
x·(exp(n·x)−1)

exp(n·x)+1

)
, one may observe that the following

relationship holds:

lim
n→+∞

(
x·(exp(n·x) − 1)

exp(n·x) + 1

)
= |x| (23)

Consequently, on the basis of Equation (23), it implies that the infinitesimal quantity
lim

n→+∞

(
x·(exp(n·x)−1)

exp(n·x)+1

)
coincides with the absolute value of the real variable x over the set
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(−∞, 0) ∪ (0,+∞) and also at x = 0, since it is obvious that the numerator of the above
fraction vanishes at x = 0, whereas its denominator is equal to 2.

Actually, the validity of Equation (23) ∀x ∈ R is attributed to the fact that the value of
the infinitesimal quantity lim

n→+∞
exp (n·x) depends on the sign of the real variable x, which

is definitely independent of the integer variable n.
In this context, the infinitesimal quantity lim

n→+∞

(
x·(exp(n·x)−1)

exp(n·x)+1

)
equals x for strictly

positive arguments, whilst it equals −x for strictly negative arguments and finally vanishes
at x = 0.

4. Conclusions

The objective of this theoretical investigation was to introduce an analytical repre-
sentation of the ramp function, which evidently is a very useful mathematical tool, and
indeed, it participates in many areas of applied and engineering mathematics and physics.
The novelty of this work, when compared to other analytical treatments of this significant
function, is that the proposed exact mathematical formula is not exhibited in terms of
any miscellaneous special functions or any other special functions, such as error function,
hyperbolic function, orthogonal polynomials, etc. This fact may render the proposed for-
mula more practical and helpful in the computational processes concerning digital signal
processing techniques and other engineering practices.

Nevertheless, one may also observe that an advantage of the proposed closed-form
expression of this special function is that it coincides with the ramp function over the set
(−∞, 0) ∪ [ 0,+∞), since it was proved to vanish at x = 0, as the ramp function also does.

In closing, as a future work, one may also propose similar analytical representations
to other singularity functions [52], e.g., Heaviside step function, signum function etc., by
taking into consideration this theoretical approach.
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