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Abstract: The new approach to quantum mechanics (QM) is that the mathematics of QM is the
linearization of the mathematics of partitions (or equivalence relations) on a set. This paper develops
those ideas using vector spaces over the field Z2 = {0.1} as a pedagogical or toy model of (finite-
dimensional, non-relativistic) QM. The 0, 1-vectors are interpreted as sets, so the model is “quantum
mechanics over sets” or QM/Sets. The key notions of partitions on a set are the logical-level notions
to model distinctions versus indistinctions, definiteness versus indefiniteness, or distinguishability
versus indistinguishability. Those pairs of concepts are the key to understanding the non-classical
‘weirdness’ of QM. The key non-classical notion in QM is the notion of superposition, i.e., the notion
of a state that is indefinite between two or more definite- or eigen-states. As Richard Feynman
emphasized, all the weirdness of QM is illustrated in the double-slit experiment, so the QM/Sets
version of that experiment is used to make the key points.

Keywords: mathematics of quantum mechanics; partitions; equivalence relations; vector spaces over
Z2; objective indefiniteness; indistinguishability
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1. Introduction

A new approach to understanding quantum mechanics (QM) has been developed else-
where [1,2] that corroborates an interpretation of QM supported by Werner Heisenberg [3],
Abner Shimony [4], R. I. G. Hughes [5], Gregg Jaeger [6], and many others who consider
quantum reality as involving indefinite, blurred, unsharp, smeared, or indeterminate states.
The new approach is based on showing that the distinctive mathematical formalism in
QM is the linearization of the mathematics of partitions (or equivalence relations) on
a set–which is the set-level mathematics to represent indistinctions (equivalences) and
distinctions (inequivalences).

This paper focuses on expounding on that new approach by using the vector space
over Z2 version of that mathematics of partitions. The result is a pedagogical or toy model
of (finite-dimensional non-relativistic) quantum mechanics, which is called “quantum
mechanics over sets” and abbreviated as “QM/Sets”. The purpose of the model is not to
develop a simplified model of full QM over the field C, but to develop a simplified model
over the field Z2 that nevertheless provides a pedagogical understanding of some of the
puzzling aspects of QM. Using the simplest form of calculations modulo 2 (where 1+ 1 = 0),
this model nevertheless can illustrate some of the usual ‘paradoxes’ and weirdness of QM
(e.g., the double-slit experiment) in an Anschaulich (or intuitive) form without the wave-
interpreted mathematics of quantum mechanics over the complex numbers C. The integers
modulo 2 are denoted as Z2 = {0, 1}, and the rules for adding and multiplying 0 and 1
differ only in that 1 + 1 = 0.

In constructing a toy model of QM, there is always the question of “what to leave
in and what to leave out?” in going from full QM to the model. In the Schumacher-
Westmoreland toy model of QM with the base field Z2 [7], they decide to “leave in” the
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(Dirac) brackets taking values in the base field, so in their model of “Modal QM”, their
brackets have only the modal values of 1 (possible) and 0 (impossible). In our toy model
of QM/Sets, the Dirac brackets are allowed to take on the natural values to represent the
cardinality of set overlaps, i.e., the natural numbers. When probabilities are introduced in a
natural manner with density matrices, then the real numbers are used–all of which provide
a more complex model to represent quantum phenomena.

2. Materials and Methods: Vector Spaces over Z2

We form a vector space using Z2 by using columns of 0 s and 1 s as the vectors. For

instance, Z3
2 is the 3-dimensional vector space of column vectors such as

0
1
0

. The column

vectors add together component-wise, i.e., each of the first, second, or third components
adds to the corresponding component of the other vector modulo 2, e.g.,1

1
0

+

0
1
1

 =

1
0
1

.

One very useful way to interpret these 3-dimensional column vectors is to see each com-
ponent as the presence or absence of an element of a three-element set such as U = {a, b, c}.
Thus, we have:

{a} =

1
0
0

, {b} =

0
1
0

, and {c} =

0
0
1

.

Then the above addition would be {a, b}+ {b, c} = {a, c}. This addition operation on sets
is called the symmetric difference; it is performed by taking the union of the sets and then
taking away the overlap or intersection of the sets. For instance, the union of {a, b} and
{b, c} is {a, b, c} and then taking way the intersection {b} gives {a, c}. We will henceforth
use this set-interpretation of Z3

2 or, in general, Zn
2 for the n-dimensional case of QM/Sets.

In the vector space Z3
2, there are 8 vectors since each of the three components can be 0

or 1 so there are 23 = 8 possible vectors with the special vector with all zeros is the zero
vector. When we interpret the vectors as sets, then each vector corresponds to a certain
subset. The set of all possible subsets of a set {a, b, c} is its power set ℘({a, b, c}) (set of all
subsets) which has the eight members in correspondence to the eight vectors where the
empty set ∅ corresponds to the zero vector:

∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}.

If we pair the subsets in ℘({a, b, c}) with the vectors in Z3
2 by [1, 0, 0]t (the superscript t

indicates the transpose, interchanging rows and columns) being paired with {a}, [0, 1, 0]t

with {b}, and so forth, then there is an isomorphism of vector spaces: Z3
2
∼= ℘({a, b, c}).

The choice of 3-dimensions Z3
2 or a 3-element universe set U = {a, b, c} was only

illustrative. The corresponding operations extend to n-dimensional vectors or n-element
universes U = {u1, u2, . . . , un}.

In the quantum interpretation, the single-element or singleton subsets represent definite-
states or eigen-states of a quantum particle, and the multiple-element subsets represent
indefinite-states or superposition states of the (always quantum) particle. The zero vector or
empty set does not represent a state.

The definite states like {a}, {b}, or {c} form a basis for the vector space in the sense
that all the other subsets (=states) can be obtained by sums of them. But there are other basis
sets so that all the other subsets can be obtained as sums of them. For instance, consider
U′ = {a′, b′, c′} where {a′} = {a, b}, {b′} = {a, b, c}, and {c′} = {b, c}. This is easily seen
by showing how to obtain the U-basis from them:
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{a′, b′} = {a, b}+ {a, b, c} = {c},
{a′, b′, c′} = {a, b}+ {a, b, c}+ {b, c} = {b}, and
{b′, c′} = {a, b, c}+ {b.c} = {a}.

It should be noted that whether a state is a definite eigenstate or a superposition state
depends on the basis in which it is represented. For instance, the state {a′, b′} = {c} is a
superposition state in the U′-basis but a definite state in the U-basis. In fact, there are many
different basis sets for Z3

2 (28 in all); four of them are listed in Table 1.

Table 1. Four different basis sets for Z3
2.

U = {a, b, c} U′ = {a′, b′, c′} U′′ = {a′′, b′′, c′′} U∗ = {a∗, b∗, c∗}
{a, b, c} {b′} {a′′, b′′, c′′} {a∗, c∗}

{a, b} {a′} {b′′} {a∗, b∗}

{b, c} {c′} {b′′, c′′} {c∗}

{a, c} {a′, c′} {c′′} {a∗, b∗, c∗}

{a} {b′, c′} {a′′} {a∗}

{b} {a′, b′, c′} {a′′, b′′} {b∗}

{c} {a′, b′} {a′′, c′′} {b∗, c∗}
∅ ∅ ∅ ∅

It is useful to consider a vector abstracted from its representation in a certain basis
and such abstract vectors, called kets in QM and symbolized |v⟩ in the Dirac notation, are
identified as the rows in a ket table like Table 1 in the 3-dimensional case of Z3

2. Not all
sets of three vectors in ℘(U) form a basis. For instance, {a, b}, {a, c}, and {b, c} just cycle
among themselves when added, e.g., {a, b}+ {a, c} = {b, c}, so they do not generate the
whole space. A subspace of a vector space is a set of vectors that are closed under addition
(including the zero vector or empty set) so {∅, {a, b}, {a, c}, {b, c}} is a subspace of ℘(U).
Also, any subset S ⊆ U generates the subspace ℘(S) ⊆ ℘(U).

In the ket notation, |{a, b}⟩ stands for the abstract vector (row in the ket table) that is
{a, b} in the U-basis. Operations in the vector space have the same outcome regardless of
the basis used. For instance, |{a, b}⟩+ |{b, c}⟩ = |{a, c}⟩ (cancellation of {b}) but in the
U′-basis, it is |{a′}⟩+ |{c′}⟩ = |{a′, c′}⟩ and |{a′, c′}⟩ = |{a, c}⟩.

In the Dirac notation of QM, there is also the bra ⟨v′| so that the bra-ket or bracket
⟨v′|v⟩ is the inner product of v′ and v. But there are no inner products in vector spaces
over finite fields such as Z2, so we have to look at the interpretation of the ⟨v′|v⟩ in QM.
The inner product of normalized vectors in QM is interpreted as the overlap of the two
states so that ⟨v′|v⟩ = 0 means no overlap, i.e., the vectors are orthogonal, and ⟨v′|v⟩ = 1
means complete overlap. In Zn

2 or ℘(U), there is a natural notion of overlap, namely the
cardinality of the intersection of two sets which takes values outside of Z2 in the natural
numbers N.

For two zero-one column vectors w, v ∈ Zn
2 , we can form the scalar product wt · v =

∑n
i=1 wivi (wt is the transpose of w into a row vector) taking values in N which computes the

overlap of ones in the two vectors. Since the kets represent the abstract vector regardless of
basis, the computation of the overlap as the size of the intersection of the two sets expressed
in the same basis, we will make the bras basis-dependent as indicated by the subscript ⟨T|U
so that for S, T ⊆ U, the bra-ket or bracket in QM/Sets is:

⟨T|US⟩ = |T ∩ S|.

For basis vectors ui ∈ U, ⟨{ui}|S⟩ = |{ui} ∩ S| = χS(ui),where χS : U → {0, 1}
is the characteristic function for the subset S ⊆ U such that χS(ui) = 1 if ui ∈ S and
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0 otherwise. The ket-bra |{ui}⟩⟨{ui}|U is an operator ℘(U) → ℘(U) that takes |S⟩ to
|{ui}⟩⟨{ui}|US⟩ = χS(ui)|{ui}⟩. A projection operator is an operator P that is idempotent in
the sense the P2 = P. Hence |{ui}⟩⟨{ui}|U is a projection operator:

|{ui}⟩⟨{ui}|U{ui}⟩⟨{ui}|U = |{ui}⟩⟨{ui}|U

since ⟨{ui}|U{ui}⟩ = χ{ui}(ui) = 1. The sum of these projections over the basis is the
identity operator I : ℘(U) → ℘(U) since:

∑n
i=1|{ui}⟩⟨{ui}|US⟩ = ∑n

i=1 χS(ui)|{ui}⟩ = ∑ui∈S|{ui}⟩ = |S⟩.

Hence any bracket ⟨T|US⟩ can be resolved by inserting the identity operator:

∑n
i=1⟨T|U{ui}⟩⟨{ui}|US⟩ = ∑n

i=1 χT(ui)χS(ui) = |T ∩ S| = ⟨T|US⟩.

In QM, the magnitude or norm of a vector |ψ⟩ is often denoted as |ψ| =
√
⟨ψ|ψ⟩.

However, that conflicts with our notation |S| for cardinality, so we will use ∥ψ∥ =
√
⟨ψ|ψ⟩ for

the norm in QM; the corresponding norm in QM/Sets is:

∥S∥U =
√
⟨S|US⟩ =

√
|S|

which takes values in the reals R.
In QM, a vector can be normalized at any time; in QM/Sets, the only normalization is

in the calculation of probabilities. In QM, when a non-normalized state |ψ⟩ is measured in
the measurement basis of {|vi⟩}n

i=1, the probability of getting the outcome |vi⟩ is:

Pr(vi|ψ) =
∥⟨vi|ψ⟩∥2

∥⟨ψ|ψ⟩∥2 .

Hence the corresponding formula in QM/Sets is:

Pr(ui|S) =
∥⟨ui|US⟩∥2

∥⟨S|US⟩∥2 =
⟨ui|US⟩
⟨S|US⟩ =

|{ui} ∩ S|
|S| =

{
1/|S| if ui ∈ S

0 if ui /∈ S

which is the conditional probability of outcome ui given the event S when the outcomes
are equiprobable.

3. Results
3.1. Numerical Attributes as Observables

A (real-valued) numerical attribute (or observable) on U = {u1, . . . , un} is a function f :
U → R from U to the real numbers. It assigns a real number to each element of U. If it takes
only the values of 0 and 1, then it is an attribute and is represented in the special notation
as a characteristic function χS : U → 2 = {0, 1} where S = {ui ∈ U|χS(ui) = 1} = χ−1

S (1),
the set of elements taking on the value of 1. The set of real numbers that have an element
of U mapped to them by f is the image or spectrum of f , denoted f (U) ⊆ R. Each number
r ∈ f (U) in the spectrum of f is a definite-value or eigenvalue of f . The inverse image subset
f−1(r) ⊆ U of U is the set of elements of U mapped to an eigenvalue r, i.e., f−1(r) =
{ui ∈ U| f (ui) = r}. That inverse image generates a subspace ℘

(
f−1(r

)
) ⊆ ℘(U) called the

eigenspace associated with the eigenvalue r. Thus, if f : {a, b, c} → R had f (a) = f (b) = 3 and
f (c) = −5, then f−1(3) = {a, b} and ℘

(
f−1(3)

)
= {∅, {a}, {b}, {a, b}} is the eigenspace

associated with the eigenvalue of 3. The non-zero vectors in the eigenspace for r are also
called definite-states or eigenstates of f . All the non-empty subsets in ℘

(
f−1(r)

)
are constant

sets of f , i.e., subsets of U on which f has the same value of r.
A partition π on U is a set of non-empty subsets π = {B1, . . . , Bm}, called the blocks

of π, such that the blocks are disjoint, i.e., Bj ∩ Bk = ∅ for j ̸= k, and their union is all of
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U, i.e., ∪m
j=1Bj = U. Each numerical attribute f : U → R determines a partition f−1 ={

f−1(r)|r ∈ f (U)
}

on U called the inverse-image of f . Each block f−1(r) of the partition
f−1 generates an eigenspace ℘

(
f−1(r)

)
. The set of eigenspaces of f ,

{
℘
(

f−1(r)
)}

r∈ f (U)

form a direct-sum decomposition (DSD) of ℘(U) in the sense that every non-zero vector (i.e.,
every non-empty subset of U) can be uniquely represented as the sum of non-zero vectors
from the subspaces in the DSD. For instance, in the example f : {a, b, c} → R, the vector
or subset {a, c} is the sum of {a} ∈ ℘

(
f−1(3)

)
and {c} ∈ ℘

(
f−1(−5)

)
. A DSD of a vector

space is the vector space version of a partition on a set.
In QM, every observable or Hermitian operator F has a set of eigenspaces Vλ that

form a direct-sum decomposition of the Hilbert space V. In QM/Sets, the eigenspace
for an eigenvalue r of a numerical attribute f : U → R is ℘

(
f−1(r)

)
, which also form

a DSD of ℘(U). In QM, different eigenspaces Vλ and Vλ′ for λ ̸= λ′ are ‘disjoint’ is
the sense that their intersection is the zero space. Similarly, for eigenvalues r ̸= r′, the
intersection of ℘

(
f−1(r)

)
and ℘

(
f−1(r′)

)
is only the empty set subspace {∅}. In QM, the

projections Pλ : V → V to the eigenspaces Vλ are complete in the sense that the sum of the
projections is the identity operator: ∑λ Pλ = I : V → V. In QM/Sets, the corresponding
projections are: f−1(r) ∩ () : ℘(U) → ℘(U) and the union of the images on any S ∈ ℘(U)
is: ∪r∈ f (U)

(
f−1(r) ∩ S

)
= S as illustrated in Figure 1.

Figure 1. Subset S expressed as union over r ∈ f (U) of disjoint intersections f−1(r) ∩ S.

Since the sets in the union are disjoint, the union translates into a sum in the vector
space ℘(U) [where the sum is S + T = S ∪ T − (S ∩ T)], so we have: ∑r∈ f (U) f−1(r)∩ () =
I : ℘(U) → ℘(U).

To approach the probability calculus for numerical attributes f : U → R, the QM
equation: ∥ψ∥2 = ⟨ψ|ψ⟩ = ∑λ∥Pλ(ψ)∥2 is expressed in QM/Sets as: ∥S∥2

U = ⟨S|US⟩ =

∑r∈ f (U)

∥∥ f−1(r) ∩ S
∥∥2

U = ∑r∈ f (U)

∣∣ f−1(r) ∩ S
∣∣ = |S|. Then we normalize to have proba-

bilities that sum to one: ∑λ
∥Pλ(ψ)∥2

∥ψ∥2 = 1 for ψ ̸= 0 in QM, and ∑r∈ f (U)
∥ f−1(r)∩S∥2

U
∥S∥2

U
=

∑r
| f−1(r)∩S|

|S| = 1 for S ̸= ∅ in QM/Sets. Then, when measuring ψ by the observable F, the
probability of getting the eigenvalue λ is:

Pr(λ|ψ) = ∥Pλ(ψ)∥2

∥ψ∥2
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and the corresponding probability for getting the eigenvalue r of the numerical attribute f
when conditioned by S is:

Pr(r|S) =
∥∥ f−1(r) ∩ S

∥∥2
U

∥S∥2
U

=

∣∣ f−1(r) ∩ S
∣∣

|S| .

These probabilities are for equiprobable outcomes; the machinery for the general case
is developed below.

Table 2 starts building the connections or translation dictionary between the pedagogi-
cal model of QM/Sets and QM (where {|ui⟩}n

i=1 is an orthonormal (ON) basis for V and α∗i
is the complex conjugate of αi).

Table 2. Initial connections between QM/Sets and QM.

QM/Sets QM

⟨{ui}|S⟩ = χS(ui) |ψ⟩ = ∑i αi|ui⟩; ⟨ui|ψ⟩ = αi

∑n
i=1 |{ui}⟩⟨{ui}|US⟩ = ∑n

i=1 χS(ui)|{ui}⟩ = |S⟩ ∑n
i=1|ui⟩⟨ui|ψ⟩ = |ψ⟩

⟨T|US⟩ = ∑n
i=1 χT(ui)χS(ui) = |T ∩ S| ⟨ψ|ψ′⟩ = ∑n

i=1 α∗i α′i

∥S∥U =
√
⟨S|US⟩ =

√
|S| ∥ψ∥ =

√
⟨ψ|ψ⟩

Pr(ui|S) =
∥⟨ui |U S⟩∥2

∥⟨S|U S⟩∥2 = |{ui}∩S|
|S| Pr(vi|ψ) =

∥⟨vi |ψ⟩∥2

∥⟨ψ|ψ⟩∥2

Numerical attribute f : U → R Hermitian F : V → V

r ̸= r′; ℘
(

f−1(r)
)
∩ ℘

(
f−1(r′)

)
= {∅} λ ̸= λ′; Vλ ∩ Vλ′ = {0}

∑r∈ f (U) f−1(r) ∩ () = I : ℘(U) → ℘(U) ∑λ PVλ
= I : V → V

∑r∈ f (U)
∥ f −1(r)∩S∥2

U

∥S∥2
U

= ∑r
| f −1(r)∩S|

|S| = 1 ∑λ
∥Pλ(ψ)∥2

∥ψ∥2 = 1

Pr(r|S) = ∥ f −1(r)∩S∥2
U

∥S∥2
U

=
| f −1(r)∩S|

|S| Pr(λ|ψ) = ∥Pλ(ψ)∥2

∥ψ∥2

3.2. The Yoga of Linearization

We have been implicitly using a bit of mathematical folklore that we will call the Yoga
of Linearization. It connects set concepts with the corresponding vector space concepts. The
idea is to first look at U as just a set to which a set concept may be applied (e.g., the notion
of subset, numerical attribute, or partition on a set). Then take U to be a basis set of a vector
space V (over a given field k) and the corresponding vector space notion is the notion
generated by the set concept applied to the basis set. For instance, the notion of a subset S
of a basis set generates the notion of a subspace [S] generated by S, so the Yoga connects
the notion of a subset S ⊆ U and the notion of a subspace [S] ⊆ V. If we apply a set partition
to a basis set U, then each block in the partition of U generates a subspace, and the set of
subspaces generated by the blocks of the partition form a direct-sum decomposition of the
vector space, so the Yoga connects the set notion of a partition to the vector space notion
of a DSD. A numerical attribute on a set f : U → R defines a linear operator F : V → V
(assuming V is a vector space over a field containing the reals), which on the basis set U
is given by Fui = f (ui)ui where the ui ∈ U are basis vectors and the definition of a linear
operator on a basis set extends linearly to the whole space. Thus, the Yoga connects a
real-valued numerical attribute with a linear operator on a vector space over a field containing
the reals, e.g., the complex numbers, where the operator has real eigenvalues r ∈ f (U).

If the vector space such as V = Zn
2 is over a field Z2 not containing the reals, then

the inverse image partition f−1 =
{

f−1(r)
}

r∈ f (U) defines a DSD in the vector space,
which may have many of the main properties of a linear operator (see next section). For a
numerical attribute f : U → R, let “ f ↾ S = rS” stand for the statement that f restricted to
a subset S has the constant value r on that subset. The Yoga connects that equation to the
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eigenvalue/eigenvector equation Fui = rui. Then constant sets of a numerical attribute
f : U → R corresponds to eigenvectors of the linear operator F : V → V defined on the
basis set U by Fui = f (ui)ui and the constant value r on a constant set corresponds to the
eigenvalue of the eigenvector. When the numerical attribute is a characteristic function
χS : U → {0, 1}, then the corresponding linear operator defined by P[S]ui = χS(ui)ui is the
projection operator P[S] onto the subspace [S] generated by S = χ−1

S (1) ⊆ U. In the general
case of f : U → R defining F : V → V, there is a ‘spectral decomposition’ of f in terms of
the characteristic functions for

{
f−1(r)

}
r∈ f (U), i.e., f = ∑r∈ f (U) rχ f−1(r), that corresponds

to the usual spectral decomposition of the linear operator F as F = ∑r∈ f (U) rP[ f−1(r)].
In this manner, the Yoga builds up a translation dictionary of set concepts and the

corresponding vector space concepts, as in Table 3.

Table 3. Set concepts and corresponding vector space concepts.

Set Concepts of QM/Sets Vector-Space Concepts of QM

Subset S ⊆ U Subspace [S] ⊆ V

Cardinality |S| of S Dimension of [S]

Numerical attribute f : U → R Obs. F : V → V defined Fui = f (ui)ui

Direct sum U = ⊎r∈ f (U) f−1(r) Direct sum V = ⊕r∈ f (U)

[
f−1(r)

]
Partition

{
f−1(r)

}
r∈ f (U) DSD

{[
f−1(r)

]}
r∈ f (U)

f ↾ S = rS Fui = rui

Constant set S of f Eigenvector ui of F

Value r on constant set S Eigenvalue r of eigenvector ui

Set of r-constant sets ℘
(

f−1(r)
)

Eigenspace Vr =
[

f−1(r)
]

of r-eigenvectors

Characteristic fcn. χS : U → {0, 1} Projection operator P[S]u = χS(u)u

Spectral Decomp. f = ∑r∈ f (U) rχ f −1(r) Spectral Decomp. F = ∑r∈ f (U) rP[ f −1(r)]

Our simplified model of QM is based on set notions and, where possible, the set
notions connected by the Yoga to the vector spaces ℘(U) over Z2. When the vector space V
is a finite-dimensional Hilbert vector space over C, then the Yoga shows how the machinery
in the simplified model corresponds to the full-blown mathematical machinery of QM [1].
But when V = Zn

2 , then only a characteristic function χS : U → {0, 1} defines a linear
operator P[S] : Zn

2 → Zn
2 , but a general numerical attribute f : U → R still defines a partition

f−1 on U and the DSD
{
℘
(

f−1(r)
)}

r∈ f (U) of Zn
2 . The same holds for any other basis set for

Zn
2 . For instance, for the U′-basis of Table 1, the numerical attribute g : U′ → R given by

g(a′) = g(c′) = 1 and g(b′) = 2, induces the partition {{a′, c′}, {b′}} on U′, and the DSD:{{
∅,
{

a′
}

,
{

c′
}

,
{

a′, c′
}}

,
{

∅,
{

b′
}}}

= {{∅, {a, b}, {b, c}, {a, c}}, {∅, {a, b, c}}}

where the DSD expressed in terms of the U-basis is not generated by a partition on U.
As we will see in the next section, for many purposes, the important notion for an

observable is not the Hermitian linear operator itself but its DSD of eigenspaces.

3.3. Commutativity and Conjugacy of Observables

In full-blown QM, the observables are represented by Hermitian linear operators
F : V → V on a Hilbert space over the complex numbers C. One of the features of QM in
contrast with classical mechanics is that these operators for different observables might
commute, not commute, or even be conjugate like position and momentum. A linear
operator is determined by its definition on a basis set; each basis vector is assigned a
number in the base field, and in the case of Hermitian operators, those assigned values
are always real numbers R ⊆ C. But in our pedagogical model QM/Sets, the only linear
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operators Ŝ : ℘(U) → ℘(U) are those that assign an element of the field Z2 = {0, 1} to the
elements of U, i.e., the characteristic functions χS : U → Z2 = {0, 1}.

Hence, the question arises: how can we represent commutativity, non-commutativity,
and conjugacy in QM/Sets for numerical attributes f : U → R? The answer is that each
Hermitian operator F : V → V in QM determines the DSD of its eigenspaces, and the
commutativity properties depend solely on the DSDs.

The first step in working this out is to notice that the notion of a subspace or a
DSD of subspaces is basis-independent. In the previous example of f : U → R, we had
the eigenspace ℘

(
f−1(3)

)
= {∅, {a}, {b}, {a, b}}. But that subspace can be equally well

expressed in the U′-basis as {∅, {b′, c′}, {a′, b′, c′}, {a′}}. Since a DSD is a certain type of
collection of subspaces, it is also a basis-independent notion–even though it may be first
defined using some particular basis. The point is that the commutativity properties can be
defined in QM and in QM/Sets solely in terms of the DSDs of eigenspaces.

Suppose we have two different basis sets, U and U′ for Zn
2 and two numerical at-

tributes, f : U → R and g : U′ → R, which then define two DSDs
{
℘
(

f−1(r)
)}

r∈ f (U) and{
℘
(

g−1(s)
)}

s∈g(U′). For two partitions π = {B1, . . . , Bm} and σ = {C1, . . . , Cm′} on the
same set U, their join π ∨ σ is the partition whose blocks are the non-empty intersections
Bj ∩ Cj′ of blocks from π and σ. Since DSDs can be seen as the vector space versions of par-
titions, we would like to perform a join-like operation on two DSDs. Since a subspace can
be represented on any basis, we need to represent the subspaces of two DSDs on the same
basis before we can determine the intersection of the subspaces that serve as the blocks in
the vector space partitions. Hence, instead of

{
℘
(

f−1(r)
)}

r∈ f (U) and
{
℘
(

g−1(s)
)}

s∈g(U′),

we abstractly consider two DSDs
{

Wj
}m

j=1 and
{

Vj′
}m′

j′=1
(which could be the DSDs of

eigenspaces of two observables in QM), and then perform a join-like operation to get the
set
{

Wj ∩ Vj′ |Wj ∩ Vj′ ̸= {0}; j = 1, . . . , m′; j′ = 1, . . . , m′
}

of non-zero subspaces (using the
fact that the intersection of subspaces is a subspace). In terms of the original numerical
attributes f : U → R and g : U′ → R, the non-zero vectors in an intersection Wj ∩ Vj′ , e.g.,
in an intersection ℘

(
f−1(r)

)
∩ ℘

(
g−1(s)

)
(with subsets represented in the same basis), are

eigenvectors (or constant sets) of both f and g, which are called “simultaneous eigenvec-
tors” in QM. Then we take the sums of all those simultaneous eigenvectors to generate a
subspace SE of the space Zn

2 . The commutativity properties of the observables in QM and
the numerical attributes in QM/Sets can then be defined solely in terms of the DSDs of
eigenspaces in both cases:

{
Wj
}m

j=1 and
{

Vj′
}m′

j′=1
commute if SE is the whole space

(Vin QM or Zn
2 in QM/Sets), and{

Wj
}m

j=1 and
{

Vj′
}m′

j′=1
are conjugate if SE is the zero space

(in QM {0} and in QM/Sets {∅}).

The join-like operation of taking all the non-zero subspaces Wj ∩ Vj′ only creates
another DSD in the commutative case when SE = V or Zn

2 , and it is only then that the
operation is properly called the join of DSDs. As Hermann Weyl put it when referring
to the vector space partitions or DSDs as “gratings”, the “combination of two gratings
presupposes commutability. . . .” [8] (p. 257).

Commutativity example: Any two numerical attributes defined on the same basis
set will commute, but that is not necessary. Let f : {a, b, c} → R have f (a) = 1 and
f (b) = f (c) = 0. On the U∗-basis of Table 1, let g : U∗ → R be defined by g(a∗) = 2,
g(b∗) = 3, and g(c∗) = 4. Then the DSD defined by f is

{
℘
(

f−1(1)
)
,℘
(

f−1(0)
)}

=
{{∅, {a}}, {∅, {b}, {c}, {b, c}}}, and the DSD defined by g is

{
℘
(

g−1(2)
)
,℘
(

g−1(3)
)
,

℘
(

g−1(4
)}

= {{∅, {a∗}}, {∅, {b∗}}, {∅, {c∗}}}. To consider the intersections of the sub-
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spaces in the DSDs, we need to express them both on the same basis. Taking the U-basis as
the ‘computational basis’, we have the two DSDs as:

{{∅, {a}}, {∅, {b}, {c}, {b, c}}} for f ,
and

{{∅, {a}}, {∅, {b}}, {∅, {b, c}}} for g.

Then taking all the possible intersections between the subspaces in the two DSDs, we see
that the simultaneous eigenvectors are {a}, {b}, and {b, c}. These simultaneous eigenvec-
tors form a basis, so they generate by their sums all the vectors or subsets in the whole
space ℘(U) so that those two DSDs commute.

Conjugacy example: Take f : U → R as f (a) = 1, f (b) = 2, and f (c) = 3, and
take g : U′ → R as g(a′) = 4, g(b′) = 5, and g(c′) = 6 (U′ is as in Table 1). Then the
DSD determined by f is {{∅, {a}}, {∅, {b}}, {∅, {c}}}, and the DSD determined by g is
in the U′-basis, {{∅, {a′}}, {∅, {b′}}, {∅, {c′}}} which translated into the U-basis, gives
the following two DSDs:

{{∅, {a}}, {∅, {b}}, {∅, {c}}} for f ,
and

{{∅, {a, b}}, {∅, {a, b, c}}, {∅, {b, c}}} for g.

In this case, there are no simultaneous eigenvectors, so SE = {∅}, and thus those two
DSDs are conjugate. Recalling that being a definite state (i.e., an eigenstate) or an indefinite
state (i.e., a superposition state) depends on the basis, the key feature that determined
conjugacy in this case is that all the definite states or eigenstates in one basis were indefinite
states or superpositions in the other basis (see Table 1) and both numerical attributes were
assigned different numbers to different eigenstates. Hence, like the conjugate observables
of position and momentum in QM, there is no non-zero vector that is a definite state or
eigenstate of both numerical attributes. If any vector or state is an eigenstate or definite
state of one numerical attribute, then it has to be a superposition or indefinite state for the
other numerical attribute.

Since in all cases, the DSDs are determined by the numerical attributes, we may also
say that those numerical attributes are commutative or conjugate as the case may be.

The join of the two inverse-image partitions f−1 and g−1 always exist if they are
compatible in the sense of being defined on the same universe set. That is the QM/Sets
version of commuting observables in QM. The QM/Set version of Dirac’s complete set of
commuting observables (CSCO) [9] is easily constructed.

QM/Sets: Let f , g, . . . , h : U → R be numerical attributes on U. They are said to be a
complete Set of compatible attributes (CSCA) if the join of their (inverse-image) partitions is
a partition with all subsets of cardinality one. Then each element ui ∈ U can be uniquely
characterized by the ordered set of values f (ui), g(ui), . . . , h(ui).

QM: Let F, G, . . . , H : V → V be commuting observables on V. They are said to be
a complete set of commuting observables (CSCO) if the join of their vector space partitions
(DSDs) is a DSD with all subspaces of dimension one. Then each simultaneous eigenvector
can be uniquely characterized by the ordered set of their eigenvalues. If U = {u1, . . . , un}
is a basis of simultaneous eigenvectors and f : U → R, g : U → R,. . . , h : U → R are the
eigenvalue functions assigning the eigenvalues to the simultaneous eigenvectors of the
observables F, G, . . . , H respectively, then the ordered set of eigenvalues that characterize
the eigenvectors ui ∈ U is f (ui), g(ui), . . . , h(ui).

This is a paradigm example of a translation or correlation dictionary between QM/Sets
and full QM.

3.4. The Lattice of Partitions

Given a set U (|U| ≥ 2), recall that a partition π on U = {u1, . . . , un} is a set of
non-empty subsets π = {B1, . . . , Bm} that are pairwise disjoint and jointly exhaustive of
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U. It is interesting to note that a partition can be given a DSD-type definition as a set of
non-empty subsets π = {B1, . . . , Bm} so that any non-empty subset S ⊆ U can be uniquely
represented as the union of subsets of the blocks B1, . . . , Bm. If the blocks were not disjoint,
say S = Bj ∩ Bk ̸= ∅, then that non-empty subset S would have two representations as
a subset of the blocks, so uniqueness fails. And if the blocks were not jointly exhaustive,
then the non-empty subset S = U − ∪m

j=1Bj would have no representation as a union of
subsets of the blocks. The unique representation of S is given by the union of the projection
operators Bj ∩ () : ℘(U) → ℘(U), i.e., ∪m

j=1
(

Bj ∩ S
)
= S. Thus, a set partition is the set

version of a vector space DSD. Moreover, when sets are treated as vectors in ℘(U), then{
℘
(

Bj
)}m

j=1 is a DSD of the vector space ℘(U) if {B1, . . . , Bm} is a partition of U.
An indistinction or indit of π is an ordered pair of elements (ui, uk) that in the same

block of π. The set of all indits is the indit set indit(π) = ∪m
j=1
(

Bj × Bj
)
⊆ U × U, which is

the equivalence relation associated with the partition π. A distinction or dit of π is an ordered
pair of elements (ui, uk) in different blocks of π, so the set of all dits, the ditset dit(π), is just
the complement of the equivalence relation indit(π) in U × U.

Let Π(U) be the set of all partitions on U. There is a partial order on Π(U) given by
the inclusion of ditsets. That is, for partitions π = {B1, . . . , Bm} and σ = {C1, . . . , Cm′}, the
partial order is: σ ≾ π if dit(σ) ⊆ dit(π). This is also the equivalent refinement partial
ordering where π refines σ if for every block Bj ∈ π, there is a block Cj′ ∈ σ such that
Bj ⊆ Cj′ . In the partial order on Π(U), there is a maximum or top partition, which is the
discrete partition 1U = {{ui}}n

i=1 where all the blocks are the singletons of the elements
ui ∈ U. And there is a minimum or bottom partition which is the indiscrete partition,
0U = {U} where there is only one block, which is all of U.

For π, σ ∈ Π(U), join operation gives the least upper bound on π and σ in the
refinement ordering. There is also a meet or greatest lower bound of two partitions π
and σ. When two blocks Bj ∈ π and Cj′ ∈ σ have a non-empty intersection, they ‘blob’
together like two touching drops of water. Eventually, blobs will form of blocks from both
partitions until they intersect no other blocks of the other partition. Those minimal unions
of π-blocks and σ-blocks are the blocks of the meet π ∧ σ. The meet could also be defined as
the partition formed from the equivalence relation that is the intersection of all equivalence
relations containing the indit sets of π and σ. The indiscrete partition 0U is nicknamed
“The Blob” since like in the Hollywood movie of the same name, it absorbs everything it
meets: 0U ∧ π = 0U .

The join and meet operations on partitions were known in the nineteenth century (e.g.,
Richard Dedekind and Ernst Schröder) and they turn Π(U) into a lattice (a partial order
with joins and meets). The lattice of partitions on U = {a, b, c} is given in Figure 2. The
lines between partitions indicate refinement with no partitions in between.

Figure 2. Lattice of partitions on U = {a, b, c}.

3.5. Superposition Subsets and Density Matrices

Given a basis U for a vector space V, any vector has the form of a linear combination
of the basis vectors ∑n

i=1 αiui where the αi are scalars from the field, e.g., C in QM and Z2 in
QM/Sets. The support of the vector is the set of basis vectors with non-zero coefficients αi.
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We can think of taking the support of a vector as ‘skeletionizing’ it to yield a set S ⊆ U of
basis vectors. If the support is a singleton, then the vector is a definite state or an eigenstate
(perhaps not normalized), and if the support is a multiple-element subset of U, then the
vector is a superposition or indefinite state. Hence, we need to mathematically distinguish
between two types of subsets of U, the ordinary ‘discrete subsets’ S ⊆ U where the elements
are perfectly distinct from one another, and the ‘superposition subsets’, denoted ΣS, where
the elements are blobbed or blurred together in an indefinite state, which represents the
support of a superposition state in QM. An event in classical finite probability theory is a
subset of the outcome space U. Then superposition subsets can be viewed as an extension
of probability theory to include superposition events in addition to the usual discrete events
where the outcomes are all distinct, i.e., not blobbed or blurred together.

One way to mathematically distinguish between these two types of subsets or events
is to move from representing subsets as one-dimensional vectors to using two-dimensional
matrices. We start by using incidence matrices of binary relations. A subset R ⊆ U × U is a
binary relation on U, and it can be represented by the n × n incidence matrix In(R), where
each entry in the matrix is In(R)ij = 1 if

(
ui, uj

)
∈ R and otherwise 0. Then for each subset

S ⊆ U, we use the diagonal ∆S = {(ui, ui)|ui ∈ S} as the binary relation to represent the
discrete subset S; we use the Cartesian product S × S as the binary relation to represent
the superposition subset ΣS. Then for U = {a, b, c}, the subset S = {a, c} gives the two
incidence matrices:

In(∆S) =

1 0 0
0 0 0
0 0 1

 and In(S × S) =

1 0 1
0 0 0
1 0 1

.

The matrix In(∆S) is always a diagonal matrix and represents the discrete event S ⊆ U, and
In(S × S) has the same diagonal but also has non-zero off-diagonal elements to indicate
which elements of U are blobbed, blurred, or cohered together in the superposition subset
ΣS. In the case of a singleton S = {ui}, then the superposition set is the same as the
discrete set since there are no multiple elements to blob together in an indefinite state, and,
accordingly, ∆S = S × S in the case of singletons.

The inner product of a 1 × n row vector and a n × 1 column vector is a 1 × 1 scalar
number, but the outer product (reverse order) of a n × 1 column vector and a 1 × n row
vector is a n × n matrix. A better way to construct the matrix representation In(S × S) of
the superposition set ΣS is the outer product of the column vector representing S (with
column entries χS(ui)) and its transpose row vector. For instance, for S = {a, c} in the
example, 1

0
1

[1 0 1
]
=

1 0 1
0 0 0
1 0 1

 = In(S × S).

If the column vector representing S is written as a ‘ket’ |S⟩ and its transpose as the ‘bra’ ⟨S|,
then |S⟩⟨S| = In(S × S).

To bring density matrices from QM into the pedagogical model, we allow the matrix
entries to be real numbers. Then by dividing |S⟩⟨S| = In(S × S) through by its trace (=sum
of the diagonal elements), we arrive at the density matrix representation ρ(ΣS) of ΣS which
in the example is:

ρ(ΣS) =
In(S × S)

tr[In(S × S)]
=

 1
2 0 1

2
0 0 0
1
2 0 1

2

.

Moreover, if we normalize |S⟩ as |s⟩ = 1√
|S|
|S⟩, then we obtain the important outer-product

formula for the density matrix of superposition sets:

ρ(ΣS) = |s⟩⟨s|.
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3.6. Probabilities and the Born Rule

The diagonal entries in a density matrix are always non-negative and sum to one so
they should be seen as probabilities. Let the universe set U = {u1, . . . , un} have the (always
positive) point probabilities p = (p1, . . . , pn). For a partition π = {B1, . . . , Bm} on U, the
non-singleton blocks are always viewed as superposition sets so we can construct their
density matrix (over the reals) ρ

(
ΣBj

)
=
∣∣bj
〉〈

bj
∣∣ from the normalized column vector

∣∣bj
〉

whose ith entry is the ‘amplitude’
√

pi/ Pr
(

Bj
)

if ui ∈ Bj and 0 otherwise.
There has been some controversy in QM about the origin of the Born rule; see [10]

and the references therein. Does it follow from other assumptions of QM, or must it be an
extra postulate? We approach that question from a different and simpler angle by asking:
What is the simplest mathematical extension of classical probability theory in which the
Born rule appears? We have seen in QM/Sets that: Pr(ui|S) = |{ui}∩S|

|S| in the case of
equal probabilities. In the general case of point probabilities, the conditional probability is
Pr(ui|S) =

pi
Pr(S)χS(ui). Taking S = Bj, we have: ρ(ΣS) = |s⟩⟨s| where the ith entry of |s⟩

is ⟨ui|s⟩ =
√

pi
Pr(S)χS(ui) and then we immediately have:

⟨ui|s⟩2 = pi
Pr(S)χS(ui) = Pr(ui|S)

The Born rule.

The square in the Born rule comes from taking the representation of a superposition
set as the two-dimensional matrix ρ(ΣS) obtained as the outer product |s⟩⟨s| of the one-
dimensional ‘amplitude’ vector |s⟩ with its (conjugate) transpose ⟨s|. Thus, |s⟩ corresponds
to the state vector |ψ⟩ of amplitudes in QM such that the density matrix representation of
that state vector is: ρ(ψ) = |ψ⟩⟨ψ|.

It might be said that this does not “account” for the Born rule since the square roots
of the probabilities were built into the definition of |s⟩. But if we start with a real density
matrix ρ that represents a superposition and is thus “pure” (defined below) as opposed to
“mixed”, then it has one eigenvalue of 1 with the other eigenvalues being zeros, and the
normalized eigenvector |s⟩ associated with that eigenvalue 1 is such that ρ = |s⟩⟨s| by the
spectral decomposition of ρ as a Hermitian matrix. This, of course, only accounts for the
origin of the math of the Born rule in superposition; the interpretation of the math in terms
of probabilities is empirical.

Tracing the origin of the Born rule back to the simplest example in QM/Sets (enriched
with density matrices), we see that it arises out of superposition–which should be no
surprise since “superposition, with the attendant riddles of entanglement and reduction,
remain the central and generic interpretative problem of quantum theory” [11] (p. 27). The
thesis is that the Born rule is a feature of superposition. This is further corroborated by
considering the case in QM/sets where there is no superposition, namely, the mixed state
represented by the discrete partition 1U , which corresponds in full QM to the classical
mixture of complete decomposed states (diagonal density matrix) where each state has
only a probability associated with it, e.g., “the statistical mixture describing the state of a
classical dice before the outcome of the throw” [12] (p. 176). Then we are back in classical
probability theory with no superposition and thus no Born rule.

Returning to ρ
(
ΣBj

)
ik =

√
pi pk

Pr(Bj)
if ui, uk ∈ Bj, and otherwise 0, the density matrix ρ(π)

for the partition π is the probabilistic sum of the ρ
(
ΣBj

)
for the probabilities Pr

(
Bj
)
=

∑ui∈Bj
pi:

ρ(π) = ∑m
j=1 Pr

(
Bj
)
ρ
(
ΣBj

)
= ∑m

j=1 Pr
(

Bj
)∣∣bj

〉〈
bj
∣∣.

Then ρ(π)ik =
√

pi pk if (ui, uk) ∈ indit(π), and 0 otherwise. Thus, the non-zero entries of
ρ(π) represent the equivalence relation indit(π) and the zero entries represent the ditset
dit(π). Those non-zero off-diagonal entries represent the superposition of the correspond-
ing diagonal entries and hence “the off-diagonal terms of a density matrix, . . . are often
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called quantum coherences because they are responsible for the interference effects typical of
quantum mechanics that are absent in classical dynamics”. [12] (p. 177).

As in QM, in QM/Sets we say that a density matrix ρ is a pure state if it is idempotent,
i.e., ρ2 = ρ, and otherwise a mixed state. All the density matrices ρ

(
ΣBj

)
represent pure

states. The only partition as a whole in Π(U) that represents a pure state is the indiscrete
partition 0U ; all the other partitions π ∈ Π(U) represent mixed states.

For example, consider U = {a, b, c} with the point probabilities p = (pa, pb, pc) =(
1
2 , 1

3 , 1
6

)
. Then for the partition π = {B1, B2} = {{a, c}, {b}}, the superposition state {a, c}

is represented by the pure state density matrix |b1⟩⟨b1| where |b1⟩ =
[√

1/2
2/3 , 0,

√
1/6
2/3

]t
=[√

3
2 , 0, 1

2

]t
:

ρ(Σ{a, c}) = |b1⟩⟨b1| =


√

3
2
0
1
2

[√3
2

, 0,
1
2

]
=

 3
4 0

√
3

4
0 0 0√

3
4 0 1

4


and

ρ(π) = ∑2
j=1 Pr

(
Bj
)
ρ
(
ΣBj

)
=

2
3

 3
4 0

√
3

4
0 0 0√

3
4 0 1

4

+
1
3

0 0 0
0 1 0
0 0 0

 =


1
2 0 1

2
√

3
0 1

3 0
1

2
√

3
0 1

6

.

The indit set of π is indit(π) = {(a, a), (b, b), (c, c), (a, c), (c, a)}, which corresponds to the
five non-zero entries in ρ(π) and the ditset, is dit(π) = {(a, b), (b, a), (b, c), (c, b)}, which
corresponds to the four zeros in ρ(π).

In general for a partition π on U, the diagonal entries are the point probabilities, and
the eigenvalues of ρ(π) are the block probabilities and zeros, i.e., Pr(B1), . . . , Pr(Bm), 0, . . . , 0
(with n − m zeros).

3.7. Projective Measurement

By enriching the QM/Sets model with these density matrices over the reals, we can
deal with any point probabilities on U and have simplified models of a broader range of
results in QM such as projective measurement.

A measurement (always projective) in QM turns a pure state into a mixed state (or
a mixed state into a more mixed state) according to the Lüders mixture operation ([12]
(p. 279); [13]), and then one of the states in the mixture is realized according to their probabil-
ities. We take ρ(π) as the state being measured. The measurement observable is given by a
numerical attribute g : U → R whose inverse-image partition is g−1 =

{
g−1(s)

}
s∈g(U). The

n × n projection matrix Pg−1(s) is the diagonal matrix with the diagonal entries χg−1(s)(ui).
Then the density matrix ρ(π) being measured is pre- and post-multiplied by those projec-
tion matrices and then summed to give the post-measurement density matrix ρ̂(π):

ρ̂(π) = ∑s∈g(U) Pg−1(s)ρ(π)Pg−1(s)
Lüders mixture operation.

Continuing the example, let g(a) = 1 and g(b) = g(c) = 2 so that g−1 = {{a}, {b, c}}.
Then the Lüders calculation is:
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ρ̂(π) =

1 0 0
0 0 0
0 0 0




1
2 0 1

2
√

3
0 1

3 0
1

2
√

3
0 1

6


1 0 0

0 0 0
0 0 0

+

0 0 0
0 1 0
0 0 1




1
2 0 1

2
√

3
0 1

3 0
1

2
√

3
0 1

6


0 0 0

0 1 0
0 0 1


=

 1
2 0 0
0 1

3 0
0 0 1

6

 = ρ(1U).

In this case, the more-mixed state is the density matrix for the discrete partition 1U . This
measurement operation is illustrated in Figure 3 where the change from ρ(π) to ρ̂(π) is
indicated by the arrow from π to 1U . That movement from an indefinite state to a more
definite state, like the arrow in Figure 3 is the skeletal representation of the infamous
quantum jump in full QM.

Figure 3. Illustration of measurement (or state reduction) as a join operation.

It is easily shown in the general case, [1], that:

ρ̂(π) = ρ
(

π ∨ g−1
)

,

namely, that in QM/Sets, the projective measurement operation is just the partition join,
where one partition represents the state being measured, and the other partition represents
the measurement that is observable or numerical attribute.

3.8. A New Information Measure: Logical Entropy

There is a natural notion of ‘classical’ and quantum entropy based on the notion of
information as distinctions or distinguishings. As Charles Bennett, one of the founders
of quantum information theory put it, “information really is a very useful abstraction. It
is the notion of distinguishability abstracted away from what we are distinguishing, or
from the carrier of information. . . .” [14] (p. 155) Ordinary logic is based on the Boolean
logic of subsets (usually presented in the special case of propositional logic). The notion of
a subset is category-theoretically dual to the notion of a partition, and there is a dual logic
of partitions [2]. The quantitative version of Boole’s logic of subsets started as finite ‘logical’
probability theory [15] with equiprobable outcomes, i.e., Pr(S) = |S|

|U| , the normalized
number of elements in a subset or event. In the duality between subsets and partitions,
distinctions of a partition are dual to elements of a subset. Hence, the quantitative notion of a
partition is the normalized number of distinctions, and that is the first definition of logical
entropy [16,17] with equiprobable outcomes:

h(π) =
|dit(π)|
|U × U| =

∣∣U × U − Σj
(

Bj × Bj
)∣∣

|U × U| = 1 − ∑j

(∣∣Bj
∣∣

|U|

)2

= 1 − ∑j Pr
(

Bj
)2

where Pr
(

Bj
)
=

|Bj|
|U| in this equiprobable case. In the general case of point probabilities,

Pr
(

Bj
)
= ∑ui∈Bj

pi and
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h(π) = 1 − ∑j Pr
(

Bj
)2

= ∑j ̸=j′ Pr
(

Bj
)

Pr
(

Bj′
)

where the last equation holds since 1 =
(

∑m
j=1 Pr

(
Bj
))2

= ∑j Pr
(

Bj
)2

+∑j ̸=j′ Pr
(

Bj
)

Pr
(

Bj′
)

.
The logical entropy has a natural interpretation; just as Pr(S) = ∑ui∈S pi is the proba-

bility that one random draw from U will yield an element of S, so h(π) is the probability
that two random draws from U will yield a distinction of π. The information in a partition
π is reproduced in the density matrix ρ(π), and the logical entropy can thus be calculated
in terms of the density matrix:

h(π) = 1 − ∑j Pr
(

Bj
)2

= 1 − tr
[
ρ(π)2

]
= h(ρ(π))

i.e., as one minus the trace of the density matrix squared–which is the matrix version of
1 − ∑j Pr

(
Bj
)2.

For our purposes at hand, the important thing is that logical entropy measures
the increase in information-as-distinctions that takes place in projective measurement.
In general, the ditset of a join is just the union of the ditsets of two partitions, i.e.,
dit(π ∨ σ) = dit(π) ∪ dit(σ). Thus, projective measurement will, in general, increase
the logical entropy of the state being measured. And since logical entropy is based on
information-as-distinctions, and the density matrix represents distinctions as the zero en-
tries, the increase in logical entropy can be calculated directly from the new zero entries
in the post-measurement density matrix ρ̂(π) compared to pre-measurement ρ(π). The
“measuring measurement theorem” in both the simplified pedagogical model of QM/Sets
and in the full QM version is that the increase in logical entropy due to a projective mea-
surement is the sum of the (absolute) squares of the non-zero entries (i.e., coherences) in the
pre-measurement density matrix that are zeroed (i.e., decohered) in the post-measurement
density matrix.

In the example, the two logical entropies are:

h(ρ(π)) = 1 − tr
[
ρ(π)2

]
= 1 − tr




1
2 0 1

2
√

3
0 1

3 0
1

2
√

3
0 1

6


2 = 1 − tr


 1

3 0
√

3
9

0 1
9 0√

3
9 0 1

9


 =

1 − 5
9 = 4

9 and

h(ρ̂(π)) = 1 − tr[ρ̂(π)] = 1 − tr


 1

2 0 0
0 1

3 0
0 0 1

6

2 = 1 − tr

 1
4 0 0
0 1

9 0
0 0 1

36

 = 1 − 14
36 = 11

18 .

In the transition from ρ(π) to ρ̂(π), only two entries of 1
2
√

3
were zeroed. The sum of their

squares is 2
12 = 1

6 , and the increase in logical entropy is h(ρ̂(π))− h(ρ(π)) = 11
18 − 8

18 =
3

18 = 1
6 . These results in QM/Sets enriched with density matrices are the simplified version

of the corresponding results in full QM [16] (p. 83).

3.9. Quantum Processes

John von Neumann famously divided quantum processes into two types [18]. Type I
was the process of measurement (state reduction), which we have seen involves the making
of distinctions to transform an indefinite state into a more definite state. This is the quantum
notion of “becoming”. The Type II processes were the solutions to the time-dependent
Schrödinger equation. But how might the Type II processes be characterized using the
notion of information-as-distinctions? Since the Type I processes make distinctions, the
simplest description of Type II processes would be ones that do not make distinctions.
The extent to which two normalized states |ψ⟩and |ϕ⟩ in QM are distinguished is given
by their inner product ⟨ϕ|ψ⟩; if ⟨ϕ|ψ⟩ = 0, they are maximally distinct (i.e., orthogonal),
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and if ⟨ϕ|ψ⟩ = 1, they are not distinguished. Hence the natural description of Type II
processes is one that does not change the distinctness of quantum states, i.e., that preserve
the inner product, which are the unitary transformations. The connection to the solutions
of Schrödinger’s equation is given by Stone’s Theorem [19].

One of the controversial aspects of the Type I measurement process is its indeter-
minancy. The Lüder mixture operation turns a pure (or mixed) state being measured
into a mixed (or more mixed) state, and then one of the states in the mixture occurs,
according to its probability. The transformation from the pre-measurement state to the
post-measurement state is not unitary; it is a “state reduction”. It is known in mislead-
ing and archaic language as “collapse of the wave packet”. In the previous example in
QM/Sets, measurement turned the mixed state π = {{b}, {a, c}} into the more mixed state
1U = {{a}, {b}, {c}}. There is no indeterminacy in {b} ⇝ {b}; the indeterminacy is in
{a, c}⇝ {a} or {a, c}⇝ {c}.

This indeterminacy comes out clearly at the set level in the notion of a “choice func-
tion” [20] (p. 60). In axiomatic set theory, the axiom of choice states that for any set of
non-empty sets, there is a choice function for it. Given a set of non-empty sets, a choice
function takes each non-empty set to one of its elements. In QM, there is no indeterminacy
in the measurement of an eigenstate in the measurement basis; the result is that eigenstate
with probability one. Similarly, there is no indeterminacy in a choice function applied to a
singleton, e.g., {b} ⇝ {b}. The indeterminacy arises in set theory only when the choice
is made out of a multiple-element set, e.g., {a, c} ⇝ {c}. Similarly, the indeterminacy
arises in QM only when the measurement is made of a state that is a superposition (in the
measurement basis). Perhaps this is a case where the set version of a QM operation helps
to remove some of the ‘mystery’, e.g., in what is called the “collapse postulate”.

What is the QM/Sets version of a unitary transformation since there are no inner
products in vector spaces over finite fields like Z2? A unitary transformation can be
defined as a linear transformation that takes an orthonormal basis to an orthonormal basis.
Hence, the corresponding transformation for Zn

2 would be a linear transformation that
takes a basis set to a basis set–which is simply a non-singular linear transformation. For
instance, using the U-basis and the U′-basis of Table 1, the transformation defined by
{a} ⇝ {a′} = {a, b}, {b} ⇝ {b′} = {a, b, c}, and {c} ⇝ {c′} = {b, c} is a non-singular
linear transformation that takes the U-basis to the U′-basis. It might be noted that such
non-singular transformations do preserve the value of the brackets when we take into
account their basis-dependency. For instance, if the sets S, T ⊆ U of U-basis elements
transform into the corresponding sets S′, T′ ⊆ U′ in the U′-basis, then ⟨S|UT⟩ = ⟨S′|U′T′⟩.
Such non-singular linear transformations on Zn

2 are the QM/Sets version of the Type II
quantum processes.

The Type I processes of becoming were represented in a skeletal form on the left-hand
side, and the Type II processes of evolution can be applied to pure or mixed states on the
right-hand side in Figure 4. The arrow on the right-hand side pictures the transformation
of the mixed state {{b}, {a, c}} into the mixed state {{b′}, {a′, c′}} = {{a, b, c}, {a, c}}.

Figure 4. Anschaulich (intuitive) model of Type I and Type II processes using partition lattices.

The very important thing to notice about the Type II transformations is that they can
operate on pure states or mixed states involving superpositions like {a, c}; they do not
just operate on fully distinguished states like 1U ⇝ 1U′ like in classical physics. We see in
Figure 4 why there are two fundamental processes in QM: Type I (making an indefinite
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state more definite) and Type II (transforming a state to another state at the same level
of indefiniteness).

Some quantum philosophers have questioned how there can be two fundamental
processes in QM when there is only one in classical physics since “it seems unbelievable
that there is a fundamental distinction between “measurement” and “non-measurement”
processes. Somehow, the true fundamental theory should treat all processes in a consistent,
uniform fashion” [21] (p. 245). Our analysis gives an explanation why there is only
one fundamental process (transforming definite states into definite states) in classical
mechanics—in terms of the two processes in QM. When is the Type I process no longer
possible? There can be no transformation of indefinite to more definite if the state is already
fully definite, i.e., in a classical mixed state represented by 1U . Then only the Type II process
of transforming definite states into definite states is possible, as in classical mechanics.

As we will also see in the QM/Sets treatment of the double-slit experiment, that
aspect is the key to understanding how a particle in the superposition state |Slit 1⟩+ |Slit 2⟩
can evolve without first becoming the more-definite states of |Slit 1⟩ or |Slit 2⟩, i.e., can
evolve without going through Slit 1 or going through Slit 2. And it is that evolution of the
superposition that involves the characteristic interference effects.

3.10. The Double-Slit Experiment in QM/Sets

We focus on the double-slit experiment since, according to Feynman, “it contains
the only mystery” and it illustrates “the basic peculiarities of quantum mechanics” [22]
(Section 1-1).

To model the essential aspects (and only those aspects), we consider the setup in
Figure 5 where the three states in U = {a, b, c} stand for vertical positions. A particle is
sent from {b} towards a screen with two slits in it at positions {a} and {c}. The dynamics
are the aforementioned transformations of the U-basis into the U′-basis each time period.
One time period takes the particle to the screen, and the next time period takes the particle
to the wall.

Figure 5. Setup for the two-slit experiment model in QM/Sets.

In the first time period, the particle evolves {b}⇝ {b′} = {a, b, c}. One-third of the
time the particle hits the barrier between the slits; we are concerned with the alternative
case where the particle’s state is reduced to the superposition state |Slit 1⟩+ |Slit 2⟩, which
in the model is {a, c}. Then there are two cases to consider: Case 1 of detection at the slits,
and Case 2 of no detection at the slits–both starting with {a, c} at the screen.

Case 1. With detection at the slits, the superposition state {a, c} is reduced to {a} (i.e.,
going through Slit 1) with probability 1

2 or to {c} (i.e., going through Slit 2) with probability
1
2 so we have:

Pr({a} at screen|{a, c}) = 1
2
= Pr({c}|{a, c}) = |{a} ∩ {a, c}|

|{a, c}| .

Then in the next time period, we have either {a} evolving to {a′} = {a, b} and hitting
the detection wall at {a} or {b} each with probability 1

2 , or similarly, {c} evolving to {b, c}
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and hitting the wall at {b} or {c} each with probability 1
2 . Then the computation of the

probabilities to reach the three positions at the wall are as follows:

Pr({a} at wall|{a, b} at wall)Pr({a} at screen|{a, c})

+Pr({a} at wall|{b, c} at wall)Pr({c} at screen|{a, c})

= |{a}∩{a,b}|
|{a,b}|

|{a}∩{a,c}|
|{a,c}| + |{a}∩{b,c}|

|{b.c}|
|{c}∩{a,c}|

|{a,c}| = 1
2 × 1

2 + 0 × 1
2 = 1

4 ;

Pr({b} at wall|{a.b} at wall)Pr({a} at screen|{a, c})

+Pr({b} at wall|{b, c} at wall)Pr({c} at screen|{a, c})

= |{b}∩{a,b}|
|{a,b}|

|{a}∩{a,c}|
|{a,c}| + |{b}∩{b,c}|

|{b.c}|
|{c}∩{a,c}|

|{a,c}| = 1
2 × 1

2 + 1
2 × 1

2 = 1
2 ;

Pr({c} at wall|{b, c} at wall)Pr({c} at screen|{a, c})

+Pr({c} at wall|{a, b} at wall)Pr({a} at screen|{a, c})

= |{c}∩{b,c}|
|{b,c}|

|{c}∩{a,c}|
|{a,c}| + |{c}∩{a,b}|

|{a,b}|
|{a}∩{a,c}|

|{a,c}| = 1
2 × 1

2 + 0 × 1
2 = 1

4 .

The resulting probability distribution is pictured in Figure 6.

Figure 6. Case 1 of probability distribution of hits at wall from detection at the slits.

In Case 1, the detection at the slits forces the state reduction of {a, c} to either {a} (i.e.,
going through slit 1) or {c} (i.e., going through slit 2), and then one or the other evolves
respectively to {a′} = {a, b} or {c′} = {b, c}. These state reductions and evolutions are
(dashed arrows) illustrated in Figure 7.

Figure 7. State reductions and evolutions in Case 1.

Case 2. With no detection at the slits, the superposition state {a, c} evolves as an
indefinite or superposition state since there was no state reduction at the slits. Hence, the
evolution is:

{a, c}⇝
{

a′, c′
}
=
{

a′
}
+
{

c′
}
= {a, b}+ {b, c} = {a, c}.

Then the probability distribution for the hits at the wall are as follows:
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Pr({a} at wall|{a, c} at wall)Pr({a, c} at wall |{a, c}) = |{a}∩{a,c}|
|{a,c}|

|{a,c}∩{a,c}|
|{a,c}| = 1

2 × 1 = 1
2 ;

Pr({b} at wall|{a, c} at wall)Pr({a, c} at wall |{a, c}) = |{b}∩{a,c}|
|{a,c}|

|{a,c}∩{a,c}|
|{a,c}| = 0 × 1 = 0;

Pr({c} at wall|{a, c} at wall)Pr({a, c} at wall |{a, c}) = |{c}∩{a,c}|
|{a,c}|

|{a,c}∩{a,c}|
|{a,c}| = 1

2 × 1 = 1
2 .

The resulting probability distribution is pictured in Figure 8.

Figure 8. Case 2 of probability distribution of hits at wall with no detection at the slits.

Figure 8 shows the stripes characteristic of the interference pattern, i.e., {a, b} +
{b, c} = {a, c}, resulting from no detection at the slits.

The hardest point to understand is that our classical intuitions ‘insist’ that the particle
has to go through Slit 1 or Slit 2 (which would yield the Figure 6 distribution of hits),
but the distribution is as in Figure 8 showing the stripes resulting from interference. The
problem with our classical intuitions is that they operate at the classical level of all states
being distinguished from each other (i.e., no superpositions), so one or the other of the
distinguished states “going through Slit 1” and “going through Slit 2” has to occur. In the
quantum notion of becoming, states are constructed from below, as it were, by making
distinctions to go from indefinite to more definite states. But the indefinite state {a, c} was
not distinguished in Case 2. The classical level evolution of the distinguished states that
do not occur in Case 2 is marked with an X in Figure 9. As Richard Feynman put it: “We
must conclude that when both holes are open, it is not true that the particle goes through
one hole or the other” [23] (p. 536).

Figure 9. The evolution of distinguished states {a} or {c} does not occur in Case 2.

But with no distinction at the slits in Case 2, it is the non-classical superposition state
|Slit 1⟩+ |Slit 2⟩, or {a, c} in the model that evolves, which incurs the cancellation in the
linear non-singular transformation resulting in the interference stripes of Figure 8:

{a, c} = {a}+ {c}⇝
{

a′
}
+
{

c′
}
= {a, b}+ {b, c} = {a, c}.

That is how the particle can ultimately hit the wall without going through one of the slits,
i.e., without the state reductions {a, c}⇝ {a} (going through slit 1) or {a, c}⇝ {c} (going
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through slit 2). Distinguishing between the alternatives in an interaction involving a
superposition will wipe out any interference effects, i.e., will give Case 1 instead of Case 2.

Any determination of the alternative taken by a process capable of following more
than one alternative destroys the interference between alternatives. ([24], p. 9)

The lattice of partitions gives a skeletal representation of the rising levels of definiteness
going from the bottom to the top. The top represents the fully definite or distinguished
states. In Case 2, the evolution takes place at a lower level, a level of indefiniteness where
those states {a, c} are not distinguished. In classical physics, all states are distinguished, so
classical evolution always takes definite states to definite states (as in the evolution marked
by X in Figure 9). Here we see, in terms of the simplified model, the answer to the key
question: “How does the particle get to the detection wall without passing through slit 1 or
slit 2?”.

3.11. The Feynman Rules
3.11.1. The Fundamental Role of Distinguishability

The formulation of QM that shows the fundamental role of distinctions or distinguish-
ings was developed by Richard Feynman [24] who encapsulated the rules for working
with amplitudes in the “Feynman rules” ([6,25] (pp. 314–315)) such as the one involved in
analyzing the double-slit experiment.

The probability of an event (in an ideal experiment where there are no uncertain
external disturbances) is the absolute square of a complex quantity called the
probability amplitude. When the event can occur in several alternative ways, the
probability amplitude is the sum of the probability amplitude for each alternative
considered separately. . . . If an experiment capable of determining which alter-
native is actually taken is performed, the interference is lost and the probability
becomes the sum of the probability for each alternative. ([23], p. 538)

John Stachel gives the application to the double-slit experiment.

Feynman’s approach is based on the contrast between processes that are dis-
tinguishable within a given physical context and those that are indistinguishable
within that context. A process is distinguishable if some record of whether or not
it has been realized results from the process in question; if no record results, the
process is indistinguishable from alternative processes leading to the same end
result. In my terminology, a registration of the realization of a process must exist
for it to be a distinguishable alternative. In the two-slit experiment, for example,
passage through one slit or the other is only a distinguishable alternative if a
counter is placed behind one of the slits; without such a counter, these are in-
distinguishable alternatives. Classical probability rules apply to distinguishable
processes. Nonclassical probability amplitude rules apply to indistinguishable
processes. ([25], p. 314)

In QM/Sets, the ‘amplitudes’ are given by the vectors in the vector space over Z2
where the cancellations occur, e.g., {a, b}+ {b, c} = {a, c}, in the non-distinguished Case 2,
and then the probabilities are computed from the resulting amplitudes by the Born rule. In
the distinguished Case 1, the probabilities from the distinct alternatives are added, e.g., the
probabilities of the two distinct ways of {a, c} at the screen eventually resulting in {b} at
the wall are added:

Pr({b} at wall|{a.b} at wall)Pr({a} at screen|{a, c})+

Pr({b} at wall|{b, c} at wall)Pr({c} at screen|{a, c}) = 1
2

1
2 + 1

2
1
2 = 1

2 .

By following the Feynman rules, probabilities can be computed without “being con-
fused by things such as the ‘reduction of a wave packet’ and similar magic” [26] (p. 76).
Using the rules to calculate probabilities, of course, does not eliminate state reductions
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since “a registration of the realization of a process must exist for it to be a distinguish-
able alternative” [25] (p. 314). The point is what causes the state reduction, namely the
distinguishability of the previously superposed alternatives undergoing an interaction.

3.11.2. Weyl’s Use of the Yoga

In his popular writing about QM, Arthur Eddington used the notion of a sieve.

In Einstein’s theory of relativity, the observer is a man who sets out in quest of
truth, armed with a measuring rod. In quantum theory, he sets out armed with a
sieve. ([27], p. 267)

Hermann Weyl quotes Eddington about the idea of a sieve, which Weyl calls a “grat-
ing” [8] (p. 255). Weyl then, in effect, uses the Yoga of linearization to develop the idea
of a grating both as a set partition (or equivalence relation) and as a vector space direct-
sum decomposition (DSD) [8] (pp. 255–257). He starts with a numerical attribute, e.g.,
g : U → R, which defines a partition on a set or “aggregate [which] is used in the sense
of ‘set of elements with equivalence relation’” [8] (p. 239). Then he goes to the quantum
case where the “aggregate of n states has to be replaced by an n-dimensional Euclidean
vector space” [8] (p. 256. “Euclidean” is older terminology for an inner product space). He
describes the vector space notion of a grating as the “splitting of the total vector space into
mutually orthogonal subspaces” so that “each vector −→x splits into r component vectors
lying in the several subspaces” [8] (p. 256), i.e., a direct-sum decomposition of the space.
Finally, Weyl notes that “Measurement means application of a sieve or grating” [8] (p. 259).
In Figure 10, this idea of measurement as a superposition state passing through a grating
or sieve is illustrated (on the left side) along with a similar image (on the right side) where
no distinctions or distinguishings take place, so there is no measurement.

Figure 10. Visual illustration of Feynman’s rule with measurement seen as applying a grating.

The doughball-shaped figure at position A visually illustrates the superposition of
the definite shapes in the left-side grating. As the doughball falls through one of the holes,
it “collapses” or reduces from its indefinite or superposition state to one of the definite
eigenstates. To get the total probability of going from A to B, one has to add the three
probabilities of each distinguishable path from A to B. On the right side of Figure 10, no
distinctions are made at a ‘null-grating’ so the amplitudes to go from A to B are added, and
the (absolute) square gives the probability.

4. Discussion
4.1. Metaphors for the Quantum World

There are a number of (always imperfect) metaphors that might help to better visualize
the quantum world as opposed to the classical world of fully definite or distinguished states.

• Flipping through a police mugbook, going from one definite face to another, is like
change in classical physics going from one definite state to another. There is no
‘becoming’ (from indefinite to more definite) in the classical world; all states are
fully definite.
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• A police sketchpad illustrates Type I quantum-becoming, starting from an indefi-
nite picture of a face and using witness information to make a more distinct and
realistic face.

• Similarly, the painter starts with a white (= superposition of all colors) canvas and
then becomes a painting as white spaces are ‘collapsed’ into definite colors.

• Perhaps another metaphor for the Type I process of becoming is the modern process
of 3D printing. The object is constructed or printed from below and becomes more
definite as more layers are printed.

Werner Heisenberg, in his more popular writings, was fond of formulating his philo-
sophical thinking in terms of ancient Greek philosophy, e.g., the Aristotelian notions, such
as substance and form.

Just as the Greeks had hoped, so we have now found there is only one funda-
mental substance of which all reality consists. If we have to give this substance
a name, we can only call it ‘energy.’ But this fundamental ‘energy’ is capable of
existence in different forms. ([28], p. 116)

He saw this energy substance as “a kind of indefinite corporeal substratum, embodying
the possibility of passing over into actuality by means of the form” ([3], p. 148). This is a
fine description of the Type I process of quantum becoming, where more definiteness is
created through in-forming the substance with more information-as-distinctions, illustrated
on the right side of Figure 11, by moving up the lattice of partitions from the pure unformed
substance of the indiscrete partition at the bottom eventually to the fully in-formed discrete
partition at the top. Given the duality of elements and distinctions, the quantum notion of
becoming could be juxtaposed to the dual notion of becoming, illustrated on the left side
of Figure 11, of moving from the bottom to the top of the Boolean lattice of subsets by the
ex-nihilo creation of fully-formed elements of substance.

Figure 11. The two dual notions of becoming.

In the partition notion of becoming (Type I process), a quantum state π is informed
by the information-as-distinctions of an observable g−1 to create the more-definite state
of π ∨ g−1 with the new distinctions of dit

(
g−1) − dit(π). In cosmology, starting with

the perfect symmetry [29] of the pre-Big Bang state, distinctions are created by symmetry-
breaking. When a partition is formed by a group of symmetries, e.g., the orbit partition
of a set representation of a group, then making a distinction (i.e., distinguishing between
states previously equated as being symmetrical) takes the form of symmetry-breaking and
moving to a smaller symmetry group with a more refined orbit partition.

Yet another metaphor is provided by Edwin Abbott’s Flatland fantasy [30], where
creatures living in a two-dimensional world (like the classical world) find changes brought
about using the third dimension (like the quantum world) to be unintuitive, if not in-
comprehensible. Kastner [31] uses the flatlander metaphor to make similar points. In the
two-dimensional world, consider Hegel’s Owl of Minerva, who only flies at night [32]
(p. 13), at point A facing a fence with two gates or slits in it. During the daytime, one can
see (like detection at the slits in the double-slit experiment) which gate the owl has to walk
through to get to point B on the other side, as illustrated in Figure 12.
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Figure 12. With measurement at the gates, the Owl of Minerva has to go through one gate or the other.

But at night, it is like having no detection or observation at the slits in the double-slit
experiment, then the Owl of Minerva takes to flight, i.e., has access to another realm of
travel (like evolution in the indefinite quantum world) to get from A to B—as illustrated in
Figure 13.

Figure 13. The Owl of Minerva takes advantage of the extra dimension to get from A to B.

Our classical-world intuitions correspond to the flatlander’s intuitions that the owl
has to go through one gate or the other to get from A to B.

4.2. Whither Waves?

Other applications of QM/Sets include Bell’s Theorem. A treatment of Bell’s The-
orem [33] intended for a popular audience can be reworked into QM/Sets. Still more
applications include the treatment of indistinguishable particles and group representation
theory [1]. But even this introduction to QM/Sets raises some interesting questions that go
far beyond its pedagogical use.

For many years, quantum mechanics was called “wave mechanics”—although this
usage is now largely in a welcome decline. The mathematics of QM is quite distinctive
when compared to classical mechanics. But one must differentiate between the aspects of
QM math that are essential and those that are more ‘incidental.’ One distinctive feature is
that QM mathematics is formulated in Hilbert spaces over complex numbers. One might
say the reason for this is that the complex numbers are algebraically complete so that all
observable operators will have a full set of eigenvectors. ‘Coincidentally’, as it were, the
complex numbers are the natural mathematics to describe waves, i.e., each complex number
in its polar representation has an amplitude and a phase. Hence, QM mathematics abounds
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in wave-like machinery such as the Schrödinger wave equation and its wave-function
solutions. Yet, quantum theorists have largely given up on seeing the wave function as a
physical or ontic wave; it is only a “probability wave”, a computational device that allows
the computation of probabilities by the Born rule. In terms of the attempts to understand
the mysteries of QM, the ‘false leads’ of so-called “wave mechanics” may nuance Einstein’s
famous saying that the “The Lord is subtle, but not malicious”. If not malicious, He at least
seems to be a trickster.

As Feynman noted: “it must be emphasized that the wave function that satisfies the
equation is not like a real wave in space; one cannot picture any kind of reality to this wave
as one does for a sound wave” [22] (Section 3.7). In this respect, the classroom ripple-tank
model of the two-slit experiment is seriously misleading. Those water waves are matter
waves; the ‘waves’ of the wave functions are not. Moreover, in the absence of detection
at the slits, the particle does not “go through both slits” (like ‘the wave’ is pictured as
doing); instead, the superposition evolves at a non-classical level of indefiniteness. In that
case, the particle does not rise to the definiteness of going through one slit or the other,
not to mention both. The treatment of the double-slit experiment in QM/Sets explains the
results without using the misleading mathematical machinery of waves, machinery that
is necessarily there when working in a vector space over C instead of Z2. Instead of the
so-called “wave-particle duality”, a quantum particle is in an indefinite superposition state
or is in a definite- or eigen-state.

I want to emphasize that light comes in this form–particles. It is very important
to know that light behaves like particles, especially for those of you who have
gone to school, where you were probably told something about light behaving
like waves. I am telling you the way it behaves–like particles. ([26], p. 15)

The constructive or destructive interference is not just a so-called “wave phenomena”;
it occurs in the addition of vectors over any field whatsoever, from C to Z2. We have seen
how so much of the essential structure and relationships (e.g., double-slit experiment)
can be expressed in the simplified model of QM/Sets (i.e., QM over Z2, not C) without
any C-based wave-math whatsoever. This is another difficult point to understand. The C-
based wave-math is not wrong but does not describe ontic waves, and that is why the
“wave mechanics” interpretation has been misleading for a century. By seeing how the
essential ideas (superposition) and simplified versions of crucial experiments (double-slit)
can be formulated in a pedagogical model over Z2 without any wave-math, we can see
that quantum reality is Indefinite World, not Wave World (see Figure 14 below where we
have used a shorthand notation of removing the innermost curly brackets, so the partition
{{a, b}, {c, d}} is represented simply as {ab, cd}).

Figure 14. The classical and quantum worlds skeletally represented in a partition lattice.

5. Conclusions: Ontological Intimations

The simplified model (QM/Sets with density matrices) is “Exhibit A” in the thesis [1]
that the distinctive mathematics of QM is the Hilbert space version of the mathematics of
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partitions–with the Yoga of Linearization providing the main bridge from partition math
to QM math. We are ‘cutting at the joints’ between the math and the physics of QM. The
physics of QM involves Planck’s constant, which accordingly has no role in QM/Sets based
on the distinctive mathematics of QM. The century-old problem with quantum mechanics
is seeing the nature of the quantum-level reality that the theory seems to describe so well.
Yet we know what the mathematical notion of a partition or equivalence relation describes,
namely, what is described in different vocabularies as:

• distinctions or inequivalences (ordered pairs of elements in different partition blocks
or in different equivalence classes) versus indistinctions or equivalences (ordered pairs
of elements in the same block or in the same equivalence class),

• definiteness (singleton block or equivalence class) versus indefiniteness (multiple
element block), and

• distinguishability versus indistinguishability (e.g., of paths from A to B).

These concepts are not thought up to jury-rig another interpretation of QM; they
are logical concepts based on the logic of partitions dual to the classical Boolean logic of
subsets. These concepts start at the logical level, move through being quantified by logical
entropy, and end up in the Feynman rules applying to quantum interactions. The simplified
model using partition math implies that quantum reality is characterized by the presence
of indistinctions, indefiniteness, and indistinguishability, i.e., superpositions.

One way to see this is to consider the various metaphysical characterizations of the
world of classical physics. That classical world is seen to be ‘definite all the way down’ in
the sense that by digging deep enough (i.e., by taking more and more joins of partitions),
there is always some attribute to distinguish different entities (i.e., the different entities end
up in different blocks of a partition). If there was no attribute to distinguish two seemingly
different entities, then they were the same entity. This was expressed in Leibniz’s Principle
of Identity of Indistinguishables (PII) ([34], Fourth letter, p. 22).

The simplified model provides a ‘skeletal’ model of both classical and quantum reality
in the partition lattice (e.g., Figures 2–4, 7 and 9). Using an iceberg metaphor, the tip of the
iceberg ([35], p. 3) above the water represents the classical world with the unseen quantum
world under the water. In the lattice of partitions, that “tip of the iceberg” is the top of the
lattice, the discrete partition 1U , with only singleton blocks and thus fully distinguished or
classical states with no superposition. Accordingly, the discrete partition gives the partition
logic version of the PII as the characteristic of classicality:

If (u, u′) ∈ indit(1U), then u = u′

Partition logic Principle of Identity of Indistinguishables.

That is, if u and u′ in U are indistinguishable by the discrete partition, then they are the
same element of U. Mathematically, this is trivial since indit(1U) = ∆ = {(ui, ui)}ui∈U .
Every other partition π has some multiple-element block, so PII fails for it, indicating its
quantum nature as a mixed or pure state containing at least one superposition state. In
terms of density matrices, the classical states are represented by diagonal density matrices
with no non-zero off-diagonal elements, i.e., no coherences representing superpositions.

In quantum physics, reality is not definite all the way down, so even when a definite
state is maximally specified by a CSCO, there is no further specification to distinguish
quantum particles (bosons) that have the same state.

In quantum mechanics, however, identical particles are truly indistinguishable.
This is because we cannot specify more than a complete set of commuting ob-
servables for each of the particles; in particular, we cannot label the particle by
coloring it blue. ([36], p. 446)

Heisenberg [3], Shimony [37], Kastner [35], Jaeger [6], and many others have described
a quantum-level world in terms of real potentialities, and Margenau [38] and Hughes [5]
have described such a world in terms of latencies. In both cases, the potentialities and
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latencies are realized by the actual outcome of a measurement. And in all the cases, the other
characteristic of the potentiality-latency view of the quantum world is the indefiniteness of
superpositions. Even the non-philosophical practicing quantum physicist recognizes that a
superposition in the measurement basis does not have a definite value prior to measurement.
The potentiality-latency approach reformulated in terms of indefiniteness–plus the widespread
recognition of superpositions having indefinite values prior to measurement–point to the
dominant characteristic of the quantum world, objective indefiniteness.

From these two basic ideas alone–indefiniteness and the superposition principle–
it should be clear already that quantum mechanics conflicts sharply with common
sense. If the quantum state of a system is a complete description of the system,
then a quantity that has an indefinite value in that quantum state is objectively
indefinite; its value is not merely unknown by the scientist who seeks to describe
the system. Furthermore, since the outcome of a measurement of an objectively
indefinite quantity is not determined by the quantum state, and yet the quantum
state is the complete bearer of information about the system, the outcome is
strictly a matter of objective chance–not just a matter of chance in the sense of
unpredictability by the scientist. Finally, the probability of each possible outcome
of the measurement is an objective probability. Classical physics did not conflict
with common sense in these fundamental ways. ([4], p. 47)

The simplified pedagogical model allows us to use the lattice of partitions to attach
an intuitive image to the classical world of fully distinguished states and the quantum
‘underworld’ of indefinite states–as in Figure 14. This model uses the lattice of partitions
on the four state universe U = {a, b, c, d}. The logical entropies are for the equiprobable
case and show how logical entropy, as the measurement of information-as-distinctions,
increases as more distinctions are made moving up in the lattice.

The fact that the model ‘works’ (as a pedagogical model) is corroboration for the thesis
that the mathematical machinery of full QM is the Hilbert space version of the mathematics
of partitions that is expressed in the model. That view of the quantum world as ‘Indefinite
World’ (not ‘Wave World’) might be described as the objective indefiniteness interpretation of
quantum mechanics.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The author declares no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CSCA Complete Set of Compatible Attributes
CSCO Complete Set of Commuting Operators
DSD Direct-Sum Decomposition
QM Quantum Mechanics

References
1. Ellerman, D. Follow the Math!: The Mathematics of Quantum Mechanics as the Mathematics of Set Partitions Linearized to

(Hilbert) Vector Spaces. Found. Phys. 2022, 52, 100. [CrossRef]
2. Ellerman, D. The Logic of Partitions: With Two Major Applications. Studies in Logic 101; College Publications: London, UK, 2023.
3. Heisenberg, W. Physics & Philosophy: The Revolution in Modern Science; Harper Torchbooks: New York, NY, USA, 1962.
4. Shimony, A. The Reality of the Quantum World. Sci. Am. 1988, 258, 46–53. [CrossRef]
5. Hughes, R.I.G. The Structure and Interpretation of Quantum Mechanics; Harvard University Press: Cambridge, UK, 1989.

http://doi.org/10.1007/s10701-022-00608-3
http://dx.doi.org/10.1038/scientificamerican0188-46


AppliedMath 2024, 4 494

6. Jaeger, G. Quantum Objects: Non-Local Correlation, Causality and Objective Indefiniteness in the Quantum World; Springer:
Berlin/Heidelberg, Germany, 2014.

7. Schumacher, B.; Westmoreland, M. Modal Quantum Theory. Found. Phys. 2012, 42, 918–925. [CrossRef]
8. Weyl, H. Philosophy of Mathematics and Natural Science; Princeton University Press: Princeton, NJ, USA, 1949.
9. Dirac, P.A.M. The Principles of Quantum Mechanics, 4th ed.; Clarendon: Oxford, UK, 1958.
10. Stacey, B.C. On Two Recent Approaches to the Born Rule. Int. J. Quantum Found. 2021, 7, 28–33.
11. Cushing, J.T. Foundational Problems in and Methodological Lessons from Quantum Field Theory. In Philosophical Foundations of

Quantum Field Theory; Brown, H.R., Harre, R., Eds.; Clarendon Press: Oxford, UK, 1988; pp. 25–39.
12. Auletta, G.; Fortunato, M.; Parisi, G. Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2009.
13. Lüders, G. Über Die Zustandsänderung Durch Meßprozeß. Ann. Phys. 1951, 8, 322–328. [CrossRef]
14. Bennett, C.H. Quantum Information: Qubits and Quantum Error Correction. Int. J. Theor. 2003, 42, 153–176. [CrossRef]
15. Boole, G. An Investigation of the Laws of Thought on Which Are Founded the Mathematical Theories of Logic and Probabilities; Macmillan

and Co.: Cambridge, UK, 1854.
16. Ellerman, D. New Foundations for Information Theory: Logical Entropy and Shannon Entropy; SpringerNature: Cham, Switzerland,

2021. [CrossRef]
17. Manfredi, G. Logical entropy—special issue. 4Open 2022, 5, E1. [CrossRef]
18. von Neumann, J. Mathematical Foundations of Quantum Mechanics; Beyer, R.T., Ed.; Princeton University Press: Princeton, NJ,

USA, 1955.
19. Stone, M.H. On one-parameter unitary groups in Hilbert Space. Ann. Math. 1932, 33, 643–648. [CrossRef]
20. Halmos, P.R. Naive Set Theory; Springer Science+Business Media: New York, NY, USA, 1974.
21. Norsen, T. Foundations of Quantum Mechanics; Springer International: Cham, Switzerland, 2017.
22. Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics: Quantum Mechanics Vol. III (New Millennium Ed.);

Addison-Wesley: Reading, MA, USA, 2010.
23. Feynman, R.P. The Concept of Probability in Quantum Mechanics. In Second Berkeley Symposium on Mathematical Statistics and

Probability; University of California Press: Berkeley, CA, USA, 1951; pp. 533–541.
24. Feynman, R.P.; Hibbs, A.R.; Styer, D.F. Quantum Mechanics and Path Integrals (Emended Ed.); Dover: Mineola, NY, USA, 2005.
25. Stachel, J. Do Quanta Need a New Logic? In From Quarks to Quasars: Philosophical Problems of Modern Physics; Colodny, R.G., Ed.;

University of Pittsburgh Press: Pittsburgh, PA, USA, 1986; pp. 229–347.
26. Feynman, R.P. QED: The Strange Theory of Light and Matter; Princeton University Press: Princeton, NJ, USA, 1985.
27. Eddington, A.S. New Pathways in Science (Messenger Lectures 1934); Cambridge University Press: Cambridge, UK, 1947.
28. Heisenberg, W. Philosophic Problems of Nuclear Science; Fawcett Publications: Greenwich, CN, USA, 1952.
29. Pagels, H. Perfect Symmetry: The Search for the Beginning of Time; Simon and Schuster: New York, NY, USA, 1985.
30. Abbott, E.; Stewart, I. The Annotated Flatland: A Romance of Many Dimensions; Basic Books: New York, NY, USA, 2008.
31. Kastner, R.E. Understanding Our Unseen Reality: Solving Quantum Riddles; Imperial College Press: London, UK, 2015.
32. Hegel, G.W.F. Hegel’s Philosophy of Right; Knox, T.M., Ed.; Oxford University Press: New York, NY, USA, 1967.
33. D’Espagnat, B. The Quantum Theory and Reality. Sci. Am. 1979, 241, 158–181. [CrossRef]
34. Ariew, R. (Ed.) G. W. Leibniz and Samuel Clarke: Correspondence; Hackett: Indianapolis, IN, USA, 2000.
35. Kastner, R.E. The Transactional Interpretation of Quantum Mechanics: The Reality of Possibility; Cambridge University Press: New York,

NY, USA, 2013.
36. Sakurai, J.J.; Napolitano, J. Modern Quantum Mechanics, 2nd ed.; Addison-Wesley: Boston, MA, USA, 2011.
37. Shimony, A. Search for a Naturalistic Worldview. Vol. II Natural Science and Metaphysics; Cambridge University Press: Cambridge, UK,

1993.
38. Margenau, H. Advantages and Disadvantages of Various Interpretations of the Quantum Theory. Phys. Today 1954, 7, 6–13.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10701-012-9650-z
http://dx.doi.org/10.1002/andp.19504430510
http://dx.doi.org/10.1023/A:1024439131297
http://dx.doi.org/10.1007/978-3-030-86552-8
http://dx.doi.org/10.1051/fopen/2022005
http://dx.doi.org/10.2307/1968538
http://dx.doi.org/10.1038/scientificamerican1179-158
http://dx.doi.org/10.1063/1.3061432

	Introduction
	Materials and Methods: Vector Spaces over Z2
	Results
	Numerical Attributes as Observables
	The Yoga of Linearization
	Commutativity and Conjugacy of Observables
	The Lattice of Partitions
	Superposition Subsets and Density Matrices
	Probabilities and the Born Rule
	Projective Measurement
	A New Information Measure: Logical Entropy
	Quantum Processes
	The Double-Slit Experiment in QM/Sets
	The Feynman Rules
	The Fundamental Role of Distinguishability
	Weyl's Use of the Yoga


	Discussion
	Metaphors for the Quantum World
	Whither Waves?

	Conclusions: Ontological Intimations
	References

