Effect of Rhizobium Inoculation on Tomato (Solanum lycopersicum L.) Yield in Protected Crops †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Conditions of the Experiment
2.2. Description of the Experimental Design, Experimental Area, and Applied Treatments
2.3. Selection of Rhizobium Strains and Method of Inoculation at the Time of Transplantation
2.4. Variables Evaluated
2.4.1. Variables of the Growth and Development of the Plant
2.4.2. Dry Mass by Plant Organs (g Plant−1) and Foliar NPK
2.4.3. Productivity and Yield Variables
2.4.4. Economic Evaluation
2.5. Statistical Analysis
3. Results
3.1. Plant Growth and Development
3.2. Dry Mass by Plant Organ and Foliar NPK Content
3.3. Economic Evaluation
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moreno, A.; García, V. Rizobacterias promotoras del crecimiento vegetal: Una alternativa de biofertilización para la agricultura sustentable. Rev. Colomb. Biotecnol. 2018, 20, 68–83. [Google Scholar] [CrossRef]
- Santillana, N.; Arellano, C. Capacidad del Rhizobium de promover el crecimiento en plantas de tomate (Lycopersicon esculentum Miller). Ecol. Apl. 2005, 4, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Balemi, T.; Pal, N. Response of onion (Allium cepa L.) to combined application of biological and chemical nitrogenous fertilizers. Acta Agric. Slov. 2007, 89, 107–114. [Google Scholar] [CrossRef]
- Gutiérrez-Chávez, A.; Hernández-Huerta, J. Rizobacterias promotoras de crecimiento vegetal en lechuga (Lactuca sativa L.) bajo sistema aeropónico. Remefi 2019, 3, 1–10. [Google Scholar]
- González, G. Efecto de las Rizobacterias Promotoras del Crecimiento Vegetal Sobre la Calidad Nutracéutica de los Frutos de Tomate (Solanum Lycopersicum L.). Master’s Thesis, Universidad Autónoma Agraria Antonio Narro, Torreón, Mexico, December 2016. [Google Scholar]
- Hernández, A.; Pérez, J. Clasificación de los Suelos de Cuba; INCA: San José de las Lajas, Cuba, 2015; pp. 54–57. [Google Scholar]
- Castilla, N. Invernaderos de Plástico. Tecnología y Manejo, 2nd ed.; Mundi-Prensa: Madrid, Spain, 2007; pp. 25–35. [Google Scholar]
- ONEI. Cuba: Agricultura, Ganadería, Silvicultura y Pesca. Available online: https://www.directoriocubano.info/cuba/cuba-agricultura-ganaderia-silvicultura-y-pesca-onei-2019/ (accessed on 21 January 2020).
- Santiago de Cuba-ONEI. Available online: http://www.onei.gob.cu/sites/default/files/anuario_est_provincial/santiago_de_cuba.pdf (accessed on 21 January 2020).
- Martínez-Viera, R.; Dibut, B. Efecto de la integración de aplicaciones agrícolas de biofertilizantes y fertilizantes minerales sobre las relaciones suelo-planta. Ctivos Tpcles 2010, 31, 27–31. [Google Scholar]
- Paneque, V.; Calaña, J. Manual de Técnicas Analíticas Para Análisis de Suelo, Foliar, Abonos Orgánicos y Fertilizantes Químicos; INCA: San José de las Lajas, Cuba, 2010; pp. 12–79. [Google Scholar]
- Vincent, J. A Manual for Practical Study of Root Nodule Bacteria; Blackwells Scientific Publishers: Oxford, UK, 1970; p. 3. [Google Scholar]
- Trujillo, C.; Cuesta, E. Economía Agrícola Para las Carreras Agropecuarias; Feliz Varela: La Habana, Cuba, 2010; pp. 133–171. [Google Scholar]
- Camelo, M.; Vera, S. Mecanismos de acción de las rizobacterias promotoras del crecimiento vegetal. Cienc. Tecnol. Agropecu 2011, 12, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Gervasio, G.; Jerez-Mompie, E. Selection of a promoting rhizobacteria of growth in papa (Solanum tuberosum L.). Cult. Trop 2019, 40, 13–21. [Google Scholar]
- Longoria-Espinoza, R.M. Diversity of endophytic bacteria associated with tomato plants (Solanum lycopersicum). Mex. J. Phytopathol. 2020, 38, 307–319. [Google Scholar] [CrossRef]
pH en (H2O) | MO (%) | P (mg Kg−1) | Na+ | K+ | Ca2+ | Mg 2+ |
---|---|---|---|---|---|---|
(cmolc Kg−1) | ||||||
7.25 | 2.69 | 182.7 | 1.03 | 2.09 | 26.5 | 13.2 |
Microbiological analysis of the soil. | ||||||
No. native rhizobia: 1.8 × 105 UFC g−1 |
Treatments | First Measurement | Second Measurement | Third Measurement | |||
---|---|---|---|---|---|---|
(25 d.a.t.) | (50 d.a.t.) | (75 d.a.t.) | ||||
Height (m) | Thickness (mm) | Height (m) | Thickness (mm) | Height (m) | Thickness (mm) | |
(Control) not inoculated | 0.27 c | 10.8 c | 0.69 d | 14.3 d | 1.02 c | 18.9 d |
R. etli CE-3 | 0.43 a | 12.1 a | 0.84 a | 16.5 a | 1.21 a | 21.3 a |
R.l SCR | 0.36 b | 11.7 b | 0.77 b | 15.8 b | 1.13 b | 19.7 b |
R.l Semia-4048 | 0.31 b,c | 11.2 b,c | 0.73 c | 15.1 c | 1.07 c | 19.1 c |
ESM | 0.0105 | 0.0807 | 0.0451 | 0.116 | 0.033 | 0.126 |
Treatments | Dry Mass (g Plant−1) | NPK(g kg−1) Foliar | ||||
---|---|---|---|---|---|---|
Leaf | Stem | Root | N | P (P2O5) | K (K2O) | |
(Control) not inoculated | 10.35 d | 3.84 d | 1.62 d | 2.585 d | 0.105 c | 0.595 c |
R. etli CE-3 | 18.69 a | 6.65 a | 3.41 a | 3.597 a | 0.187 a | 0.823 a |
R.l SCR | 16.08 b | 5.02 b | 2.18 b | 3.285 b | 0.125 b | 0.685 b |
R.l Semia-4048 | 11.00 c | 4.40 c | 2.05 c | 3.012 c | 0.108 b | 0.678 b |
ESM | 0.1067 | 0.3431 | 0.1167 | 0.1124 | 0.0436 | 0.0253 |
Treatments | Equatorial Diameter (cm) | Fruit Weight (g) | Yield (t/ha−1) |
---|---|---|---|
(Control) not inoculated | 5.1 d | 141.33 d | 70.20 d |
R. etli CE-3 | 7.9 a | 235.25 a | 81.16 a |
R.l SCR | 6.5 b | 155.43 b | 77.55 b |
R.l Semia-4048 | 5.8 c | 150.36 c | 72.25 c |
ESM | 0.1426 | 0.3261 | 0.1943 |
Treatments | Economic Indicators in Cuban Currency Thousands. | |||
---|---|---|---|---|
C.P | VP | P | P | |
(Control) not inoculated | 10.33 | 16.8 | 6.47 | 0.62 |
R. etli CE-3 | 10.41 | 25.92 | 15.51 | 1.48 |
R.l SCR | 10.39 | 24.88 | 14.49 | 1.39 |
R.l Semia-4048 | 10.39 | 23.12 | 12.73 | 1.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toledo Cabrera, B. Effect of Rhizobium Inoculation on Tomato (Solanum lycopersicum L.) Yield in Protected Crops. Biol. Life Sci. Forum 2021, 3, 52. https://doi.org/10.3390/IECAG2021-09993
Toledo Cabrera B. Effect of Rhizobium Inoculation on Tomato (Solanum lycopersicum L.) Yield in Protected Crops. Biology and Life Sciences Forum. 2021; 3(1):52. https://doi.org/10.3390/IECAG2021-09993
Chicago/Turabian StyleToledo Cabrera, Beatriz. 2021. "Effect of Rhizobium Inoculation on Tomato (Solanum lycopersicum L.) Yield in Protected Crops" Biology and Life Sciences Forum 3, no. 1: 52. https://doi.org/10.3390/IECAG2021-09993
APA StyleToledo Cabrera, B. (2021). Effect of Rhizobium Inoculation on Tomato (Solanum lycopersicum L.) Yield in Protected Crops. Biology and Life Sciences Forum, 3(1), 52. https://doi.org/10.3390/IECAG2021-09993