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Abstract: Floating offshore wind turbines are a promising technology for addressing energy needs by
utilizing wind resources offshore. The current state of the art is based on heavy, expensive platforms
to survive the ocean environment. Typical design techniques do not involve optimization because
of the computationally expensive time domain solvers used to model motions and loads in the
ocean environment. However, this design uses an efficient frequency domain solver with a genetic
algorithm to rapidly optimize the design of a novel floating wind turbine concept. The concept utilizes
a liquid ballast mass to mitigate motions on a lightweight post-tensioned concrete platform. The
simple cruciform-shaped design of the platform made of post-tensioned concrete is less expensive
than steel, reducing the raw material and manufacturing cost. The use of ballast water to behave as a
tuned mass damper allows a smaller platform to achieve the same motions as a much larger platform,
thus reducing the mass and cost. The optimization techniques applied with these design innovations
resulted in a design with a levelized cost of energy of USD 0.0753/kWh, roughly half the cost of the
current state of the art.
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1. Introduction

Modern society faces an existential dilemma. As industrialized countries support a
modern lifestyle driven by consumerism, energy consumption continues to grow. Even
amongst the highest energy users, the primary source continues to be non-renewable energy
sources such as oil, coal, and natural gas [1]. Coupled with developing nations reliance
on dirty fuel sources such as coal, a warming planet already seeing the effects of climate
change, and increasing energy prices [2], the need for energy source diversification has
never been stronger. Offshore wind power is a resource with strong potential to fill this need
in the United States. In fact, while the total U.S. energy consumption is 13 quads/year [3],
the total potential of offshore wind, accounting for losses and including conservative
assumptions regarding technical, legal, regulatory, and social inhibiting factors, is still
2 quads/year [4]. With 58% of this potential in water depths requiring floating platforms,
the potential for floating offshore wind technologies as part of the United States’ power
portfolio is strong.

The state of the art of floating offshore wind technology, however, is expensive. Ac-
cording to NREL, existing FOWT technologies have achieved a levelized cost of energy
(LCOE) of USD 0.15–0.18/kWh, which is high compared to the USD 0.03–0.05/kWh for
land-based turbines [5]. Much of this cost is from the steel used to make large and heavy
platforms designed to keep the system as stable as possible, survive large sea storms, and
maintain similar dynamics to onshore wind turbines. An arm of the Department of Energy,
the Advanced Research Projects Agency—Energy (ARPA-E), which funds emerging but
unproven technologies, identified floating offshore wind as a research area with significant
potential because of the untapped but currently expensive power resource. To address
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this cost difference, the ARPA-E Aerodynamic Turbines Lighter and Afloat with Nauti-
cal Technologies and Integrated Servo-control (ATLANTIS) program set out to generate
“radically new FOWT designs with significantly lower mass/area; a new generation of
computer tools to facilitate control co-design of the FOWTs; and generation of real-data
from full and lab-scale experiments to validate the FOWT designs and computer tools” [6].
To bring floating offshore wind technology down to a competitive cost, the goal of this
project is to design a floating offshore wind turbine concept with a USD 0.075/kWh or less
LCOE. The current work fits into the first ATLANTIS program category. Building on the
University of Maine’s experience with post-tensioned concrete and a previous collabora-
tion with NASA on tuned mass dampers utilizing ballast water to stabilize the platform,
this project proposes a lightweight floating platform with significantly lower costs than
the current designs. Additionally, in keeping with a controls co-design methodology, the
platform is optimized for the lowest possible cost with the use of computationally efficient
analysis tools.

Proposed Design and Solution Method

The three main types of floating offshore wind turbine platforms are spars, tension-leg
platforms, and semi-submersibles. Spars achieve their stability with the restoring force
created between the low center of gravity and the high center of buoyancy. However, they
require deep drafts to achieve this stability, which also necessitates assembly offshore,
increasing costs. Tension-leg platforms can be stable and light due to stability achieved
from the tension in the mooring lines, but anchoring to the seabed is difficult, especially
as wind turbine sizes increase. Finally, semi-submersible platforms achieve their stability
from a large water plane area. Designs must be large enough to avoid typical wave period
excitation ranges of 5–20 s, but since the period is inversely proportional to the water plane
area, existing designs have been large, heavy, and therefore expensive [7].

The typical design process of a floating offshore wind turbine is performed sequentially,
owing to the computationally intensive time domain simulations required. To satisfy the
design requirements of the International Electrotechnical Commission, the combination
of winds, waves, and currents for all of the design load cases requires thousands of
simulations. As a result, platforms cannot be optimized with an analytical function due
to the nonlinear design constraints. Furthermore, stochastic optimization techniques are
infeasible when using all design load cases with time domain simulations due to the
computational time required. In order to develop the novel cruciform platform concept
with tuned mass damper (TMD) elements and simultaneously minimize the cost to meet
the ARPE-E project goals, a novel optimization technique was developed.

Other projects have proposed solutions to floating offshore wind turbine optimization
problems. Most focus on replacing time domain simulations in the optimization with
various methods. In [8], a spar was developed by generating 12 feasible designs with a
spreadsheet calculator, executing a frequency domain simulation to down-select the three
best designs and then performing time domain simulations on the set to choose a finalized
design. This approach is similar to the current work in the progression from hydrostatic
calculations showing feasible designs to frequency domain simulations. However, with
only 12 designs to choose from, there is no way to guarantee the search space is optimal, as
one can accomplish by examining the statistics of repeated genetic algorithm (GA) runs.
Additionally, with the manual manipulation involved in spreadsheet calculations, this
limits the set of designs that could be considered, and subsequent redesigns would also be
time-intensive.

Replacement of the time domain simulations was also proposed with the use of
machine learning to develop a statistical model of a mooring system in [9]. A similar
approach was taken in parts of the current work; to replace the wave loadings on the
hull that are typically obtained from the potential flow solver WAMIT, a response surface
model was developed. However, statistical methods based on training points from the
full time domain simulation were deemed unsuitable. With the number of input variables
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required for the floating platform problem presented here being six, the number of training
points for a statistical model would have required too many time domain simulations to
be practical.

A similar method to the present work was developed by [10], where they developed
an analytical model to replace the time domain simulations. Their analytical model only
considered a subset of the degrees of freedom, as the frequency domain simulation in this
work does. In order to verify their analytical models, they were benchmarked against the
time domain solver OpenFAST, similar to the present work. While [10] also used a damping
device, their optimization only focused on the parameters for the damping device and not
the platform itself to minimize the overall cost.

Overall, the existing literature has identified the need to optimize floating offshore
wind platforms to help reduce costs compared with traditional sequential design methods.
In particular, attempts at reducing the amount of time domain simulations have been
proposed. However, the existing literature does not contain methods to optimize the
entire system efficiently. For example, where tuned mass dampers have been studied, only
the tuned mass damper was optimized for a pre-existing platform. Therefore, for a new
generation of lighter platforms, there is a need for a comprehensive optimization technique
combining the hydrostatic and dynamic models, including tuned mass damper physics
with sufficient computational efficiency so as to practically generate designs.

The present work is based on the use of a TMD element to reduce the platform mass
and a novel optimization approach to minimize the cost of the platform. Drawing from
a 2018 proof-of-concept basin test of a 1:50 scale semi-submersible platform with TMDs
utilizing water ballast, potential was seen for a platform concept taking advantage of the
motion mitigation properties of the TMD [11]. A photo of the test is shown in Figure 1.
Since semi-submersible designs already require significant amounts of ballast to float with
much of their height underwater, the ballast water can be used by the TMD to stabilize the
platform without adding mass. Furthermore, with the motion mitigation from the TMD,
the wave periods do not need to be avoided so the waterplane area of the platform can be
reduced, reducing the mass of the material used in the platform. The optimization assumed
a TMD element-motivating water ballast as the effective mass of the TMD, similar to [11].

Figure 1. A photo from the 2018 model test.
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The University of Maine has previous experience with post-tensioned concrete in the
development of the VolturnUS semi-submersible floating offshore wind turbine
platform [12]. Post-tensioned concrete is advantageous over steel in corrosion resistance,
manufacturing cost, and material cost. With this in mind, the University of Maine devel-
oped a cruciform hull shape to be made of post-tensioned concrete, on which the current
work would be based. The cruciform shape is easily constructed and allows room for
ballast water and TMD equipment. The cruciform is shown in Figure 2. In keeping with
industry trends toward larger turbines, the platform was designed around the IEA 15 MW
reference turbine, a research turbine with power output consistent with state-of-the art and
future industry turbines.

Figure 2. The cruciform hull concept.

Owing to the highly nonlinear constraints, a GA was chosen for the optimization
architecture. A GA assesses the fitness of a given design based on the objective of the opti-
mization, subject to constraints. The objective, minimization of the LCOE , was calculated
based on a model developed by ARPA-E for the ATLANTIS program. Significant work
was conducted on the development of the constraint functions. Similar to the requirements
that would be set by a turbine’s original equipment manufacturer, the typical values of
horizontal and vertical acceleration and the pitch angle limits were set for an IEA 15-MW
turbine. In addition, a model was required that accounted for the TMD and its travel
limits. To capture these dynamic constraints, a frequency domain model was developed
to save computational time over a time domain simulation. To generate the necessary
inputs for the frequency domain model, a hydrostatic function was also developed. This
model also outputs constraints related to geometric compatibility and initial stability. Since
the hydrostatic constraints are essential to any design’s suitability (a design that does not
float is obviously not practical, for example), a staged constraint handling method was
developed. When the hydrostatic constraints were violated, the GA skipped the execution
of the frequency domain model. This saved significant computational time, because while
the frequency domain model took at least 90 s to run, the hydrostatic model required less
than 1 s.

The present work focuses on the optimization of the cruciform-type hull. In particular,
the main developments were the input variable selection, integration of constraint functions
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with the GA, development of a hydrostatic function to generate constraints and inputs
to the frequency domain function, and control scheduling. The Materials and Methods
section details the GA parameters, the staged constraint handling method, input variable
selection, and details of the objective and constraint functions. Following that are the results,
detailing the wind and wave conditions used, specifications of the IEA 15-MW turbine and
the converged platform, simulation results for the platform, and convergence criteria for
the GA. In all, the article describes the solution techniques required to optimize the novel
cruciform hull design. This includes the numerical models developed specifically for this
design and the wind and wave data necessary for their implementation. Tying together the
numerical models is a genetic algorithm, with methods described to increase computational
efficiency. Resulting from the optimization is a floating offshore wind platform with a
significantly reduced cost compared with the state of the art.

2. Materials and Methods

After an initial platform concept was developed to demonstrate the potential for
the ARPA-E ATLANTIS program, work began on development of the optimizer. The
optimizer needed to produce results with enough fidelity to adequately describe the system
while simultaneously being computationally efficient enough to allow 12,000 designs to
be analyzed in a single optimization run. In summary, the typical analysis process of
analyzing hydrostatic quantities and then using them as inputs in dynamic models was
replaced by MATLAB functions executed sequentially in producing the fitness of a single
design point. The details of the genetic algorithm optimizer and the MATLAB functions
used to analyze the fitness of the designs are described in this chapter. Descriptions of the
model use a coordinate system as shown in Figure 3.

Figure 3. Coordinate system.

2.1. Genetic Algorithm and Constraint Handling

The optimization used a GA with tournament selection and niching as proposed
by [13]. The present optimization follows the method in Section 3.4 of [14], which also used
real coded variables defined as continuous rather than binary variables. The method aims
to find the genes, or the specific values of input variables, that minimize a fitness function
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composed of an objective and subject to constraints. The objective was minimization
of the LCOE, and a number of constraints were imposed based on geometric feasibility,
hydrostatic stability, and motion limits. The LCOE is defined as

LCOE =
Total Li f etime Cost

Total Li f etime Output
(1)

Novel in this optimization effort was the use of a constraint function with a staged
approach, whereby computationally inexpensive hydrostatic quantities were calculated
first, and for those deemed infeasible, further calculations were not made. For those
that passed the first round of constraints, more computationally expensive modeling was
performed. The method of separating fitness and constraint functions so as to not penalize
feasible design configurations was proposed in [13] and has been used extensively. In
this optimization, there was further separation in the constraints based on first checking
the hydrostatic and geometric criteria and skipping computationally intensive frequency
domain calculations for infeasible designs from the first hydrostatic check. As such, the
fitness of a given design was assigned to be

F(x) =


f (x), if gHDF(x) & gFDF(x) = 0
fmax + gHDF, if gHDF(x) > 0
fmax + gFDF, if gHDF(x) = 0

(2)

where x is a vector of the design parameters, F(x) is the fitness, f (x) is the objective function
value, gHDF(x) is the hydrostatic function (HDF) which is less computationally expensive,
gFDF(x) is the frequency domain function (FDF) which is more computationally expensive,
and fmax is the highest value of the objective function between two individuals in the
tournament selection of the reproduction. Since this is a minimization problem, the lower
the fitness F(x), the better the design. In summary, the optimization is the minimization of
LCOE ( f (x)) subjected to hydrostatic constraints (gHDF) and dynamic constraints (gFDF).
The GA is shown graphically in Figure 4.

Begin

Initialize Population
(Generation = 0)

Assign Fitness
(Objective and Constraints)

Termination Criteria?

end

Reproduction
(Selection)

Mating Pool

Crossover

Mutation

Generation =
Generation + 1

yes

no

Figure 4. Flowchart of the GA.
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The predefined process box for “Assign fitness” represents Equation (2), and the logic
for determining the fitness value for one generation is depicted in Figure 5.

Start

Hydrostatic functionIndividuals from
population

Hydrostatic
constraints

Constraints zero?Response surface model

Mass, stiffness
and damping matrices

Frequency domain model

Freq. domain
constraints

Assign Constrain Value

Assign constraint value

Metric space calculation

Objective:
LCOE

Assign fitness

End

no

yes

Figure 5. Flowchart of one iteration of the GA.

The bold text processes in Figure 5 are Matlab functions which are detailed in this
chapter, and they comprised the majority of the research effort. The constraint values from
the HDF and the FDF are also described.

2.1.1. Input Variables

The input variables were the following:

• r, the outer radius of the platform;
• w, the outer width of the platform;
• d, the draft of the platform;
• hp, the displacement limit which is a bound on the travel of the TMD;
• f , the freeboard of the platform;
• a, the aspect ratio, which is the ratio between the inner length along the radius and

the inner width of the platform.

The input variables are shown in Figure 6. hp is not included in this diagram because
it describes the travel limit of the TMD.
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Figure 6. A diagram showing the definition of the input variables.

Selection of the input variables was based on the minimum number of variables to
adequately affect the objective—minimization of the LCOE—and which had an effect on the
constraints. The outer platform dimensions r, w, d, and f influence the hydrostatics, static
heel allowance, space for the ballast and TMD movement, dynamic response of the system,
and the total mass of concrete, which is the main cost driver in the LCOE calculation. The
displacement limit hp of the TMD affects the space available for the ballast, and importantly,
the amount the TMD modeled in the FDF can move influences the dynamic performance.
Finally, a changes the space for the ballast water, in addition to the center of gravity of the
ballast and the moment arm of the TMD.

The limits of the input variables are themselves geometric constraints and are as
follows in Table 1.

Table 1. Input variables’ ranges.

Variable Lower Limit Upper Limit

r (m) 32.5 45
w (m) 8 21
d (m) 7.5 15

hp (m) 3 7
f (m) 3 15

a 1 2

The outer platform dimensions r, w, d, and f were chosen based on an initial system
design considering a set of reasonable designs in terms of initial hydrostatic stability and
compatability with the IEA 15 tower and mass. The TMD travel range hp was chosen based
on observing typical TMD motion extremes from the FDF and the upper limit such that
there would be adequate space for the ballast water. The ballast tank aspect ratio a tends
toward filling the leg length, so it was set to be no less than 1, and the upper limit of 2 was
near the full length of the leg for most width and radius combinations.
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2.1.2. Constraints

The constraints were penalized differently based on the severity of their impact on
platform feasibility. In particular, we have

gHDF = pHDF
6
∑

n=1
gn + pFDF, if

6
∑

n=1
gn > 0

gFDF = pFDF
10
∑

n=7
gn, if gHDF = 0

(3)

where gHDF is the sum of the constraints calculated by the HDF, gFDF is the sum of the
constraints calculated by the FDF, and gn is an individual constraint calculated by the
HDF or FDF, of which there were 10 total. The penalties for each stage were pHDF = 1000
and pFDF = 100, and thus a more severe penalty on designs that fail the HDF constraints
was assigned. If the HDF constraints failed, the FDF did not execute, and pFDF was
added to the constraints to ensure the GA did not favor designs that just barely failed
the HDF constraints. In Equation (3), on the first line, the sum of constraints reaches six,
corresponding to the six constraints calculated by the HDF, and the four FDF constraints
are not summed because the HDF constraints have failed (greater than zero). In line two of
Equation (3), all the constraints are summed for both the HDF and FDF constraints because
none of the HDF constraints are violated.

The constraints were normalized by a baseline value and by the number of constraints
in their respective stage such that{

gn = 0, if x ≥ xb

gn = x−xb
Nxb

if x < xb
(4)

where xb is some baseline value, x is the constraint quantity, and N is the number of
constraints in the stage. For some cases, the constraint value became infeasible when less
than zero, in which case the constraint assigned was{

gn = 0; if x < 0
gn = −x

Nxb
if x ≥ 0

(5)

The constraints and their calculations were for the HDF and FDF:
HDF Constraints

• The hull is initially unstable: g1 =
−GM

Nh · 16.44
, where GM is the metacentric height of

the hull, and the baseline value of GM = 16.44 m is from an initial system design. This
accounts for metacentric heights less than zero, which are obviously infeasible.

• The ballast water does not fit in the ballast chamber: g2 =
yTMD − yvac

NhyTMD
, where yTMD

is the travel limit of the TMD and yvac is the height of the vacant space in the ballast
tank above the ballast water. If the required ballast mass with the TMD at the limit of
its travel interferes with the top of the chamber, this constraint is non-zero.

• Negative ballast mass required: g3 =
−mb

Nh · 6.85× 106 , where mb is the ballast mass in

the hull and 6.85× 106 kg is the ballast mass required from an initial system design.
This accounts for situations where the buoyancy of the hull requires a negative ballast
mass to reach the specified draft.

• Linear hydrostatics violated: g4 =
− fmin

Nh · 3.79
, where fmin is the minimum freeboard

under the rated thrust. This constraint becomes non-zero when the deck is just exposed
to the waterline.
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• Towout draft too large: g5 =
dtow − 10

Nh · 10
, where dtow is the towout draft (the draft

without ballast) and 10 m is the maximum draft allowable. This constraint ensures the
hull does not sit too deep in the port.

• Ballast chamber does not fit: g6 =
Lbal − Lavl

NhLavl
, where Lbal is the length of the ballast

chamber and Lavl is the available space inside the hull along the radius for the ballast
water. This accounts for situations where the combination of the aspect ratio and
width is incompatible with the space available.

FDF Constraints

• The horizontal RNA acceleration limit is exceeded: g7 =
aRNA,x − 2.5

N f · 2.5
, where aRNA,x

is the horizontal acceleration of the RNA and 2.5m/s2 is a typical value set by a
turbine OEM.

• The vertical RNA acceleration limit is exceeded: g8 =
aRNA,z − 2.0

N f · 2.0
, where aRNA,z

is the vertical acceleration of the RNA and 2.0m/s2 is a typical value set by a tur-
bine OEM.

• The pitch angle limit is exceeded: g9 =
θp − 10
N f · 10

, where θp is the pitch angle of the

tower and 10◦ is a typical value set by a turbine OEM.
• The TMD travel limit is exceeded: g10 = ytmd, where ytmd is the maximum travel of the

TMD. This constraint accounts for designs where there are no damper configurations
(one period and varied damping ratios) that keep the TMD within the limits for
all design load cases. See the section on the FDF for details on how the period and
damping ratios were chosen.

2.1.3. Objective

The objective of the genetic algorithm was to minimize the LCOE. The objective
function, as in Equation (2), was simply

f (x) = LCOE (6)

Calculation of the objective was handled by the metric space calculation as shown in
Figure 5. The metric space calculation was a model developed by ARPA-E for use by all
projects in the ATLANTIS program, the details of which are described in the section on the
metric space calculation.

2.2. Hydrostatic Function

The hydrostatic function is a computationally efficient MATLAB function to calculate
the static stability and geometric compatibility constraints and generate inputs for the
FDF. To allow geometry changes in MATLAB and to a Solidworks reference assembly, the
cruciform hull was broken up into parallelepipeds parameterized to the overall dimensions
of the system. The inputs are listed in Table 2.
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Table 2. HDF inputs.

Matlab Variable 1 Description

r, w, d, f , hp, a Optimizer variables as described in Table 1
h Height, f + d
t Nominal wall thickness, 0.3 m

rts Outer radius of tower support, 5 m
hs Height of support above deck 15− f

nwall Number of additional walls for damage stability, 0
Lbal Length of ballast tank, a · (w− 2t)
rp Radius of TMD element
A0 Water plane area, 2wr + w(2r− w)
V0 Volume below waterline, A0 · d
Fb Buoyant force, gV0 · ρocean
Iwp Waterplane area moment of inertia, (2r−w)w3/12 + w(2r)3/12

BM Distance between center of buoyancy and metacentric height,
Iwp/V0

KB Distance between keel and center of buoyancy, d/2
TMDlim,TMD Limit of TMD travel, hp − 0.5
TMDlim,h20 Limit of travel of water, TMDlim,h20 · πr2

p/((w− 2t)Lbal)

1 The variables under this heading are identically named to the variables in the MATLAB funcion, except where
subscripts shown here are represented by underscores in the code.

The mass, KG, and mass moments of inertia were then calculated for each component
and summed to obtain the overall system properties. Figure 7 shows the components of the
platform, each of which is an element in the MATLAB function and Solidworks assembly.
After the necessary system properties were calculated, the constraints were assigned.

(a) An exploded view of the keystone (b) An exploded view of one leg

Figure 7. Exploded views of the keystone (a) and one leg (b).

Before calculation of the constraints, the mass, center of gravity, and moments of inertia
needed to be found. The masses of each component were obtained by the multiplication of
the volume of each component and the concrete density and then summed to find the total
mass as in

m =
n

∑
i=1

ρcVi (7)

where the indices are i, the component, and n, the total number of components. V is the
volume of each hull component, and ρc is the density of the steel-reinforced concrete. The
volumes were parameterized to the system dimensions. For the tower, RNA, and blades
of the IEA 15-MW turbine, the properties were from the publicly available reports from
NREL [15,16].
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The KG of each component was parameterized to the system dimensions and then
summed to obtain the overall KG:

KG =
n

∑
i=1

mi · KGi
mi

(8)

where KG is the distance from the keel to the center of gravity and m is the mass.
To obtain the mass moments of inertia I around the x, y, and z axes, the moments of

inertia for each component were summed:

I =
n

∑
i=1

Ii (9)

In addition, the parallel axis theorem was applied to obtain the moments of inertia for
each component:

Ii = Ilocal + miL2 (10)

where L is the distance between the x, y, or z axis passing through the component centroid
and the hull centroid. Note that the ballast water was also modeled as a parallelepiped,
and the free surface effects were ignored in calculating the static heel angle.

2.3. Frequency Domain Function

The frequency domain function is a two-dimensional, six-degree-of-freedom frequency
domain dynamic response solver [17]. It considers wind and wave loading on the platform
with sprung and damped lumped masses to represent the tuned mass damper system. A
diagram of the model with degrees of freedom labeled is provided in Figure 8.

 

Mt 

Is 

Md1 

Mt 

Md2 

x6 

x5 
x4 

x1 

x2 

θ3 My 

Fx 

Fy 

Kt 

Ct 

Kd1 Kd2 Cd1 Cd2 

Ltz 

Lhz 

Figure 8. A diagram of the FDF model [17].
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With the total mass, KG, and moment of inertia data calculated from the HDF, deriva-
tive quantities were used as the inputs for the FDF and as constraints. The key quantities
input into the FDF are shown in Table 3.

Table 3. Frequency domain inputs.

Matlab Variable Description

Lwz Distance from the system CG to the waterline

Is
Mass moment of inertia in the pitch DOF about the

center of gravity
K11 Mooring stiffness in the surge direction
K33 Heave stiffness

zcg,tower Tower z center of gravity
Mtower Mass of the tower
zcg,hull Distance from CG of dry hull to system CG
Mhull Mass of the hull without ballast

zcg,RNA RNA z center of gravity
MRNA Mass of the RNA
Mptotal Total ballast mass
Mpxcg Ballast x center of gravity
Mpzcg Ballast z center of gravity

Ltbz Distance from the system CG to the hull and tower interface
htank Inner height of the ballast tank
wtank Inner width of the ballast tank

To obtain the motion constraints, the outputs from Table 3 were passed into the
computationally-efficient FDF. The FDF used wave forcing from WAMIT and the wind
speed to aerodynamic loading transfer functions derived from OpenFAST and computes
RAOs to output the response spectra and ultimate load information. For this optimization,
the maximum acceleration of the RNA, maximum pitch angle, and maximum travel of the
TMD were required to calculate the constraints.

2.3.1. Response Surface Model

Though shown as a separate function in Figure 5, the response surface model (RSM)
was applied within the FDF. Typically, the hydrostatic stiffness coefficients, added mass and
inertia coefficients, radiation damping coefficients, and wave excitation force and moments
on a hull are obtained from a computationally intensive potential flow solver. However for
the present work, an RSM was derived using inscribed central composite design points for
the three input variables describing the hull below the waterline, radius, leg width, and
draft. The design points used to train the RSM are shown in Figure 9.

Figure 9. A graph showing the locations of the training points for the RSM.
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Next, for each of the design points, a surface mesh was generated using MultiSurf [18],
taking advantage of the symmetry in the two planes. For example, a mesh is shown in
Figure 10.

Figure 10. A graph showing a surface mesh of the platform below the waterline. Due to the symmetry
in the two planes, only one quarter of the platform was generated.

Then, fully quadratic polynomial functions were fit to the hydrostatic coefficients in
heave, roll, and pitch, as well as the added mass in all six degrees of freedom, the radiation
damping coefficients in all six degrees of freedom, and the wave excitation forces and
moments for all six degrees of freedom, wave periods, and wave headings in their real and
complex components. To ensure an accurate fit, the results from WAMIT were compared
to the polynomial function for a point not included in the inscribed central composite
points. The WAMIT values versus the polynomial fit for X1, the surge wave excitation
force magnitude versus the period, are shown in Figure 11, indicating excellent agreement
between the RSM and the WAMIT results. Each polynomial fit for the WAMIT quantities
required was compared, with excellent agreement.

Figure 11. A graph comparing the X1 values in terms of period from WAMIT with the polynomial fit.
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2.3.2. Controller Scheduling

As detailed in [17], the FDF model output responses for a given sea state and range
of a TMD period and damping ratios were not assigned as input variables to reduce the
computation time. In order to assign FDF constraints, the response of the platform for
a specific TMD period and damping value was needed. The FDF produced a matrix of
values for each DLC case and each TMD configuration. The TMD was set to have a range
of possible periods and damping values, with periods based on the bounds of typical
ocean wave frequencies and the damping values within an assumed physically possible
range. It was also assumed that any period could be set in the detailed design by the spring
element. Thus, the output matrix had rows equal to the number of DLCs and columns
equal to the number of periods considered times the number of damping values. As a
result, the number of DLCs, periods, and damping ratios considered all added to the
computation time. The period and damping ratio for the TMD were needed to obtain the
dynamic response for each platform, but adding the damping ratio and period as variables
to the optimization would have required a larger population in the GA, increasing the
computation time. Furthermore, the best damping period varies by DLC, so there is not an
obvious way to implement the damping as an input variable. Therefore, a control schedule
was designed to minimize all platform motions while passing the constraints.

The controls over the TMD damping and period were scheduled with the assumption
that a real control scheme would result in the minimum motion response of the platform.
Since in a real embodiment, the spring would be fixed, but the damping could be changed
along with the sea state on the scale of a few hours, and logic was implemented to choose
the best damping ratio for each TMD period and DLC. There are multiple considerations
in finding the best damping ratio. The first is that the TMD motion must stay within the
travel limits inside the platform (constraint g10). The second is that the RNA cannot exceed
the acceleration and pitch angle limits (constraints g7, g8, and g9). The final consideration
is that the motion should minimize the RNA accelerations and pitch angle. A weighted
average of the platform constraints g7, g8, and g9 was used as the metric to minimize for
the purpose of finding the best damper setting such that

R̄ =
9

∑
n=7

r[n]i,j

r[n]max

(11)

where R̄ is the weighted average of the platform motions, r is the maximum platform
motion for a given DLC, period, or damping ratio, the superscript [n] corresponds to the
platform constraint number (e.g., r[7], the maximum horizontal acceleration of the RNA, is
used in the calculation of g7), the subscript i refers to the DLC, the subscript j refers to the
period and damping ratio combination, and the subscript max refers to the limiting value
as taken from the typical turbine OEM values used in the constraint calculation.

Based on a set range of DLCs, periods, and damping ratios, the FDF produced matrices
of the maximum values for r[6], r[7], r[8], and r[9]. For example, the TMD limits are in the
form of Table 4. The limit of TMD travel varies based on platform geometry, and an example
value of r[6]max = 5.0 m is used here. The values that passed are highlighted in green, and the
values that failed are highlighted in red.

Table 4. Format of TMD motion matrix.

T1 T2

DLC ζ1 ζ2 ζ3 ζ1 ζ2 ζ3
DLC1 2.0 3.0 4.0 6.0 5.5 5.1
DLC2 5.5 4.0 4.5 5.5 4.0 6.0

Since a design whose TMD travel would exceed the physical space available is not
feasible, the TMD travel is a factor in deciding the period and damping ratios. r[7],
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r[8], and r[9]. The damping ratio for each DLC is set based on the following logic: if
all damping ratios pass as in (T1, DLC1), then the chosen damping ratio is based on
the best weighted average, calculated by Equation (11). For the case where at least one
index fails but more than one passes, such as with (T1, DLC2), then the chosen ζ is
based on the lowest weighted average of those that pass. When only one ζ passes,
such as with (T2,DLC2), then that is the chosen ζ. In the case of (T2, DLC1), where
no combinations pass, ζ is chosen such that r[6] is minimized. By applying this logic
to matrices for r[7], r[8], and r[9], we might obtain examples such as those shown in
Tables 5–8.

Table 5. Example RNA horizontal acceleration r[7].

T1 T2

DLC ζ1 ζ2 ζ3 ζ1 ζ2 ζ3
DLC1 1.0 2.0 3.0 1.0 2.0 3.0
DLC2 1.0 2.0 3.0 1.0 2.0 3.0

Table 6. Example RNA vertical acceleration r[8].

T1 T2

DLC ζ1 ζ2 ζ3 ζ1 ζ2 ζ3
DLC1 1.0 2.0 3.0 1.0 2.0 3.0
DLC2 1.0 2.0 3.0 1.0 2.0 3.0

Table 7. Example pitch angle r[9].

T1 T2

DLC ζ1 ζ2 ζ3 ζ1 ζ2 ζ3
DLC1 8.0 9.0 10.5 8.0 9.0 10.5
DLC2 8.0 9.0 10.5 8.0 9.0 10.5

Note that the values used in Tables 5, 6 and 8 are only examples and not representative
of a real system. In addition, recall that r[7]max = 2.0 m/s2, r[8]max = 2.5 m/s2, and r[9]max = 10.0°.
The green highlighted cells passed both the TMD travel limits and the respective platform
motion constraints, the orange values passed the platform motion constraints but failed
the TMD travel limits, and the red values failed just the platform motion constraints or
both the platform motion constraints and the TMD motion constraints. When applying the
TMD schedule, the resulting damping ratios are shown in Table 8.

Table 8. Damping ratios.

DLC T1 T2

DLC1 ζ1 ζ3
DLC2 ζ2 ζ2

ζ1 for (T1, DLC1) was chosen because all TMD travel values were below the limit, and
ζ1 resulted in the best weighted average for r[7], r[8], and r[9]. For (T1, DLC2), ζ2 was chosen
because although ζ1 resulted in a lower weighted average for r[7], r[8], and r[9], the TMD
travel was too great. ζ3 was the resulting choice for (T2, DLC1) because all three values
of TMD travel were too high, but ζ3 was the lowest. Finally, ζ2 was chosen for (T2, DLC2)
because it was the only value with a low enough TMD travel value.
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2.3.3. Design Load Case Down-Selection

Only a subset of DLCs from the ABS “Global Peformance Analysis of Floating Offshore
Wind Turbine Installations” [19] was included in the FDF. The load cases considered are
shown in Table 9.

Table 9. Design load cases.

Condition DLC

Power production, normal sea state 1.1
Power production, extreme sea state 1.6
Parked, 50 years of wind and waves 6.1

The DLCs were chosen to have the relevant cases that would result in the worst values
for the FDF constraints under normal and storm conditions. Therefore, startup, shutdown,
and damage stability cases were not simulated due to the need to minimize the computation
time and the increase in complexity of the HDF model for damaged cases. A detailed design
review that went through all of the DLCs was conducted after the optimization effort.

To further reduce the computational time, certain wind bins were not included in the
FDF. To identify which wind bins could be neglected, the FDF constraints were recorded
for each wind bin in DLC 1.1 and 1.6 across a range of design points in the search space.
If a certain wind bin never resulted in the maximum value for r[7], r[8], or r[9] across all
damping ratios and periods considered, then it was neglected in the optimization. Table 10
shows the wind bins considered for DLC 1.1 and 1.6. A complete description of the wind
and wave environment can be found in the Results section.

Table 10. Wind bins for DLC 1.1 and 1.6.

DLC Wind Bins (m/s)

1.1 10, 24
1.6 10, 12, 14, 16, 18, 20, 22, 24
6.1 50 years of wind and waves

For the normal operational case DLC 1.1, the wind bin’s near-rated speed and the
maximum wind speed were necessary. For the extreme sea state operational case DLC 1.6,
the wind speeds from near-rated to the maximum wind speed were all considered.

With the input variables input into the HDF, the necessary constraints and inputs
for the FDF were generated. Then, the dynamic constraints were assigned, and all con-
straint values were known for a given configuration. The next step was to assign the
objective value.

2.4. Metric Space Calculation

The ARPA-E ATLANTIS program compares the designs from a variety of projects,
and so a model was developed to compare the costs of each project [20]. The calculation of
the LCOE, taken from [20], is defined as

LCOE =
FCR · CapEx + OpEx

AEP
(12)

where FCR is the fixed charge rate (1/year), CapEx is the capital expenditures (USD), OpEx
is the capital expenditures (USD/year), and AEP is the annual energy production (kWh).
The LCOE has units of USD/kWh.

To calculate the CapEx, in [20], the cost of multiple materials was combined into an
equivalent mass of steel of the platform by material multiplication factors. Specifically,
from [20], we have

mj = ftj(1 + fmj + fij)mcj (13)
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where the index j refers to the wind turbine component, m is the equivalent mass of the
component, ft is the material factor, fm is the manufacturing factor, fi is the installation
factor, and mc is the mass of the component [20]. The material factors are reproduced in
Table 11, and the manufacturing and installation factors are shown in Table 12.

Table 11. Metric space material factors.

Material ft UMaine Adjusted ft

Aluminum alloys 4.0 -
Brass (70Cu30Zn, annealed) 1.1 -
CFRP laminate (carbon fiber

reinforced polymer) 80.0 -

Copper alloys 1.5 -
GFRP laminate (glass-fiber,

reinforced plastic, or
fiberglass)

4.0 -

Lead alloys 0.6 -
Nickel alloys 3.0 -

Pre-stressed concrete 0.3 0.13
Titanium alloys 22.5 -

Steel of reference to calculate
ft factors 1.0 -

Table 12. Metric space manufacturing and installation factors.

Component fm fi

Rotor 3.87 0.10
Hub 11.00 0.10

Nacelle 9.49 0.10
Tower 1.69 0.10

Floating platform 2.00 0.13
Mooring system 0.14 0.52
Anchor system 6.70 3.48

The hull in this optimization was constructed of pre-stressed concrete, and UMaine’s
experience with pre-stressed concrete justified the reduction of the material factor from
0.3 to 0.13. Specifically, the new material factor was proposed based upon cost estimating
completed for the DOE Wind Energy Technology Office under UMaine-led contracts DE-
EE0006713.0000 and DE-EE0005990.0000. UMaine obtained three independent material,
construction, and assembly quotes for 6-MW concrete hulls for 500-MW farms. For simplic-
ity in the calculation worksheet, a single material factor ft of 0.13 was selected to reflect
the cost estimating data for materials, construction, and assembly for the material, and
therefore fm and fi were not changed.

An additional change was made to the sum of the masses. The array mcj was composed
of the rotor, hub, nacelle, tower, floating platform, mooring system, and anchor system
masses. Although the TMD equipment was made of steel, it was added directly to the
platform mass as

mc5 = mconc + 4mTMD (14)

where mplat f orm is the mass of the platform in concrete and mTMD is the mass of the TMD
equipment in one leg of the platform.

Mechanical System Costs

Finally, an additional change was made to the metric space to include the costs of
mechanical equipment. ATKINS Houston Offshore Engineering was contracted to develop
a module to calculate the cost of mechanical equipment for the floating platform. Earlier in
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the life cycle of the project, a different configuration of the TMD element was being consid-
ered, for which the mechanical costing model was developed. Although the configuration
changed, the main sensitivity of the model involved the cost of pressure vessels and com-
pressors, which were still present in the current configuration at similar pressures. While
time constraints did not allow the development of a model specific to the current system,
because of the similarity of the equipment, it was considered to be sufficiently accurate.
Furthermore, it is important to note that the cost of the mechanical equipment does not
exceed 0.54% of the entire system cost, so its contribution is small.

The inputs to the mechanical costing model that changed during the optimization
were the leg length, width, and height, the ballast tank length, width, and height, the air
reservoir length, width, and height, and the pressure required. To demonstrate their impact
on the LCOE, each of these variables was varied over their possible range while holding
the other variables constant. A plot of this is shown in Figure 12.

Figure 12. Graph of the percentage of the total system cost for each input variable.

As shown in Figure 12, the cost of the mechanical equipment was very small relative
to the total system cost. It varied from 0.47% to 0.54% at most. Therefore, although it is not
a perfect representation of the optimized system, it was included to capture the mechanical
system cost trend.

3. Results
3.1. Optimized Platform Summary

The optimized platform used post-tensioned concrete in a simple cruciform shape
in conjunction with damping devices in each radial leg, utilizing ballast water to reduce
platform motion. The use of post-tensioned concrete reduced the manufacturing cost and
material cost of the hull significantly. Furthermore, the addition of the damping devices
allowed a smaller and lighter hull than traditional buoyancy-stabilized FOWT hull designs.
Typically, designs such as semi-submersibles or barges achieve much of their rotational
stiffness from the waterplane area moment of inertia. To gain the required area moment
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of inertia, one may increase the area of the platform’s cut waterplane section. However,
this results in an undesirable increase in heave stiffness and produces minimal added pitch
inertia, which can place the heave and pitch natural frequencies close to the wave energy
range [21]. As such, it is general practice to achieve adequate pitch stiffness by increasing
the distance of the waterplane area from the neutral axis, which can require a significant
amount of structural framework to achieve. However, the addition of the damping devices
allowed for the system’s rigid body natural frequencies to lie within the wave excitation
range, with the platform relying on the dampers to mitigate undesired resonant excitation.
Finally, the platform was designed around the IEA 15-MW reference turbine, a theoretical
turbine designed to represent the industry trend of larger capacity turbines. A rendering of
the optimized platform design is shown in Figure 13.

Figure 13. Rendering of the converged platform with the IEA 15-MW turbine.

Table 13 lists the mass of each component, the equivalent mass of the system in terms
of the reference steel (see the metric space calculations), and each component’s percentage
of the equivalent steel mass. Current platform designs account for more than 50% of the
equivalent mass of the entire system, according to ARPA-E analysis developed from [22].
The major advantage of this design is that the percentage of equivalent steel mass for
the floating platform is roughly 15% of the total mass, allowing a significant reduction in
overall cost.
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Table 13. Mass and equivalent masses of platform components.

Item Actual Mass (kg)
Equivalent

Steel Mass (kg)
Percentage of

Equivalent Mass (%)

Rotor 194,126 3,859,200 18.5
Hub 190,000 2,299,000 11.0

Nacelle 607,275 6,431,000 30.9
Tower 1,262,967 3,523,700 16.9

Floating Platform 7,905,400 3,216,700 15.4
Mooring System 140,040 232,470 1.12
Anchor System 114,000 1,274,520 6.12

The optimization effort using the genetic algorithm proved successful, with adequate
computational efficiency. The staged constraint method coupled with the frequency domain
function and parallel processing allowed for a relatively fast computational speed. The use
of an engineering workstation laptop executed the optimization in between 1 and 2 days.
Furthermore, a solution was found that met the cost targets and passed the constraints,
reaching the goals of the ARPA-E project. Overall, ARPA-E set a cost target of USD
0.075/kWh, and the optimizer produced a platform design of USD 0.0753/kWh while
passing all constraints.

3.2. Turbine Specifications

The platform was designed around the 15-MW reference turbine, a theoretical turbine
developed by the National Renewable Energy Laboratory (NREL), the Technical University
of Denmark (DTU), and the University of Maine. This turbine was developed as a con-
servative estimate of actual industry capabilities. For example, the 12-MW GE Haliade-X
turbine was launched in 2021, and so the IEA 15-MW turbine was developed to represent
the near future of the industry [15], making it an appropriate choice for development of a
novel platform design. This section details the relevant properties of the turbine required
for the optimization. More details of its performance can be found in [15], the detailed
mass information for the floating platform version can be found in [16], and a CAD file and
other specifications can be found in [23].

The specifications of the IEA 15-MW turbine are shown in Table 14.

Table 14. IEA 15-MW turbine specifications.

Feature Value

Generator

Rated power (MW) 15
Power control strategy Variable speed, collective pitch

Rotor diameter (m) 240
Hub height (m) 150

Cut-in wind speed (m/s) 3
Rated wind speed (m/s) 10.59

Cut-out wind speed (m/s) 25
Range of rotational speed (RPM) 5–7.56

Blade

Maximum tip speed (m/s) 95
Swept area (m2) 45,000

Turbine component masses

Nacelle (t) 507.3
Hub (t) 190.0

Yaw bearing (t) 100.0
Blade x3 (t) 194.1

Total (t) 991.4
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Table 15 provides the quasi-static power coefficient, thrust coefficient, and thrust force
for the turbine, including the turbine aerodynamics and control systems.

Table 15. Turbine quasi-static characteristics.

Wind Speed
(m/s) Power (MW) CP Thrust (MN) CT

3 0.07 0.10 0.59 0.82
4 3.71 0.36 0.74 0.81
5 2.72 0.44 0.95 0.82
6 1.19 0.48 1.21 0.83
7 4.34 0.49 1.46 0.81
8 6.48 0.49 1.79 0.80
9 9.23 0.49 2.15 0.80

10.59 1 15.0 0.49 2.73 0.77
11 15.0 0.44 2.38 0.61
12 15.0 0.34 2.05 0.43
13 15.0 0.26 1.86 0.32
14 15.0 0.21 1.72 0.25
15 15.0 0.17 1.62 0.20
16 15.0 0.15 1.54 0.17
17 15.0 0.12 1.47 0.14
18 15.0 0.10 1.41 0.12
19 15.0 0.09 1.36 0.16
20 15.0 0.07 1.31 0.09
21 15.0 0.06 1.28 0.08
22 15.0 0.05 1.25 0.07
23 15.0 0.05 1.21 0.06
24 15.0 0.04 1.19 0.05
25 15.0 0.04 1.17 0.05

1 Rated wind speed.

The peak thrust value provided at the rated wind speed was used in the calculation
of g4, the HDF constraint for when the linear hydrostatics were violated. The mass and
geometry presented above give an overview of the what was needed for the calculate
masses, COGs, and moments in the HDF. More detailed specifications were obtained from
the OpenFAST input files found on GITHUB [23].

3.3. Wind and Wave Conditions

The wind and wave conditions were developed with data for a project site in state
waters approximately 4 km south of Monhegan Island, Maine, USA. This site is representa-
tive of the typical conditions found off the northeastern coast of the United States, and it
was deemed appropriate for offshore wind turbine systems under the ARPA-e ATLANTIS
program [6]. Water depths in the area are variable, ranging from 60 to 110 m. The site
is approximately 1.78 km by 3.38 km and is bounded at the southern edge by a 4.83-km
line indicating the extent of Maine state waters. The boundary coordinates are as fol-
lows: northern = 43°43′18.231′′; eastern = 69°20′16.759′′; southern = 43°42′15.436′′; and
western = 69°17′36.544′′. A map of the site is shown in Figure 14.
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Figure 14. Map of the project site’s location.

The design conditions were based on approximately 12 years of oceanographic buoy
data collected by the UMaine Physical Oceanography Group (PhOG) within the School
of Marine Sciences less than 2.5 km from the test site. For more information on the data
collection process or to download the data, refer to the UMaine buoy website [24].

The design conditions presented within this work were derived with the use of data
collected from three (3) metocean buoys. The majority of the data presented here was
derived from 13 years of Buoy E01 measurements. The buoy collected the following data:
significant wave heights and peak periods, 8-minute average and 3-second gust wind
speeds and directions, sea and air temperatures, current speed and direction from 2 m to
62 m below sea level, and air pressure. However, the E01 system did not record the mean
wave direction and as such was supplemented with 2 years of data from Buoy E02 over two
deployments in 2011 and 2015 at the test site. Additionally, the wave spectrum parameters
for the region were derived from 10 years of data collected from NOAA Station 44007.

• UMaine PhOG designation: E01
NOAA buoy designation: station 44032;
Deployment location: 43◦42′94′′ N, 69◦21′32′′ W;
Data range used: 9 July 2001–12 September 2014;
Data types used: significant wave height, peak wave period, wind speed and

direction, and current speed and direction.
• UMaine PhOG designation: E02

NOAA buoy designation: N/A;
Deployment location: 43◦42′39′′ N, 69◦19′18′′ W;
Data range used: 11 August 2010–7 October 2011 and 14 November 2014–17

September 2015;
Data types used: significant wave height and mean wave direction.

• UMaine PhOG designation: N/A
NOAA buoy designation: station 44007;
Deployment location: 43◦31′30′′ N, 70◦8′26′′ W;
Data range used: 1 January 2007–20 June 2017;
Data types used: wave spectral parameters.

Analysis of the data presented here was completed following the guidelines of the
International Standard IEC 61400-1 [25] and IEC 61400-3 [26] (Wind Turbines: Design re-
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quirements and design requirements for offshore wind turbines). The resulting data points
required to generate the design load cases are shown in Table 16. Next to each parameter
is the citation used to calculate each value. Note that for the individual extreme wave
heights, the significant wave height values were from [27], with their heights multiplied
by 1.86 per guidance from [26]. The extreme sea currents at varying depths were obtained
from peaks over threshold analysis from Buoy EO1 with a generalized pareto extreme
value distribution.

Table 16. Summary of environmental design parameters.

Wind Design Parameters Value

Annual average wind speed at 100 m (m/s) [28] 8.75
Extreme 10-min average 1-year wind speed at 4 m (m/s) [27] 18.4
Extreme 10-min average 10-year wind speed at 4 m (m/s) [27] 21.8
Extreme 10-min average 50-year wind speed at 4 m (m/s) [27] 24.1

Extreme 10-min average 500-year wind speed at 4 m (m/s) [27] 26.7
Normal wind shear power law exponent per ABS [19] 0.14
Extreme wind shear power law exponent per ABS [19] 0.26

Metocean and Site Design Parameters Value

1-year significant wave height (m) [27] 6.4
10-year significant wave height (m) [27] 8.5
50-year significant wave height (m) [27] 9.8
500-year significant wave height (m) [27] 11.5

Mean peak period associated with 1-year sig wave height (s) [27] 11.7
Mean peak period associated with 10-year sig wave height (s) [27] 13.3
Mean peak period associated with 50-year sig wave height (s) [27] 14.2
Mean peak period associated with 500-year sig wave height (s) [27] 15.0

1-year individual extreme wave height (m) [27] 11.9
10-year individual extreme wave height (m) [27] 15.8
50-year individual extreme wave height (m) [27] 18.2

500-year individual extreme wave height (m) [27] 23.0
Extreme 1-year sea current at depths 2 m/10 m/30 m/62 m (cm/s) [24] 77/63/48/45
Extreme 1-year sea current at depths 2 m/10 m/30 m/62 m (cm/s) [24] 89/79/67/67
Extreme 50-year sea current at depths 2 m/10 m/30 m/62 m (cm/s) [24] 105/88/81/88

Extreme 500-year sea current at depths 2 m/10 m/30 m/62 m (cm/s) [24] 127/99/104/129

Taking the data points from Table 16, the design load cases used in the optimization
were developed, and they are summarized in Table 17. As detailed in the Materials and
Methods section of this report, a subset of the full DLCs was used to save computation
time based on those conditions which caused constraint failures. Hs is the significant wave
height, Tp is the peak period, and γ refers to the spectral shape parameter for the JONSWAP.
Each case was considered with wind, wave and current headings of 90° from true north
to minimize the simulation cases, which was aligned with the legs. The wind speeds are
listed at hub height, and the current speeds are at a 2-m depth.
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Table 17. Environmental conditions for DLCs included in simulation.

DLC Wind
Speed (m/s) Hs (m) Tp (s) fl Current

Speed (m/s)

1.1 10 1.03 7.12 1.5 0.158
1.1 24 3.07 9.01 1.8 0.307
1.6 10 8.1 12.8 2.75 0.158
1.6 12 8.5 13.1 2.75 0.163
1.6 14 8.5 13.1 2.75 0.174
1.6 16 9.8 14.1 2.75 0.190
1.6 18 9.8 14.1 2.75 0.211
1.6 20 9.8 14.1 2.75 0.238
1.6 22 9.8 14.1 2.75 0.270
1.6 24 9.8 14.1 2.75 0.307
6.1 58.7 10.7 14.2 2.75 1.05

3.4. Genetic Algorithm Specifications and Convergence

The objective and constraint functions were written for a genetic algorithm MATLAB
code as used in [14]. The input parameters determining the convergence criteria, crossover,
mutation, and niching behavior are listed in Table 18. Only the maximum generations,
population, and number of genes were tuned from a set of values designed to work for
most problems. Specifically, with 6 input variables, the number of genes was also 6, and the
number of individuals in the population was set at 120, or 20 times the number of genes.
The maximum number of generations was set at 100.

Table 18. Genetic algorithm specifications.

Parameter Value

Maximum generations 100
Population number 120
Number of genes 6
Elite parameter 1
Best parameter 1

Probability of crossover 0.9
Probability of SBX crossover 0.5

Crossover strength parameter 1
Probability of mutation 0.02

Probability of PBM operation 0.5
Mutation strength parameter 100

Maximum allowable niching distance 0.1
Individuals checked during niching parameter 0.25

Drop parameter 0.5
Dyn parameter 0.001

To check that the genetic algorithm was not stuck in a local minima, multiple runs
were performed. By ensuring that the values of the genes for each run were close to each
other, it was concluded that the solution was adequately converged. Table 19 lists the
values between runs and their differences, expressed as percentages.

Table 19. Converged values for different optimizer runs.

Variable Optimizer Run 1 Optimizer Run 2 Percent Difference

r (m) 37.58 37.89 0.83
w (m) 15.53 14.86 4.37
d (m) 12.50 12.33 1.37

hp (m) 6.33 6.79 6.98
f (m) 6.14 6.65 7.92

a 1.90 1.99 4.51
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The standard deviation among the population in the last generation was also examined.
In the final generation, there should be a low standard deviation, indicating a limited spread
of designs around the best individual. For example, Table 20 shows the standard deviations
for one of the optimization runs.

Table 20. Standard deviation for the 100th generation.

Variable Converged Value Standard Deviation

r (m) 37.58 0.535
w (m) 15.53 0.507
d (m) 12.50 0.295

hp (m) 6.33 0.117
f (m) 6.14 1.69

a 1.90 0.069

To further illustrate the convergence of the optimizer, the histograms of the population
were created at different generations. At the start of the optimization run, the population fol-
lowed a random distribution across the range of possible input variable points, as shown in
Figure 15. After 50 generations, the genetic algorithm began to find favorable designs, and
thus the population followed a distribution centered around specific gene values, as shown
in Figure 16. After 100 generations, the standard deviation of the designs was very low,
so almost all the design points were tightly clustered around the best values, as shown in
Figure 17.

Figure 15. Population histogram for the first generation.
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Figure 16. Population histogram for the 50th generation.

Figure 17. Population histogram for the 100th generation.

Another way of confirming the optimizer resulting in the quasi-optimum solution
is to plot the surfaces of the input variables against the LCOE with the constraint values
overlayed in color. For example, plotting the radius and width of the platform against the
LCOE yielded Figure 18. Here, the darkest blue indicates designs that passed all constraints,
with shading of yellow indicating constraint failure. Since the staged constraint approach
yielded some designs with very high constraint values relative to the designs that just
barely failed the constraints, the constraints were normalized to better show the resolution
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of shading on the plot. The red point shows the optimized design, which is just at the
edge of failing the constraints, and also at the minimum possible LCOE that still passes the
constraints. This indicates the best possible design for the problem posed.

Figure 18. Surface plot of LCOE vs. radius and width with constraint values overlayed on the surface.

3.5. Optimized Platform Design

This section presents information about the overall dimensions, masses, and COGs of
the optimized platform and are compared to a baseline design. The baseline design was
initially developed to demonstrate the potential for the damper concept, and it is provided
to demonstrate the changes in properties when the system was optimized. Note that the
baseline design was designed before the FDF constraints were designed and did not pass
all the motion constraints. Therefore, this explains why the change in LCOE was not more
dramatic. Additionally, the FDF inputs and dynamic performance as they relate to the
constraints are presented.

3.5.1. Hydrostatic Specifications

The input variables values for the optimized platform are listed in Table 21. These
variables correspond to those labeled in Figure 6. The optimized values were found to
minimize the LCOE while passing all the constraints, and more details on the convergence
criteria are provided in Genetic Algorithm Specifications and Convergence.

Table 21. Input variable converged values.

Variable Optimized Baseline Percent Change

r (m) 37.58 43.50 −13.61
w (m) 15.53 11.00 41.18
d (m) 12.50 10.50 19.05

hp (m) 6.33 * *
f (m) 6.14 8.00 −20.88

a 1.90 * *
* The starred values were not compared because the baseline system was not designed around the present
damper design.

Overall, the legs were made shorter, and the freeboard was reduced, but the widths of
the legs and the draft were increased to allow for a greater ballast mass.
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The general properties for the converged platform are listed in Table 22. This table
also compares the parameters for the baseline platform. The values for the displacement,
COGs, and inertias in Table 22 include the mass of the IEA 15-MW turbine.

Observing the changes between the baseline system and the optimized system allows
for some conclusions on the characteristics favored by the optimizer to be formed. The
ballast mass was more than twice the mass of the hull concrete mass because the dampers
were more effective with more ballast mass, and the relatively lightweight hull required a
significant amount of ballast to float at the specified draft. Although the waterplane area
increased the heave and pitch stiffnesses, this was countered by the increase in mass from
the ballast, resulting in lengthened heave and pitch natural periods. The heave natural
period stayed within the wave period avoidance range, and the pitch natural period was
outside of the typically avoided 5–20 s.

Table 22. Mass and hydrostatic properties for the optimized platform.

Parameter Optimized Baseline Percent Change

Hull displacement (m3) 26,170 18,827 39.00
Waterplane area (m2) 2093 1790 16.93
Hull concrete mass (t) 7084 9382 −24.59
Ballast mass, fluid (t) 15,850 6853 131.3

TMD equipment steel mass (t) 821.9 * *
Vertical COG from SWL (m) 6.701 10.82 −38.07
Vertical COB from SWL (m) −6.251 −5.25 19.07

Roll inertia about COG (kg ·m2) 3.399× 1010 2.924× 1010 16.24
Pitch inertia about COG (kg ·m2) 3.410× 1010 2.924× 1010 16.62
Yaw inertia about COG (kg ·m2) 1.464× 1010 1.027× 1010 42.55

KG (m) 19.20 21.32 −9.94
KB (m) 6.25 5.25 19.05
BM (m) 21.70 32.51 −33.25
GM (m) 8.75 16.44 −46.78

Heave natural period (s) 11.38 9.81 16.00
Pitch natural period (s) 27.15 21.61 25.64

* The TMD equipment steel mass was not considered in the baseline design.

The FDF assumes the pitch stiffness is constant. However, the stiffness varies with
the motion of the ballast water because of the influence of the vertical center of gravity on
the righting moment. An estimate of the range of possible values for the pitch stiffness is
shown in Table 23. The effects of the changing stiffness were not considered, and this is a
limitation of the model, but it is not one with a significant change in the results.

Table 23. Change in pitch stiffness with TMD motion.

TMD Position Pitch Stiffness (Nm/rad) Percent Change vs. Resting

Up limit 1.84× 109 −17.61
Resting 2.23× 109 0

Down limit 2.63× 109 17.61

The platform with the IEA 15-MW turbine is shown in Figure 19. This view shows
the hub height, rotor diameter, draft, and freeboard. All platform designs maintained the
150-m hub height, so based on the value of the freeboard, the height of the tower interface
changed to maintain the hub height. The mooring system, which was assumed to have a
constant pretension, is not shown.
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Figure 19. Drawing of the platform with IEA 15-MW turbine.

A view of the platform showing the outer dimensions is shown in Figure 20.

10 

 27.50 
 18.64 

 75.15  15.53 

Figure 20. Drawing of the hull.

The internals of the platform are shown in Figure 21. Noting the thin wall thickness
relative to the scale of the drawing, the dimensioning in this view is based on the internal
distances versus the external distances shown in Figure 20. This view shows the wall
between the ballast chamber and the keystone with very little vacancy between them. This
is because the optimizer favored the aspect ratio to produce long ballast chambers relative
to the width. The mass, COG, and moments of inertia of this component were included in
the optimizer. However, after the final design, the mass from this component would be
replaced by ballast water. As noted in the Materials and Methods section, the line of action
of the dampers was assumed to be in the center of the ballast chambers in the plan.
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Figure 21. Drawing of the internal geometry of the platform.

3.5.2. Frequency Domain Inputs and Dynamic Performance

The hydrostatic function took the input variables and generated inputs for the fre-
quency domain function shown in Table 24. The hydrostatic and frequency domain con-
straints were all zero for the optimized platform.

Table 24. Frequency domain inputs.

Matlab Variable Value

Lwz (m) −6.701
Is (kg ·m3) 3.410 ×1010

K11 (N/m) 6.360 ×104

K33 (N/m) 2.104 ×107

zcg,tower (m) 49.31
Mtower (kg) 1,263,000
zcg,hull (m) −9.636
Mhull (kg) 7.084 ×106

zcg,RNA (m) 142.2
MRNA (kg) 9.914 ×105

Mptotal (kg) 1.585 ×107

Mpxcg (kg) 23.08
Mpzcg (kg) −8.093

Ltbz (m) 8.299

The controller scheduling described in Chapter 1 resulted in a period of 19.47 s. The
best damping ratio and platform motions are shown in Table 25. The variables r6, r7, r8, and
r9 are the platform motions described in Chapter 1 (the RNA horizontal max acceleration,
the RNA vertical max acceleration, the max pitch angle, and the max TMD displacement,
respectively), and Twbsmt is the tower base moment in kN ·m. The constraint for r7, the
vertical RNA acceleration (limited to 2.00 m/s2) was just barely passed. Additionally,
although further investigation would be required, it is important to note that the damping
ratio stayed relatively constant for DLCs 1.6 and 6.1, which were the limiting motion cases.
It is likely that in the real design, a constant damping ratio tailored for the limiting motion
cases would suffice.
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Table 25. Control scheduling and platform motions.

DLC/Wind Speed ı r6 (m/s2) r7 (m/s2) r8 (◦) Twbsmt (kN ·m) r9 (m)

DLC 1.1/10 m/s 3 0.390 0.175 7.139 4.46 × 105 0.127
DLC 1.1/24 m/s 1 0.731 0.640 3.285 1.96 × 105 1.146
DLC 1.6/10 m/s 0.7 1.313 1.630 8.570 6.12 × 105 5.081
DLC 1.6/12 m/s 0.7 1.262 1.673 8.227 5.77 × 105 5.359
DLC 1.6/14 m/s 0.7 1.504 1.680 7.332 5.34 × 105 5.359
DLC 1.6/16 m/s 0.9 1.561 1.847 5.151 4.15 × 105 5.339
DLC 1.6/18 m/s 0.9 1.640 1.846 4.477 4.01 × 105 5.339
DLC 1.6/20 m/s 0.9 1.538 1.846 4.234 3.82 × 105 5.339
DLC 1.6/22 m/s 0.9 1.684 1.848 4.326 3.81 × 105 5.339
DLC 1.6/24 m/s 0.9 1.698 1.847 4.320 3.57 × 105 5.339

DLC 6.1/58.7 m/s 0.9 1.415 1.999 −0.252 7.99 × 104 5.822

In summary, of the motions presented for each of the DLC cases from Table 25, the max-
imum values are listed in Table 26 with the corresponding DLC and wind speeds indicated.

Table 26. Maximum platform motions.

Property Maximum Value DLC/Wind Speed

Horizontal RNA Acceleration (m/s2) 1.698 DLC 1.6/24 m/s
Vertical RNA Acceleration (m/s2) 1.999 DLC 6.1/58.7 m/s

Platform Pitch (◦) 8.570 DLC 1.6/10 m/s
Tower Base Moment (kN ·m) 6.12 × 105 DLC 1.6/10 m/s

TMD Displacement (m) 5.822 DLC 6.1/58.7 m/s

To demonstrate the effect of the TMD on the platform, RAOs were produced from
the FDF for comparing the motion of the platform with the TMD turned off (TMD motion
locked out with infinite damping) to the motion with the TMD on. The TMD period was
set to 19.47 s, and the damping ratio was held constant at 0.9, since this value was the most
effective one in the majority of the DLCs. The heave RAO is shown in Figure 22, and the
pitch RAO is shown in Figure 23.

Figure 22. RAO comparing the platform heave with the TMD on and off.
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Figure 23. RAO comparing the platform pitch with the TMD on and off.

The heave RAO shows the TMD being effective within the wave period avoidance
range, with a significant reduction. The large reduction in motion for the pitch RAO shows
that without the TMD working, the design would be unsuitable, but the inclusion of
the TMD resulted in a significant reduction in platform motion. It is interesting to note
that whereas the peak spectral period Tp of the waves was at 12.8 s for DLC 1.6 with a
10-m/s wind speed (triggering the highest pitch angle), the control scheduling for the TMD
chose a period of 19.47 s. This fell between the heave and pitch natural periods of 11.38 s
and 27.15 s respectively. This suggests that the primary benefit of the TMD is avoidance of
the resonant conditions of the platform in storm conditions, as opposed to operational cases.

Providing confidence in the optimization results was the fidelity of the FDF. As re-
ported in [17], OpenFAST, a commonly used time domain solver for floating offshore wind
turbines, had good agreement with the frequency domain model used here.
Table 27, for example, shows the percent difference in response between the frequency
domain and OpenFAST model for the storm case of DLC 6.1. This was for a generic cru-
ciform design and not the optimized design. While the accuracy was sufficient for the
optimization, it is important to understand why the differences arose.

Table 27. Comparison of frequency domain model and OpenFAST [17].

Motion % Diff. Freq. Dom. and OpenFAST

RNA horizontal acceleration 12.2
RNA vertical acceleration 1.5

Platform pitch 7.6
Heave 4.4

When examining the RNA vertical and horizontal accelerations, the vertical response
stayed close between the frequency domain model and the OpenFAST model, while the
horizontal response was underestimated, especially near the peak thrust. The vertical
acceleration is primarily a result of the heave motion of the platform, with only secondary
effects from the pitch motion [29]. Contrasting this, the horizontal RNA motion is directly
a function of both hydrodynamic and aerodynamic loading, the latter of which OpenFAST
represents as a nonlinear quantity, whereas the frequency domain model does not.

The pitch angle was also present as a constraint in this optimization, which showed
good agreement. The largest discrepancy occurred between 8 and 12 m/s of input wind
speed. In this region, the platform is more sensitive to nonlinear turbine controller ef-
fects [30], which are captured in the OpenFAST model but not the linearized frequency
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domain function, explaining the difference. Overall, the optimization techniques applied
had sufficient accuracy and computational efficiency to generate a viable initial design.

4. Discussion

An optimization framework for a novel floating platform concept using a TMD was
successfully completed, with the result of meeting the desired cost targets with an LCOE
of USD 0.0753/kWh and passing the constraints. The overall mass of the platform was
7,905,400 kg, which as a percentage of the equivalent steel mass of the entire system was
15.4%, a significant reduction from existing platform designs. Considering the cost of
existing floating offshore wind technologies, meeting the cost targets set by ARPA-E is
a significant step toward further development of the concept and toward increasing the
viability of the offshore wind resource to power homes. Furthermore, successful execution
of the methods proposed in this work indicates the potential for a design methodology
shift, where components can be optimally sized for both cost and design constraints
simultaneously. Although the final design work has yet to check the strength requirements,
make detailed designs of the TMD elements, run the model through a full suite of design
load cases, and conduct model testing, the work presented here is a promising step.

Since the post-tensioned concrete hull is significantly lighter than its equivalent mass
in steel, the design bypasses one of the primary barriers to offshore wind: the high capital
expenditure in materials. In addition to the cost reductions allowed by the cheaper material,
this change was allowed by the optimization of the TMD with the platform. Since the
platform was designed around the TMD from the start, it could be used to avoid the
primary excitation modes. The typical wave period avoidance requirements of offshore
platform design were bypassed, significantly decreasing the necessary mass of the platform.

In the analysis of the platform, the genetic algorithm coupled with a unique constraint
handling technique provided insight on floating offshore turbine platform design tech-
niques. The majority of a typical design process was automated in the form of MATLAB
functions to handle the initial hydrostatic calculations and dynamic response predictions.
Many prior works have optimized only parts of the design, such as a damping element
or the outer dimensions of a hull. However, by automating the hydrostatic and dynamic
calculations to produce the necessary constraints, the optimizer was able to find the best
TMD element together with the hull, ultimately producing a less expensive design. Cru-
cially, with the use of the staged constraint handling technique and the frequency domain
function, the optimization could find a solution within a relatively short amount of time.

The optimization handled a significant portion of the design, but the final design work
remains before the platform is ready for a model test and further development. Specifically,
three important areas of future work were not covered in this optimization: detailed
structural analysis, the full set of design load cases required by the IEC, and detailed design
of the TMD elements.

There were no structural load related constraints included in the optimization. Instead,
a conservative estimate of the wall thickness, kept uniform throughout the hull, was
used based on a preliminary design. A future version of the optimizer could include
wall thickness as an input variable and simple analytical expressions to calculate the
constraints. Optimization of the wall thickness could potentially result in a lighter platform.
Additionally, detailed structural calculations must be made with the potential to add local
sizing adjustments and reinforcements.

Although every effort was made to identify the limiting design load cases to include
in the optimization, the cases included were only a small subset of those required for
certification. Upon running time domain simulations of all design load cases, if a case was
found that exceeded dynamic constraints, the optimization would need to be rerun with
that design load case.

The TMD element used in the optimization was not designed in detail because of
project time constraints. As a result, simplifications were made to the model with the
expectation that detailed specification would take place in a future design phase.
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The method developed in this optimization was a step forward in terms of a platform
design with the use of the TMD and a simple post-tensioned concrete hull. The optimization
techniques could also be a guide to future work. The MATLAB functions described here
were specific to the design of this platform, but as floating offshore wind turbine design
techniques advance, a more general optimization tool could be developed for research use
with user-defined defined platform concepts.
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