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Abstract: Wind loads for the design of wind-resistant high-rise buildings are generally evaluated
based on spectral modal analysis or time-history response analysis using wind pressure data ob-
tained from wind tunnel experiments with rigid models. The characteristics of the fluctuating wind
pressures around vibrating buildings must be evaluated for relevant wind-resistant designs because
the wind pressures around buildings are affected by their vibrations. One of the methods to inves-
tigate fluctuating fields is complex proper orthogonal decomposition (CPOD), which can express
complicated pressure fields, including advection phenomena, as coherent structures. This paper
presents the phase characteristics of fluctuating wind pressures around rigid and elastic models of a
square-sectioned prism evaluated via CPOD analysis using the results of wind tunnel experiments.
The evaluation procedure for the symmetricity of the fluctuating wind pressure modes obtained via
CPOD is presented. The similarity of fluctuating wind pressure fields is evaluated as the congruency
of the planes formed by the 1st- and 2nd-eigenmodes. With symmetricity and similarity, the fluctuat-
ing wind pressure fields are classified into three types: resonant and non-resonant states in smooth
flow, and in gradient flow. The characteristics of the three types of wind pressure fields are shown,
respectively, in the symmetric and anti-symmetric modes.

Keywords: fluctuating wind pressure field; complex proper orthogonal decomposition; prism;
wind tunnel experiment; eigenmode; rigid model; elastic model; vibration; phase characteristics;
high-rise building

1. Introduction

For a rational design of wind-resistant high-rise buildings, it is crucial to correctly
estimate the wind pressures around them. Accordingly, several researchers have estimated
the wind pressures around high-rise buildings [1–8]. In general, the wind pressures are
evaluated through wind tunnel experiments with rigid models. The characteristics of wind
pressures must be studied to consider building vibrations because they can be affected
by the vibration of buildings. Additionally, proper orthogonal decomposition (POD) has
been frequently used as a method for detecting the coherent structures of fluctuating wind
pressure fields when studying the wind pressures around buildings.

Tamura [9] validated POD by evaluating the fluctuating wind pressure fields around
low- and high-rise building models using it. Li [10] also evaluated the eigenvalues and
contribution ratio of POD for the wind pressures measured on the sloped roof surfaces of a
low-rise building in a wind tunnel experiment to demonstrate the validity and usefulness of
the method. Kim [11] conducted a wind tunnel experiment on two linked super- high-rise
buildings and used POD analysis to evaluate the fluctuating wind pressure fields around
the two building models. Jeong [12] used POD to analyse the fluctuating wind pressure
fields on the roof surfaces of a low-rise building model in occurrences where the wind
pressure measurement holes were both uniformly and non-uniformly placed. Cao [13] used
POD to evaluate the peak pressure of a high-rise building at two localized regions with
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severe suction: the lower windward corner of the side wall and the region immediately
upstream of the trailing edge. Zhou [14] used POD to investigate the effect of gap distance
on the aerodynamic interference effect of two neighbouring buildings. Mohammadi [15]
and Bourgeois [16] analysed the velocity fields in the wake of a square cylinder using POD
for the results of a wind tunnel experiment. Several other studies using POD analysis have
been conducted on buildings and civil engineering structures [17–25].

Complex proper orthogonal decomposition (CPOD) [26,27], which is an extension of
POD, has also been used in numerous studies. The CPOD method is based on the idea of
the analytic signal presented by Gabor [28], which is obtained by excluding the negative fre-
quency components in a real signal and doubling the positive frequency components. The
concept of the analytic signal is used in various fields and is crucial in CPOD. Taniguchi [29]
showed that advection phenomena of wind pressures can be expressed as a single principal
component by CPOD. This is a general method that includes POD expressing a fluctuat-
ing field as modes fixed in space. The CPOD method was also applied to standing and
traveling wave examples to demonstrate its effectiveness. Chauve [30] performed a CPOD
analysis of the flow field around a row of cylinders. The coefficients of the thermodynamic
Ginzburg–Landau type equation were estimated using the eigenmodes discovered in the
study. Harlander [31] conducted a CPOD analysis on the flow of a thermally driven heating
rotor measured by particle image velocimetry and laser doppler velocimetry to discuss the
flow fields. Pfeffer [32] performed a CPOD analysis on three experimental data sets for
flows over a two-wave sinusoidal bottom profile in a thermally driven rotating annular
fluid. The results of CPOD analysis provide a vivid description of the wave behaviour.
Furthermore, several studies have used CPOD in fields other than architecture or civil
engineering [33–35].

As described above, CPOD has been used to investigate various flow fields around
buildings and is considered as an effective method for such cases. Although Nakamura [36]
investigated the pressure fields around a flat plate roof, few studies have used CPOD on
fluctuating wind pressure fields around buildings, including the case in which the building
is vibrating. As the characteristics of fluctuating wind pressure fields can be clarified by
CPOD, this method will provide valuable knowledge for the wind-resistant design of
high-rise buildings.

The purpose of this study was to evaluate the phase characteristics of fluctuating wind
pressure fields around a prism and provide valuable knowledge for the wind-resistant
design of high-rise buildings. This paper consists of five sections. In Section 2, the set-
up of the wind tunnel experiments, measurement procedures, rigid and elastic models
of a square-sectioned prism, experimental parameters, and results of experiments are
described. The wind tunnel experiments were performed in both smooth and gradient
flows, measuring the pressures around the models and the displacement of the elastic model.
The wind pressure coefficients and displacements were determined by the experiments.
Furthermore, the displacement calculated according to the equation of motion using the
wind forces acting on the rigid and elastic models is presented. In Section 3, the CPOD
analysis procedure is explained. The pressure fields around the rigid and elastic models
were investigated using the characteristics of the eigenmodes and principal coordinates
using CPOD. In Section 4, the calculation procedure for the symmetricity of the eigenmode
is presented. The calculation procedure for the similarity of wind pressure fields as the
congruency of the plane formed by the two principal eigenmodes is also shown. Based
on these results, the pressure fields around the models were classified into three types
according to their flow characteristics and responses. In Section 5, the characteristics of the
pressure field for the types classified in Section 4 are discussed.

2. Wind Tunnel Experiment
2.1. Wind Tunnel Flow

Wind tunnel experiments were conducted in an Eiffel-type wind tunnel at the General
Building Research Corporation of Japan. The wind tunnel is shown in Figure 1. This study
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used two types of wind tunnel flows: a smooth flow and a gradient flow. The smooth
flow had a uniform vertical wind speed profile and little turbulence, and the gradient
flow was in a turbulent boundary layer generated on the wind tunnel floor by a spire
and roughness blocks. The power-law exponent of the gradient flow, α, for the mean
wind-speed profile was approximately 0.20. The profiles of the mean wind speed ratio
Uz/U600 and turbulence intensity Iu above the centre of the turntable in the wind tunnel
are shown in Figure 2, where Uz is the wind speed at a height of z mm. Figure 3a shows
the dimensionless power spectral density (PSD), fSu(f )/σ2, of the gradient flow at the
reference height H (z = 375 mm), where f is the frequency, Su(f ) is the power spectrum of
the fluctuating wind speed, and σ2 is the variance of the wind speed. The general shape of
the PSD is consistent with the Karman-type spectrum with Lz = 0.41 m, which corresponds
to 164 m when multiplied by the scale factor of the model (=1/400, as described later in
this section). Figure 3b shows a comparison of the turbulence scale (approximately 224 m)
between the wind tunnel gradient flow and the value in the AIJ Recommendations for
Loads on Buildings [37] (hereafter referred to as the AIJ-RLB). Comparing the value of Lz
with the recommended value in the AIJ-RLB for suburban exposure (Terrain Category III),
Lz seems to be smaller but is within the range of variability of the observations.
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Figure 1. Wind Tunnel.

2.2. Experiments Using a Rigid Model

The target of this study was a high-rise building that was 30 m wide × 30 m deep
× 150 m high. The model scale was set at 1/400, and the experimental rigid model was a
square-sectioned prism 75 mm wide × 75 mm deep × 375 mm high. An overview of the
rigid model is presented in Figure 4. The arrangement of the wind-pressure measurement
points is shown in Figure 5. In total, 120 wind pressure measurement points were estab-
lished with 30 points on each side of the model. A brass tube (40 mm in length, 0.8 mm
in inner diameter) and a vinyl tube (1000 mm in length, 1.0 mm in inner diameter) were
attached to the wind pressure measurement hole (0.8 mm in diameter). The rigid model
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was made of acrylic material, and vinyl tubing was led from the inside to the bottom of
the model.
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A schematic of the wind tunnel experiment using the rigid model is shown in Figure 6.
The reference velocity pressure was measured with a pitot-static tube A installed on the
windward side of the model. The wind pressure at each measurement point was led from a
vinyl tube to the pressure gauge. The pressure on the model surface was measured as the
differential pressure from the static pressure obtained by a pitot-static tube B installed at
the top of the model. The amplitude and phase distortions of the wind pressure time series
data owing to the vinyl tubing were corrected using an appropriate transfer function. The
experimental wind speed comprised 15 wind speed steps from approximately 3 to 11 m/s
at the reference height of the model, H = 375 mm. Thereafter, the wind speed was expressed
as the reduced wind velocity Vr = UH/f 0B, which is the experimental wind speed at the
reference height, UH, divided by the natural frequency of the elastic model, f 0 = 8.34 Hz,
and the model width, B = 0.075 m. The experimental wind direction was the only direction
in which the wind was normal to the front side of the model. The data-sampling frequency
for the measurements was 800 Hz. The number of measured data points was 129,465, which
corresponds to 90 min in real time, considering the experimental similarity rule for elastic
models described later. The distributions of the mean wind pressure coefficients Cpe and
the fluctuating wind pressure coefficient C̃pe for smooth and gradient flows for Vr = 9.7
are shown in Figures 7 and 8. The wind pressure coefficients Cpe and C̃pe are defined
as follows:

Cpe = P/qH , (1)

C̃pe = P̃/qH . (2)

where t is the time, P and P̃ denote the mean and root mean square (RMS) of the wind
pressure time series at a measurement point P(t), respectively, qH = ρUH

2/2 is the velocity
pressure, and ρ is the air density.

The distributions of Cpe and C̃pe exhibited different trends depending on the experimental
flow. The effect of Vr on the wind pressure coefficient distribution is almost negligible.

2.3. Experiments Using an Elastic Model

An overview of the elastic model is shown in Figure 9. The geometry of the model and
the wind pressure measurement point locations were similar to those of the rigid model.
The elastic model was made of balsa wood, and vinyl tubes were fixed inside the model to
prevent vinyl tubes from vibrating. A schematic of the wind tunnel experiments using the
elastic model is shown in Figure 10. The elastic model was attached to the vibration test
apparatus at the bottom of the turntable and elastically supported by springs. The displace-
ments of the model were measured with laser displacement meters at a position 207.5 mm
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downward from the centre of rotation. The measured displacement data were low-pass
filtered at 20 Hz to remove the noise components at high frequencies. The displacements
were measured in two directions: along-wind and across-wind. The definitions of the axes
are shown in Figure 11.
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The target of this study was a high-rise RC building that was 30 m wide × 30 m deep
× 150 m high, with a building density of 300 kg/m3 and a natural frequency of 0.25 Hz.
The damping ratios h were 1% and 2%, respectively. In this experiment, the two-degree-of-
freedom rocking vibration was reproduced by matching the reduced wind velocity, mass
ratio, and damping ratio between the target building and experimental model according
to the similarity rule of the vibration experiment. Table 1 presents the correspondence
between the structural properties of the target building and the experimental model. The
damping ratios and natural frequencies were evaluated based on the results of the free
vibration experiments under no-wind conditions. Free vibration experiments were con-
ducted before and after each experiment in each case. The damping ratios shown in Table 1
were calculated using the following equations by using the average value of the ratio d,
which is the amplitude of the free vibration waveforms obtained from the free vibration
experiments for each adjacent period for approximately 4 s.

h = (ln d/2π)/
√

1 + (ln d/2π)2. (3)

Table 1. Corresponding structural specifications between the target building and the experimen-
tal model.

Structural
Specification

Target
Building

Experimental
Model

Natural frequency (Hz) 0.25 8.34
Wind speed at reference height (m/s) 31.0–126.9 2.6–10.6

Reduced wind velocity Vr 4.1–16.9 4.1–16.9
Building density (kg/m3) 300 307

Generalized mass (kg) 13,500,000 0.216

Damping ratio h
(%)

Smooth flow
Along wind

1

1.08
Across wind 1.02

Gradient flow
Along wind 1.04
Across wind 0.96

Smooth flow
Along wind

2

2.03
Across wind 1.97

Gradient flow
Along wind 1.97
Across wind 2.00

The relationship between the damping ratios h1, calculated by Equation (3) using
the ratio d of amplitudes per period, and the dimensionless displacements δ/H is shown
in Figures 12–15. Here δ is the model top displacement. In each experiment case, there
is almost no amplitude dependency of the damping ratios, and generally stable values
are obtained.
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The distributions of Cpe and C̃pe for the elastic model in the smooth flow for h = 1%,
h = 2%, Vr = 8.8, Vr = 9.7 are shown in Figures 16–19. For Vr = 9.7, Cpe at the upper
part of both side surfaces was smaller than that in the case of Vr = 8.8. C̃pe shows large
values in the leeward region of the model side surfaces compared to those in the case of
Vr = 8.8 regardless of damping ratio. The different distribution compared to those for the
rigid model could be attributed to the large vibration of the elastic model caused by the
resonance phenomenon because the reduced wind velocity Vr = 9.7 is near the resonance
wind speed. The same pattern was observed for the case of h = 2% in the smooth flow.
However, the change in wind pressure distribution was smaller than that for the case
of h = 1%. Furthermore, the wind pressure distribution in the two cases of Vr = 9.7 and
Vr = 10.7 was similar to each other for h = 1%, and whereas those for other Vr were almost
the same as those at Vr = 8.8. For h = 2%, the wind pressure distribution is almost the same
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for all other wind speed ranges except for Vr = 9.7. The distributions of Cpe and C̃pe for
h = 1%, h = 2%, Vr = 9.7 in the gradient flow are shown in Figures 20 and 21. In the gradient
flow, the wind pressure distributions are almost the same regardless of h or Vr.
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Figure 16. Wind pressure coefficient distributions (elastic model in smooth flow, Vr = 8.8, h = 1%):
(a) Cpe; (b) C̃pe.
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Figure 17. Wind pressure coefficient distributions (elastic model in smooth flow, Vr = 9.7, h = 1%):
(a) Cpe; (b) C̃pe.
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Figure 18. Wind pressure coefficient distributions (elastic model in smooth flow, Vr = 8.8, h = 2%):
(a) Cpe; (b) C̃pe.
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Figure 19. Wind pressure coefficient distributions (elastic model in smooth flow, Vr = 9.7, h = 2%):
(a) Cpe; (b) C̃pe.
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Figure 20. Wind pressure coefficient distributions (elastic model in gradient flow, Vr = 9.6, h = 1%):
(a) Cpe; (b) C̃pe.
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Figure 21. Wind pressure coefficient distributions (elastic model in gradient flow, Vr = 9.6, h = 2%):
(a) Cpe; (b) C̃pe.
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The generalized wind force F(t) was calculated using P(z) obtained by linear interpola-
tion of the wind force (P1–P6) between each layer, assuming a linear mode µ(z), as shown
in Figure 22, using the following equation:

F(t) =
∫ H+H′

H′
P(z)µ(z)dz, (4)

µ(z) = z/
(

H + H′
)
. (5)
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Figure 22. Vibration mode.

The time-history response analysis was performed by solving the following equation
of motion, using as input the generalized wind force time series F(t) calculated from the
wind pressure data for the rigid and elastic models. Newmark’s beta method (linear
acceleration method) was used for numerical integration.

m
..
x(t) + c

.
x(t) + kx(t) = F(t). (6)

where m is the generalized mass of 0.216 kg, and k is the generalized stiffness of 592 N/m.
The damping coefficient, c kg/s, was obtained from the damping ratio h for each case

presented in Table 1 using the following equation:

c = 2h(2π f0)m. (7)

The number of data points for the generalized wind force was set to 143,850, and
the first 14,385 data points corresponding to the first 10 min of real time were envelope-
processed. In Figures 23–30, the following three displacements are shown for comparison.

δme : displacement of the elastic model by measurement.
δae : displacement by time-history response analysis using the wind force on the

elastic model.
δar : displacement by time-history response analysis using the wind force on the

rigid model.
The mean, RMS, and maximum values of the measured displacements of the elastic

model, converted to values at the top of the model, are shown in Figures 23–30 as the ratio
to the height of the model. Each statistic is the ensemble average of nine times calculated
for 14,385 data which corresponded to a real time of 10 min. The maximum value indicates
the maximum absolute displacement. The displacement ratios from the time-response
analysis using the generalized wind force F(t) are also shown in Figures 23–30.
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The statistics of the along- and across-wind vibration displacements in the smooth
flow are shown in Figures 23 and 26. The δme/H and δae/H values are almost the same
in the along- and across-wind directions. Meanwhile, the RMS and maximum values of
δme/H and δae/H are larger than those of δar/H in across-wind direction around Vr = 9.7
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to 10.7 at h = 1% and Vr = 9.7 at h = 2%. This is attributed to the effect of unsteady wind
forces generated by the vibration of the elastic model. δme/H was larger than δar/H and
δae/H in the same wind speed range along the wind direction. This is because when the
model is oscillating significantly across-wind, it oscillates in an elliptical orbit in the XY
plane, which also affects the along-wind vibration displacement.

The vibration–displacement ratios of the along- and across-wind directions in the
gradient flow are shown in Figures 27–30. There was no significant difference in the
along-wind vibration displacement among δme/H, δae/H, and δar/H for the experimental
results for the gradient flow. Meanwhile, there was a difference in the RMS and maximum
values of the across-wind vibration displacement for δar/H, δme/H, and δae/H, although
the difference was smaller than that in the case of smooth flow.

3. Complex Proper Orthogonal Decomposition
3.1. Evaluation Method

The CPOD analysis was performed on the wind pressure data obtained from wind tun-
nel experiments using rigid and elastic models by solving the following eigenvalue problem:

RAΦ = ΦΛ, (8)

where Φ is a mode matrix with the jth eigenvector as j-column; Λ is an eigenvalue matrix
with the jth eigenvalues λj as j-row and j-column diagonal elements; and A is a diagonal
matrix with a j-row and j-column element, Aj, which is the ratio of the burden area at point
j to the total side area. R is a complex covariance matrix, and assuming that the wind
pressure time series at point j, pj (t), is a stationary process with period T, the j-row and
k-column elements Rjk are obtained as follows:

Rjk =
1
T

∫ T

0
p̃j(t)· p̃k

∗(t)dt = ∑ωn≥0 4Pj(ωn)·Pk
∗(ωn), (9)

Pj(ωn) =
1
T

∫ T

0
pj(t)·e−iωntdt, (10)

p̃j(t) = ∑ωn≥0 2Pj(ωn)·eiωnt. (11)

where i denotes an imaginary unit, * is the complex conjugate, and Pj (ωn) is the Fourier
coefficient of the wind pressure at point j, pj (t), with respect to frequency ωn. In this
method, the covariance of the fluctuating wind pressure is obtained using the analytical
signal p̃j(t) shown in Equation (11), and the eigenmodes and eigenvalues are obtained
using a complex eigenvalue analysis for R. Mode φj shall have orthogonality in the broad
sense using A, and matrix Φ is normalized as follows:

Φ†AΦ = I. (12)

where, † is the Hermitian conjugate, and I is the unit matrix.

3.2. Contribution Ratio

From the eigenvalues obtained by the CPOD analysis, the kth contribution ratio Ck
was obtained using Equation (13).

Ck =
λk

∑N
j=1 λj

. (13)

where N is the maximum mode order.
The contribution ratios of the 1st- to 5th-mode, C1 to C5, in smooth and gradient flows

for the rigid model are shown in Figure 31. C1 and C2 are remarkably higher than those
of the other modes for both smooth and gradient flows. Ck for the elastic model is shown
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in Figures 32 and 33. In the smooth flow of Vr = 9.7 and Vr = 10.7, C1 is remarkably large
for h = 1%. In the case of h = 2%, C1 is much larger than the others when Vr = 9.7 in the
smooth flow. However, the contribution ratios, Ck, in the gradient flow are almost the same
regardless of the damping ratio, h, reduced velocity, Vr, and whether the model is rigid
or elastic.
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3.3. Eigenmodes

The eigenmodes obtained by the CPOD analysis are complex and have real and
imaginary parts. The absolute value and phase of the eigenmodes,

∣∣∣φkj

∣∣∣ and arg
(

φkj

)
,

are important for considering the characteristics of phenomena such as fluctuating wind
pressure fields around buildings. φkj represents the j-row and k-column elements of Φ and
the element at point k of the jth eigenmode. The 1st- and 2nd-eigenmodes for the rigid
model and the elastic model in the smooth flow of reduced velocity Vr = 9.7 are shown in
Figures 34 and 35, respectively. Regarding the phases on the right and left sides of the rigid
model, the 1st-mode is the symmetric mode, whereas the 2nd-mode is the anti-symmetric
mode. Meanwhile, the eigenmodes of the elastic model shown in Figure 35 are opposite
to those of the rigid model, with the 1st-mode being the anti-symmetric mode and the
2nd-mode being the symmetric mode. The eigenmodes for the rigid model and the elastic
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model in the gradient flow of reduced velocity Vr = 9.6 are shown in Figures 36 and 37,
respectively. The 1st-mode is the symmetric mode and the 2nd-mode is the anti-symmetric
mode, with no significant difference in absolute value and phase for both the rigid and
elastic models. However, the absolute value distributions and phase characteristics are
different from those in the smooth flow.
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Figure 37. Eigenmodes (elastic model in gradient flow, Vr = 9.6, h = 1%): (a) 1st-mode, absolute value;
(b) 1st-mode, phase; (c) 2nd-mode, absolute value; (d) 2nd-mode, phase.
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4. Evaluation of Phase Characteristics
4.1. Symmetricity of Fluctuating Wind Pressure Mode

This section proposes a method for quantitatively evaluating the symmetricity of the
fluctuating wind pressure modes of CPOD.

4.1.1. Inner Product

The vectors a and b are assumed in Equations (14) and (15).

a =
{

a1, · · · , aj, · · · , aN
}T , (14)

b =
{

b1, · · · , bj, · · · , bN
}T . (15)

The inner product a·b of vectors a and b is defined as follows:

a·b =
N

∑
j=1

a∗j Ajbj. (16)

where Aj is the barden area of point j.
The magnitudes of a, |a|, whose elements are complex, are defined as follows:

|a| =
√

a·a =

√√√√ n

∑
j=1

a∗j Ajaj. (17)

4.1.2. Element Exchange Vector

The element exchange vector of a is defined as Equation (18):

ae =
{

a1′ , · · · , aj′ , · · · , aN′
}T

(18)

where j’ denotes the number of points symmetrical to point j with respect to the central sec-
tion (X = 0 in Figure 11). Because the pressure measuring points are located symmetrically
with respect to the central section, the weights Aj and Aj′ are equal, Aj = Aj. In the case
where point j is on the centerline of the front side, j′ = j. According to Equations (14)–(18),
the inner product a·ae and |ae| can be expressed as follows:

a·ae =
N

∑
j=1

a∗j Ajaj′ , (19)

|ae| =

√√√√ N

∑
j=1

a∗j′Aj′ aj′ . (20)

Because the complex conjugate of a∗j Ajaj′ a∗j′Ajaj, are always included in Equation
(19), a·ae is always a real number. Considering Equations (17) and (20), all of a∗j′Aj′ aj′ are
included in Equation (17) and vice versa, so the following equation holds:

|a| = |ae|. (21)

4.1.3. Symmetry Index

The symmetry index of vector a, Is, is defined in Equation (22):

Is(a) =
a·ae

|a||ae|
. (22)
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Here, it is an example of a symmetry index Is using eigenmodes consisting of three
elements with the same burden area. If points 1 and 3 are symmetrically located and 2′ = 2, the
element exchanged vector of the vector a = {a1, a2, a3}T is the vector ae = {a1′ , a2′ , a3′}T =

{a3, a2, a1}T. When a1 = a3, the symmetry index Is(a) = 1, and when a1 = −a3 and a2 = 0,
Is(a) = −1. Thus, the symmetry index Is(a) expresses the symmetry of vector a.

4.1.4. Evaluation Results

The relationship between Is and Vr for a rigid model in the smooth flow is shown
in Figure 38. Is for the rigid model varies significantly between −1 and 1 based on the
changes in Vr. Meanwhile, the symmetry indices for the elastic model for h = 1%, shown in
Figure 39, show a clear pattern where Is(φ1) = −1 and Is(φ2) = 1 in the resonant region
of Vr = 9.7 or 10.7. Therefore, the 1st-mode is anti-symmetric, the 2nd-mode is symmetric,
and the anti-symmetric mode becomes dominant, considering the contribution ratio in
Figure 32. In the case of h = 2% in Figure 40, this pattern is limited to the reduced velocity
Vr = 9.7. However, the opposite trend is observed in the other velocity regions.

Wind 2023, 3, FOR PEER REVIEW 20 
 

 

|𝒂|  = |𝒂𝒆|. (21)

4.1.3. Symmetry Index 
The symmetry index of vector 𝒂, 𝐼௦, is defined in Equation (22): 𝐼௦(𝒂) = 𝒂 ∙ 𝒂௘|𝒂||𝒂𝒆| . (22) 

Here, it is an example of a symmetry index 𝐼௦ using eigenmodes consisting of three 
elements with the same burden area. If points 1 and 3 are symmetrically located and 2′ = 
2, the element exchanged vector of the vector 𝒂 = {𝑎ଵ, 𝑎ଶ, 𝑎ଷ}𝑻  is the vector 𝒂௘ ={𝑎ଵᇱ, 𝑎ଶᇱ, 𝑎ଷᇱ}் = {𝑎ଷ, 𝑎ଶ, 𝑎ଵ}் . When 𝑎ଵ = 𝑎ଷ , the symmetry index 𝐼௦(𝒂) = 1, and when 𝑎ଵ = െ𝑎ଷ and 𝑎ଶ = 0, 𝐼௦(𝒂) = െ1. Thus, the symmetry index 𝐼௦(𝒂) expresses the sym-
metry of vector 𝒂. 

4.1.4. Evaluation Results 
The relationship between 𝐼௦ and 𝑉௥ for a rigid model in the smooth flow is shown 

in Figure 38. 𝐼௦ for the rigid model varies significantly between −1 and 1 based on the 
changes in 𝑉௥. Meanwhile, the symmetry indices for the elastic model for h = 1%, shown 
in Figure 39, show a clear pattern where 𝐼௦(𝝓ଵ) = െ1 and 𝐼௦(𝝓ଶ) = 1 in the resonant re-
gion of 𝑉௥ = 9.7 or 10.7. Therefore, the 1st-mode is anti-symmetric, the 2nd-mode is sym-
metric, and the anti-symmetric mode becomes dominant, considering the contribution ra-
tio in Figure 32. In the case of h = 2% in Figure 40, this pattern is limited to the reduced 
velocity 𝑉௥ = 9.7. However, the opposite trend is observed in the other velocity regions. 

Figure 41 shows the relationship between 𝐼௦ and 𝑉௥ for the rigid model in the gradi-
ent flow. The symmetry indexes of the 1st-mode are relatively large, despite the pattern 
being less explicit compared to the cases of smooth flow. The anti-symmetricities of the 
2nd-mode are weaker than those in the case of smooth flow. The trends in the case of the 
elastic model shown in Figures 42 and 43 are almost identical to those in the case of the 
rigid model. 

  
(a) (b) 

Figure 38. Symmetry index of eigenmodes (rigid model in smooth flow): (a) 1st-mode; (b) 2nd-mode. 

  
(a) (b) 

Figure 39. Symmetry index of eigenmodes (elastic model in smooth flow, h = 1%): (a) 1st-mode; (b) 
2nd-mode. 

Figure 38. Symmetry index of eigenmodes (rigid model in smooth flow): (a) 1st-mode; (b) 2nd-mode.

Wind 2023, 3, FOR PEER REVIEW 20 
 

 

|𝒂|  = |𝒂𝒆|. (21)

4.1.3. Symmetry Index 
The symmetry index of vector 𝒂, 𝐼௦, is defined in Equation (22): 𝐼௦(𝒂) = 𝒂 ∙ 𝒂௘|𝒂||𝒂𝒆| . (22) 

Here, it is an example of a symmetry index 𝐼௦ using eigenmodes consisting of three 
elements with the same burden area. If points 1 and 3 are symmetrically located and 2′ = 
2, the element exchanged vector of the vector 𝒂 = {𝑎ଵ, 𝑎ଶ, 𝑎ଷ}𝑻  is the vector 𝒂௘ ={𝑎ଵᇱ, 𝑎ଶᇱ, 𝑎ଷᇱ}் = {𝑎ଷ, 𝑎ଶ, 𝑎ଵ}் . When 𝑎ଵ = 𝑎ଷ , the symmetry index 𝐼௦(𝒂) = 1, and when 𝑎ଵ = െ𝑎ଷ and 𝑎ଶ = 0, 𝐼௦(𝒂) = െ1. Thus, the symmetry index 𝐼௦(𝒂) expresses the sym-
metry of vector 𝒂. 

4.1.4. Evaluation Results 
The relationship between 𝐼௦ and 𝑉௥ for a rigid model in the smooth flow is shown 

in Figure 38. 𝐼௦ for the rigid model varies significantly between −1 and 1 based on the 
changes in 𝑉௥. Meanwhile, the symmetry indices for the elastic model for h = 1%, shown 
in Figure 39, show a clear pattern where 𝐼௦(𝝓ଵ) = െ1 and 𝐼௦(𝝓ଶ) = 1 in the resonant re-
gion of 𝑉௥ = 9.7 or 10.7. Therefore, the 1st-mode is anti-symmetric, the 2nd-mode is sym-
metric, and the anti-symmetric mode becomes dominant, considering the contribution ra-
tio in Figure 32. In the case of h = 2% in Figure 40, this pattern is limited to the reduced 
velocity 𝑉௥ = 9.7. However, the opposite trend is observed in the other velocity regions. 

Figure 41 shows the relationship between 𝐼௦ and 𝑉௥ for the rigid model in the gradi-
ent flow. The symmetry indexes of the 1st-mode are relatively large, despite the pattern 
being less explicit compared to the cases of smooth flow. The anti-symmetricities of the 
2nd-mode are weaker than those in the case of smooth flow. The trends in the case of the 
elastic model shown in Figures 42 and 43 are almost identical to those in the case of the 
rigid model. 

  
(a) (b) 

Figure 38. Symmetry index of eigenmodes (rigid model in smooth flow): (a) 1st-mode; (b) 2nd-mode. 

  
(a) (b) 

Figure 39. Symmetry index of eigenmodes (elastic model in smooth flow, h = 1%): (a) 1st-mode; (b) 
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Figure 39. Symmetry index of eigenmodes (elastic model in smooth flow, h = 1%): (a) 1st-mode;
(b) 2nd-mode.
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Figure 40. Symmetry index of eigenmodes (elastic model in smooth flow, h = 2%): (a) 1st-mode;
(b) 2nd-mode.

Figure 41 shows the relationship between Is and Vr for the rigid model in the gradient
flow. The symmetry indexes of the 1st-mode are relatively large, despite the pattern being
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less explicit compared to the cases of smooth flow. The anti-symmetricities of the 2nd-mode
are weaker than those in the case of smooth flow. The trends in the case of the elastic model
shown in Figures 42 and 43 are almost identical to those in the case of the rigid model.

Wind 2023, 3, FOR PEER REVIEW 21 
 

 

  
(a) (b) 

Figure 40. Symmetry index of eigenmodes (elastic model in smooth flow, h = 2%): (a) 1st-mode; (b) 
2nd-mode. 

  
(a) (b) 

Figure 41. Symmetry index of eigenmodes (rigid model in gradient flow): (a) 1st-mode; (b) 2nd-
mode. 

  
(a) (b) 

Figure 42. Symmetry index of eigenmodes (elastic model in gradient flow, h = 1%): (a) 1st-mode; (b) 
2nd-mode. 

  
(a) (b) 

Figure 43. Symmetry index of eigenmodes (elastic model in gradient flow, h = 2%): (a) 1st-mode; (b) 
2nd-mode. 

4.2. Similarity Rate of Fluctuating Wind Pressure Fields 
As mentioned in the previous section, the symmetry index of the 1st- and 2nd-modes 

of the fluctuating wind pressure varied with the experimental parameters. This section 
proposes a method to evaluate the similarity of fluctuating wind pressure fields as the 
projection ratio of the planes formed by the 1st- and 2nd-eigenmodes, 𝒂ଵ and 𝒂𝟐, to that 

Figure 41. Symmetry index of eigenmodes (rigid model in gradient flow): (a) 1st-mode; (b) 2nd-mode.

Wind 2023, 3, FOR PEER REVIEW 21 
 

 

  
(a) (b) 

Figure 40. Symmetry index of eigenmodes (elastic model in smooth flow, h = 2%): (a) 1st-mode; (b) 
2nd-mode. 

  
(a) (b) 

Figure 41. Symmetry index of eigenmodes (rigid model in gradient flow): (a) 1st-mode; (b) 2nd-
mode. 

  
(a) (b) 

Figure 42. Symmetry index of eigenmodes (elastic model in gradient flow, h = 1%): (a) 1st-mode; (b) 
2nd-mode. 

  
(a) (b) 

Figure 43. Symmetry index of eigenmodes (elastic model in gradient flow, h = 2%): (a) 1st-mode; (b) 
2nd-mode. 

4.2. Similarity Rate of Fluctuating Wind Pressure Fields 
As mentioned in the previous section, the symmetry index of the 1st- and 2nd-modes 

of the fluctuating wind pressure varied with the experimental parameters. This section 
proposes a method to evaluate the similarity of fluctuating wind pressure fields as the 
projection ratio of the planes formed by the 1st- and 2nd-eigenmodes, 𝒂ଵ and 𝒂𝟐, to that 

Figure 42. Symmetry index of eigenmodes (elastic model in gradient flow, h = 1%): (a) 1st-mode;
(b) 2nd-mode.

Wind 2023, 3, FOR PEER REVIEW 21 
 

 

  
(a) (b) 

Figure 40. Symmetry index of eigenmodes (elastic model in smooth flow, h = 2%): (a) 1st-mode; (b) 
2nd-mode. 

  
(a) (b) 

Figure 41. Symmetry index of eigenmodes (rigid model in gradient flow): (a) 1st-mode; (b) 2nd-
mode. 

  
(a) (b) 

Figure 42. Symmetry index of eigenmodes (elastic model in gradient flow, h = 1%): (a) 1st-mode; (b) 
2nd-mode. 

  
(a) (b) 

Figure 43. Symmetry index of eigenmodes (elastic model in gradient flow, h = 2%): (a) 1st-mode; (b) 
2nd-mode. 

4.2. Similarity Rate of Fluctuating Wind Pressure Fields 
As mentioned in the previous section, the symmetry index of the 1st- and 2nd-modes 

of the fluctuating wind pressure varied with the experimental parameters. This section 
proposes a method to evaluate the similarity of fluctuating wind pressure fields as the 
projection ratio of the planes formed by the 1st- and 2nd-eigenmodes, 𝒂ଵ and 𝒂𝟐, to that 

Figure 43. Symmetry index of eigenmodes (elastic model in gradient flow, h = 2%): (a) 1st-mode;
(b) 2nd-mode.

4.2. Similarity Rate of Fluctuating Wind Pressure Fields

As mentioned in the previous section, the symmetry index of the 1st- and 2nd-modes
of the fluctuating wind pressure varied with the experimental parameters. This section
proposes a method to evaluate the similarity of fluctuating wind pressure fields as the
projection ratio of the planes formed by the 1st- and 2nd-eigenmodes, a1 and a2, to that of
the other two eigenmodes, e1 and e2. Where vectors a1 and a2, e1 and e2 are normalized,
the projection of mode a1 onto the plane formed by modes e1 and e2, is expressed as

proj(a1) = (e1·a1)e1 + (e2·a1)e2. (23)
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The projection of mode a2 onto that plane, proj(a2), can also be obtained, and the
following relationship is obtained:{

proj(a1)
proj(a2)

}
=

[
e1·a1 e2·a1
e1·a2 e2·a2

]{
a1
a2

}
. (24)

The 2× 2 matrix on the right side of Equation (24) is considered the Jacobi matrix,
whose determinant represents the projection ratio between the plane formed by a1 and a2
and that formed by e1 and e2. Subsequently, the Jacobian, which represents the magnifica-
tion rate of the transformation, can be expressed by the following equation:∣∣∣∣det

[
(e1·a1) (e2·a1)
(e1·a2) (e2·a2)

]∣∣∣∣ = |(e1·a1)(e2·a2)− (e2·a1)(e1·a2)|. (25)

The projection rate expresses the similarity of the fluctuating pressure fields consisting
of the 1st- and 2nd-eigenmodes. The results of the quantitative evaluation of the similarity
between the fluctuating wind pressure modes are shown in Figure 44. The principal axes of
the 1st- and 2nd-eigenvectors, e1 and e2, are the eigenmodes of the measurement cases of
(a) and (b) shown in Figure 44. In the smooth flow for h = 1% and h = 2%, the congruency of
the plane formed by the two principal eigenmodes by CPOD was different in the resonant
wind speed range, indicating different fluctuating wind pressure fields compared to those
in other cases. Notably, the damping ratios may affect the fluctuating wind pressure
fields by altering the vibration amplitude. Furthermore, an insignificant difference was
noted in the characteristics of fluctuating wind pressure fields in the gradient flow. The
previous section showed that the symmetricity of fluctuating wind pressure modes tends
to vary with the measurement conditions and wind speed. However, by evaluating the
similarities of the pressure fields consisting of the 1st- and 2nd-eigenvectors, it appears that
the fluctuating wind pressure fields can be classified into the three categories presented
in Table 2.
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Figure 44. Similarity of fluctuating wind pressure fields consisting of two principal eigenmodes: (a) 
similarity to the rigid model case of Vr = 9.7 in smooth flow; (b) similarity to the rigid model case of 
Vr = 9.5 in gradient flow. 

  

Figure 44. Similarity of fluctuating wind pressure fields consisting of two principal eigenmodes:
(a) similarity to the rigid model case of Vr = 9.7 in smooth flow; (b) similarity to the rigid model case
of Vr = 9.5 in gradient flow.
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Table 2. Classification of fluctuating wind pressure fields.

Type of Fluctuating
Wind Pressure Field Model Flow h Vr

Type 1
(Smooth flow without resonance)

Rigid

Smooth

- All measured Vr

Elastic
1% Except 9.7 and 10.7

2% All measured Vr

Type 2
(Smooth flow with resonance) Elastic Smooth 1% 9.7, 10.7

Type 3
(Gradient flow)

Rigid

Gradient

-

All measured VrElastic
1%

2%

5. Recomposition of Fluctuating Wind Pressure Fields

In this section, the characteristics of the fluctuating wind pressure fields for the three
types in Table 2 are discussed using the recomposition of the principal modes.

5.1. Principal Coordinate

A wind pressure vector p̃ = { p̃1(t), · · · , p̃N(t)}T with the analytical signal, p̃j(t),
of the wind pressure time series at measurement point j, pj(t), as the jth-row element is
expressed as the product of CPOD mode matrix Φ and the principal coordinate vector
ã = {ã1(t), · · · , ãN(t)}T as follows:

p̃ = Φã. (26)

Assuming the normality of eigenmodes in Equation (12), the following relationship is
obtained from Equation (26):

Φ†Ap̃ = ã. (27)

Therefore, the jth-principal coordinate, ãj(t), is:

ãj(t) = φ†
j Ap̃. (28)

The PSDs of the principal coordinates are shown in Figure 45. The power spectrum
s(f ) is nondimensionalized by the model width B, mean wind speed at the reference height
UH, and variance of the principal coordinates σ2.
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The PSDs have relatively high power in the low-frequency region for all types in the
symmetric mode. The PSD of Type 1 has a sharp peak around fB/UH = 0.1 because the
symmetry index of the symmetry mode of Type 1 has a relatively small value of 0.88.

In the case of the anti-symmetric mode, the PSDs of Type 1 and Type 2 have a sharp
peak around fB/UH = 0.1 because of the Kalman vortex shedding. In the case of Type 2,
the natural frequencies of the elastic model and vortex shedding frequencies are similar;
therefore, the resonance phenomenon affects the wind pressure fields. In the case of Type 3,
there is a gradual peak at a frequency of approximately 0.1. The peak is not as sharp as
that of Type 1 and Type 2 because the vortices are not cleanly generated owing to the high
turbulence intensity of the flow.

5.2. Correlation of Wind Pressure Field

The correlation coefficient of the eigenmodes is expressed by the following equation:

rsym,jk =
∣∣∣Φsym,Typej·Φsym,Typek

∣∣∣, (29)

ranti,jk =
∣∣∣Φanti,Typej·Φanti,Typek

∣∣∣. (30)

where Φsym,Typej and Φanti,Typej are the eigenvectors of the symmetric and anti-symmetric
modes in the case of Type j, respectively.

The correlation coefficients between Types j and k, rsym,jk, ranti,jk, are listed in Table 3.
In the case of symmetric modes, the fluctuating wind pressure field in the smooth flow
without resonant phenomena, Type 1, is relatively high correlated to that of Types 2 and
3. In the case of anti-symmetric modes, the fluctuating wind pressure fields in the case
of smooth flow tend to be close, regardless of resonant phenomena, although the wind
pressure field in the gradient flow is different from that in the smooth flow.

Table 3. Correlation of fluctuating wind pressure modes.

Type of Fluctuating Wind Pressure Field 1 2 3

1 Smooth flow without resonance - 0.701 0.632 Symmetric
mode

(
rsym

)
2 Smooth flow with resonance 0.907 - 0.352

3 Gradient flow 0.547 0.670 -

Anti-symmetric mode (ranti )

5.3. Wind Pressure Fields of Symmetric Mode

The jth recomposed fluctuating wind pressure field pj =
{

pj1(t), · · · , pjN(t)
}T , rep-

resented by mode φj can be expressed using the jth principal coordinate ãj(t) as follows,
where pjk(t) is the jth recomposed fluctuating wind pressure at point k:

pj = Re
[
φj ãj(t)

]
. (31)

The recomposed fluctuating wind pressure fields were investigated for the 1st- and
2nd-modes using pjk(t). Hereafter, the characteristics of the fluctuating wind pressure fields
for each type in Table 2 are shown by comparing the following three measurement cases:

• Typical measurement case of Type 1: Rigid model, smooth flow, Vr = 9.7.
• Typical measurement case of Type 2: Elastic model, smooth flow, Vr = 9.7, h = 1%
• Typical measurement case of Type 3: Elastic model, gradient flow, Vr = 9.6, h = 1%

The recomposed fluctuating wind pressure fields in the symmetric mode for each type
are shown in Figure 46. Furthermore, the pressure rise, or recovery region, is shown in red,
the pressure drop region in blue, and the intensity of the fluctuating wind pressure is indi-
cated by the shade of the colour. The wind pressure was divided by the velocity pressure.
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For Type 1 and Type 2, on the side surface, the pressure drop region slowly moved
from the area near the bottom to the top. The relatively high correlation of rsym,12 = 0.701
may be because of the similar trends in the fluctuating wind pressure fields on the side
surface. For Type 3, on the side surface, a pressure drop region appeared near the height of
2H/3 on the windward side and moved toward the bottom of the leeward side. In the case
of Type 3, shown in Figure 46c, the pressure on the front surface increases simultaneously
with the pressure drop on the side surface. For Types 2 and 3, the fluctuating wind pressure
fields on the side surface have very different trends, and for this reason the correlation
coefficient, rsym,23, is likely to be low. However, for Types 1 and 3, the fluctuating wind
pressure fields appear to be different on both the front and side surfaces, although rsym,31 is
relatively high. The reason for this is unknown.



Wind 2023, 3 60

5.4. Wind Pressure Fields of Anti-Symmetric Mode

The recomposed fluctuating wind pressure fields of the anti-symmetric mode for each
type are shown in Figure 47. For Type 1, the pressure drop region moves toward the
leeward edge near the bottom of the model on the side surface. For Type 2, the pressure
drop region near the windward edge at a height of approximately H/4 moves toward the
leeward edge of the side at a height of approximately 3H/4 on the side surface. The reason
for the very high correlation of ranti,12 = 0.907 is that the pressure drop region exhibits a
similar tendency. For Type 3, the pressure drop region near the windward edge of the
side at a height of 3H/4 moves to the leeward edge near the bottom of the model on the
side surface. Additionally, the pressure rise region appearing at the right edge of the front
extends over the entire front surface, as shown from 62.055 to 62.119 s. This is because the
relatively low correlation of ranti,31 = 0.547 and ranti,23 = 0.670 may be the differences in the
fluctuating wind pressure fields on the front surface.
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6. Concluding Remarks

The aim of this study was to evaluate the phase characteristics of fluctuating wind
pressure fields around buildings and to provide valuable knowledge for the design of
wind-resistant high-rise buildings. For these purposes, wind tunnel experiments were
conducted in smooth and gradient flows, measuring the pressures around a rigid and elastic
model and the displacement of the elastic model. The characteristics of the wind pressure
distribution around the rigid and elastic models were clarified based on the experimental
results. In addition, the characteristics of the measured displacement of the elastic model
are explained.

A CPOD analysis was performed to investigate the fluctuating wind pressure fields
around the prism. The contribution ratio of the anti-symmetric mode for the elastic model
with a damping ratio of 1% in the smooth flow of the resonant velocity is much higher
than that of the rigid model. Therefore, the fluctuating wind pressure fields around the
prism are affected by the vibration of the model. Furthermore, there were no significant
differences in the contribution ratios and eigenmodes between the rigid and elastic models
in the gradient flow.

A method for evaluating the symmetricity of the eigenmodes was proposed to clarify
the phase characteristics of the wind pressure fields around buildings. In the case of the
elastic model in the smooth flow, symmetric or anti-symmetric modes are clearly affected
by whether the wind speed is in the range of the resonance wind speed or not. In contrast,
the symmetricity of the eigenmodes for the rigid model in the smooth flow and for the rigid
and elastic models in the gradient flow showed different trends with wind speed. This may
be because of the close proximity of the 1st- and 2nd- eigenvalues.

In addition, a method for evaluating the similarity of fluctuating wind pressure fields
composed of the 1st- and 2nd- modes as the projection ratio of the plane formed by the two
principal eigenmodes was proposed. The results show that fluctuating wind pressure fields
can be classified into three types: near the resonant and non-resonant states in smooth flow,
and in gradient flow.

The three types of fluctuating wind pressure fields were recomposed to show the phase
characteristics of the fluctuating wind pressure fields of the symmetric and anti-symmetric
modes. In the case of symmetric modes, the fluctuating wind pressure fields in the smooth
flow without the resonance phenomenon tend to be similar to those in the case of smooth
flow with resonance and gradient flow. However, the fluctuating wind pressure fields in
the smooth flow without resonance and the gradient flow show different patterns. In the
case of anti-symmetric modes, the fluctuating wind pressure fields in the case of smooth
flow without resonance and with resonance tend to be very close. However, the case of
gradient flow shows different patterns. Despite the contribution ratios being different for
the rigid and elastic models, the phase characteristics of the fluctuating wind pressure
fields for both models are almost the same.
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