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Abstract: In this paper, a predictive combustion model is developed and implemented in GT-Power.
The model consists of a detailed physically/chemically based ignition delay model, including a 1D
spray model. The spray model results at the start of combustion are used to initialize the combustion
model. The spray zone and the homogenous natural gas/air mixture are burned with different
combustion models, to account for the effect of the inhomogeneous fuel distribution. NOx-emissions
are modelled using a standard Extended Zeldovich Mechanism, and for the HC-emissions, two flame
quenching models are included and extended with an empirical correlation. The models are calibrated
with measurement data from a single cylinder engine, except for the ignition delay model which
needs no calibration. The start of combustion and the combustion parameters are predicted well
for a wide range of injection timings and operation conditions. Furthermore, considering unburned
fuel, the engine operation parameters BSFC and IMEP are also predicted satisfactory. Due to the
detailed description of the different combustion phases, the influence of the injection timing on the
NOx-emission is captured satisfactorily, with the standard NOx-model. Finally, the knock limited
MFB50 is also predicted within an acceptable range.
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1. Introduction

Facing the global sulfur limitations in maritime fuels and the existing IMO Tier III
legislation, the importance of liquified natural gas (LNG) as a fuel has increased in the past
years. For medium speed engines, the dual-fuel (DF) combustion process is the state of the
art in using LNG as fuel [1,2]. Therefore, the gaseous fuel is injected in the intake manifold,
resulting in a homogeneous natural gas/air mixture which is ignited by a pilot injection of
diesel fuel. The natural gas then burns in a lean burn Otto cycle. Due to the high energy
content of the pilot fuel, a very lean but stable combustion process is achieved, which results
in low NOx-emissions. Thus, the recent IMO Tier III legislation can be fulfilled by dual-fuel
engines without exhaust aftertreatment [1,2]. Furthermore, due to the composition of LNG,
which is mainly methane, the CO2-emissions are reduced by approximately 20% compared
to diesel engines, resulting from the lower C/H ratio of methane [3].

Besides the aforementioned positive effects of the lean-burn Otto cycle, this combustion
process leads to different limitations. On the one hand DF-engines are limited by cycle-to-
cycle variations and unburned hydrocarbons and on the other hand by the knock limit.
Furthermore, the NOx-emissions are a limiting factor for the engine operation.

In the development process of large engines, 1D-simulation plays an important role [4,5].
To minimize the operation of large engines at the testbed accurate simulation models are
necessary to simulate performance and emissions.

In the past decade, multiple authors published combustion models for pilot ignited
dual-fuel engines. Something they all have in common is that every model consists of a
spray model for the pilot injection and the ignition delay and a flame propagation model
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for the combustion of the natural gas/air mixture. For a brief overview, the combustion
models may be categorized according to the spray model which is included. The majority
is based on the package model of Hiroyasu, which discretizes the fuel spray in multiple
packages in axial and radial direction [6]. The spray penetration is calculated with an
empirical correlation which is based on experiments of diesel jets with relatively long
injection durations. Each of the packages of the spray is treated as a thermodynamic zone,
whose temperature results from the entrained cylinder charge and the evaporation of the
liquid fuel. Thus, in each zone, an independent ignition delay calculation is applied.

Krishnan et al. [7] use the Shell model [8] to calculate the autoignition inside each
package. After ignition the content of each package is burned, whereas diesel and natural
gas are burned separately. For the combustion of the surrounding NG/air mixture a turbu-
lent entrainment model is applied, which calculates the flame front are from the burned
packages, but without consideration of any geometrical assumptions of the flame front.

Walther et al. [9] implied a Livengood–Wu integral [10] to each package in the spray
model using an ignition delay correlation derived from reaction kinetics calculations.
After ignition the spray model is terminated, and all the fuel is burned with a turbulent
entrainment model. The flame front is assumed as cone shaped in the beginning of the
combustion and the transitions to a hemispherical flame front, whereas the spray cone
angle and the initial size of the flame front are derived from optical investigations. The
model was validated against measurement data from a high-speed dual-fuel engine. A
similar approach was presented in Ref. [11] and validated against measurement data from
a 1.95 L four-cylinder diesel engine, operated in dual-fuel mode with biogas as main fuel.
In Ref. [12], the same approach is applied in a real-time capable hardware in the loop
application and validated with a heat release rate from a medium-speed dual-fuel engine.

Krenn et al. [13] also calculated a Livengood–Wu integral in each package of the spray
model. For the turbulent entrainment model a club shaped flame front is assumed, which
is not limited by the cylinder walls. Every package that is ignited is transferred to the
turbulent entrainment model and burned under consideration of the faster laminar flame
speed resulting from the pilot fuel inside the package. The model is validated in Ref. [13]
for a high speed and a medium speed engine at medium and high load and in Ref. [14] for
a medium speed engine at low load.

In Ref. [15], the ignition delay is calculated in each package using tabulated ignition
delay times. Each ignited package is then burned within a reaction time, derived from
reaction kinetics calculations. For the NG/air mixture a fractal model is implemented,
including a new flame front model with one spherical flame front for each injector hole.
The model is validated in Ref. [15] against measurement data of a 2-L 4-cylinder diesel
engine, equipped with NG port fuel injection and operated in dual-fuel mode.

The dual-fuel combustion model available in GT-Power is a combination of the three-
zone diesel combustion model DIPulse, which also uses a steady-jet spray penetration
correlation and the turbulent entrainment model SITurb. The model is described in detail
in Ref. [16] and applied for a low-speed two stroke dual-fuel engine equipped with a
pre-chamber for the pilot fuel ignition. In Ref. [17], the model is extended with a new
ignition delay correlation derived from reaction kinetics calculations and the ignition delay
calculation is validated for a medium speed dual-fuel engine.

Musculus and Kattke presented a 1D spray model in Ref. [18], which can describe
the end of injection transients resulting in significant higher mixing of the spray after the
end of injection. This topic is especially relevant for dual-fuel engines, because the short
injection of the pilot fuel is usually finished before the ignition takes place.

In Ref. [19], the authors combine the 1D spray model with the ignition delay model
from Ref. [20]. The ignition of the spray is assumed to occur in the spray tip, as this is
the richest spot of the spray for longer ignition delays. The model is combined with a
vibe burn rate to model the combustion of a 2-L 4-cylinder diesel engine converted to
dual-fuel operation.
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A similar approach, consisting of the 1D spray model and an ignition delay model
is presented in Ref. [21] and validated against measurement data from a medium speed
engine operated in diesel and dual-fuel combustion mode. For ignition delays shorter than
the injection duration, the ignition is assumed to take place at the spray tip, whereas for
longer ignition delay periods the ignition is assumed to take place at the trailing edge of
the spray.

In a previous work of the authors, an ignition delay model for medium speed dual-
fuel engines was presented [22]. The model combines a 1D spray model with a mixing-
controlled evaporation model and an approach for 2-stage autoignition, including the low
temperature heat release. In the present work, the ignition delay model is used as base for
a predictive combustion model which also accounts for incomplete combustion. The model
is then implemented in GT-Power and coupled with a NOx-model and a knock model
from literature. The models are calibrated with measurement data and validated against a
huge variety of measurement data from a single cylinder medium speed dual-fuel engine,
including a full engine map and extensive variation of injection timing and air-to-fuel ratio
at selected operation points.

2. Ignition Delay

The ignition delay model was presented in detail in Ref. [22] and is, therefore, only
briefly described in the following. The spray model used to simulate the spray behavior
of the pilot injection is the 1D transient spray model from Musculus and Kattke, which is
described in detail in Ref. [18]. The 1D spray model models a 2-phase jet with liquid fuel,
using a 1D Eulerian control volume approach, as illustrated in Figure 1.
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The spray angle Θ is an input value of the spray model [18]. In the present work, the
spray angle is calculated with the empirical correlation according to Siebers [23]:
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In Equation (1) the spray angle depends on the liquid fuel density ρ f and the ambient
gas density ρa. For the factor CSpray, the value 0.26 is used, as suggested in Ref. [23]. In each
control volume the radial fuel and velocity distribution are calculated with an Abramovich
distribution as follows:

X f = X f ,cl · (1− ξα)2 (2)

The liquid fuel concentration X f is related to the value at the centerline X f ,cl by the
dimensionless radius ξ. The exponent α is 1.5 for a fully developed distribution. The
velocity distribution is calculated analogous to Equation (2). The spray is then modelled
by mass conservation of the liquid fuel in Equation (3) and momentum conservation
in Equation (4):

m f ,i,j+1 = m f ,i,j + ρ f

(
βX f uA

)
i−1,j

∆t− ρ f

(
βX f uA

)
i,j

∆t (3)
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Mi,j+1 = Mi,j +
(

ρβu2 A
)

i−1,j
∆t−

(
ρβu2 A

)
i,j

∆t (4)

In Equation (3), m f is the mass and ρ f is the density of the liquid fuel. The overbars
on the liquid fuel fraction X f and the velocity u denote that these values are cross-sectional
averages. The value β results from integrating the fuel and velocity distribution over the
cross-section area A [18]. The subscripts i and j denote the control volume (c.f. Figure 1)
and the timestep, respectively, with the time-step size ∆t. In Equation (4) the momentum
M of the control volume is calculated using the mean density of the control volume ρ.

With the aforementioned equations the axial fuel distribution inside the spray is
calculated in every timestep. Due to the application of the radial Abramovich distribution
from Equation (2), a pseudo-2D fuel distribution as shown in Figure 2 is calculated at every
timestep. The spray model neglects the cylinder walls. However, the control volumes
are defined for a length longer than the theoretical distance between the injector and the
cylinder wall, to not lose any fuel in the mass balance, which could leave the last control
volume. The control volumes outside the combustion chamber are then treated different
during calculation of the ignition delay.
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Figure 2. Fuel distribution inside the spray.

The spray model neglects evaporation; therefore, a mixing-controlled evaporation
model is implemented to derive a temperature distribution inside the spray. Following the
work of Siebers, the time limiting process for an evaporating diesel jet is the mixing with
the surrounding ambient gas [23]. Thus, the minimum possible air-to-fuel ratio which can
fully evaporate only depends on the boundary conditions pressure and temperature and
can therefore be calculated a priori. Using n-heptadecane as reference fuel, as suggested
in Ref. [23], a look-up table for the minimum possible fully evaporated air-to-fuel ratio
is implemented.

Furthermore, an explicit solution for the mixing temperature of the fully evaporated
part of the fuel was developed [22]. With this mixing temperature a temperature distribu-
tion inside the spray is calculated at every timestep. Thus, all relevant information for the
calculation of the local reactivity is available.

To calculate the ignition of the pilot fuel, an ignition delay model is developed in
Ref. [22] based on homogeneous reactor calculations using the open-source software Can-
tera [24]. The extended n-heptane mechanism from the Lawrence Livermore National
Laboratories [25] is used with n-heptane as reference for the pilot fuel and methane as
reference for the natural gas. Correlations for the low and high temperature ignition delay
time, as well as the temperature increase due to low temperature heat release (LTHR), are
fitted against the results of the reaction kinetics calculations. All correlations are published
in Ref. [22].

Figure 3a shows an exemplary fuel distribution inside a control volume plotted over
the dimensionless radius r/R. The mixing temperature Tmix in Figure 3b results from
the mixing and evaporation of the pilot fuel and is, therefore, the coldest at the richest
spot. After the LTHR, the opposite is the case, as the higher fuel concentration leads to
a higher temperature increase ∆T. Resulting from the temperature and fuel distribution
two different profiles of the local reactivity occur, which are presented in Figure 3c by the
local ignition delay time. Before the first stage of ignition has occurred, both the low and
high temperature ignition delay times have their minimum value, which defines the most
reactive mixture, in the leaner region. This minimum results from the contrary effects of the
decreasing fuel concentration leading to lower reactivity and the increasing temperature
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leading to higher reactivity. Thus, after the LTHR has occurred, the most reactive mixture
is at the centerline of the spray, because this is the hottest and richest spot.
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To trace the reaction progress inside the spray, two progress variables, clow and chigh,
are introduced for the first and second stage of ignition respectively. For both progress
variables, the following transport equation is applied:

ci,j =

(
ci,j−1mD,i,j−1 − ci,j−1

.
mD,i,j−1∆t + ci−1,j−1

.
mD,i−1,j−1∆t

)
mD,i,j

+ ∆ci,j,reac − ∆ci,j,overmixing (5)

The subscripts i and j denote the control volume (c.f. Figure 1) and the timestep,
respectively, with the time-step size ∆t. The reaction progress c is coupled to the mass
of the pilot fuel mD and the respective mass flow

.
mD. The term ∆ci,j,reac accounts for the

chemical reactions inside the control volume by integrating the inverse of the ignition
delay time over the timestep at the position of the most reactive mixture inside the control
volume [22]. To account for wall contact of the spray, the reaction term is set to zero for all
control volumes that are located outside the combustion chamber. The overmixing term
∆ci,j,overmixing accounts for the dilution of the spray during long ignition delay times. If
the spray gets very lean before ignition, the dilution of the pre-reaction products leads
to a prolongation of the ignition process. In this case, the overmixing term is calculated
as follows:

∆ci,j,overmixing = ci,j−1 ·
(

1−
ΦD,mr,i,j

ΦD,mr,i,j−1

)
· Covermixing (6)

The model parameter Covermixing is set to unity in this project. If measurement data for
non-igniting early injections is available, this can be used to calibrate the ignition limits.

Figure 4a shows an exemplary evolution of the axial fuel distribution of a pilot injection
up to ignition and Figure 4b shows the respective reaction progress for the high temperature
ignition. Ignition occurs if the progress variable reaches unity.
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3. Combustion

After ignition, the spray model is terminated and the combustion models are initialized.
To account for the inhomogeneous fuel distribution inside the combustion chamber, the
spray zones, which are richer than the homogenous NG/air mixture, are burned separately.
Based on the fuel distribution inside the spray (c.f. Figure 2) the complete spray is burned
with a model for premixed combustion, if at least 95% of the spray is fully premixed (c.f.
Section 3.2). Otherwise, if a relevant part of the spray is not yet fully premixed, this part of
the spray is burned as mixing-controlled combustion (c.f. Section 3.1). The homogeneous
NG/air mixture is burned with a turbulent entrainment approach (c.f. Section 3.3) and the
transition between the premixed combustion stages is explained in Section 3.4.

3.1. Mixing-Controlled Combustion

For the mixing-controlled combustion, the approach from Magnussen [26] is slightly
modified and the burn rate is calculated according to Equation (7):

dmb,mix

dt
= Cmix ·mavail,mix ·

√
k

lint
(7)

In Equation (7) the mixing-controlled burn rate depends on the available mass mavail,mix,
the turbulent kinetic energy k and the integral length scale lint. The parameter Cmix is used
for model calibration.

3.2. Premixed Combustion of the Pilot Spray

For the fully premixed part of the spray, a turbulent flame propagation is assumed,
which is calculated as follows:

dmb,pilot,prem

dt
= Cprem · ST,pilot · ρu · AFF · (1− ftrans) (8)

According to Equation (8), the flame front with the flame front area AFF propagates
with the turbulent flame speed ST,pilot throughout the unburned mixture with the density
ρu. The transition term ftrans transitions between the two phases of the combustion and
the parameter Cprem is used for calibration. The transition term, as well as the sub-models
used for the turbulent flame speed and the flame front area, is further explained in the
respective subsections.

3.3. Premixed Combustion of the Homogeneous NG/Air Mixture

For the homogeneous NG/air mixture, the combustion is modelled with a turbulent
entrainment model which was originally published by Blizard and Keck [27] and further
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developed for modelling SI engines by multiple authors. The combustion process is split in
two steps. In the first step, the mass is entrained into the flame front:

dme,FF

dt
= CST · ST · ρu · AFF · ftrans (9)

The entrained mass flow results from the flame front AFF, which propagates with the
turbulent flame speed ST into the unburned premixed cylinder charge with the density ρu.
The parameter CST is used for calibration. The mass available for the combustion inside
the flame front is calculated according to Equation (10), based on the total entrained mass
me,FF inside the flame front, the already burned mass mb,FF, and the quenched mass at the
cylinder walls mQuench,wall . The latter one is further described in Section 3.8.

mavail,FF = me,FF −mb,FF −mQuench,wall (10)

In the second step of the combustion in the turbulent entrainment model, the available
mass inside the flame front is burned during the burnup time τbu:

dmb,FF

dt
=

mavail,FF

τbu
(11)

Based on the recent findings from Ref. [28], the burnup time is calculated from the
integral length scale lint and the turbulent flame speed ST . The parameter Cbu is added for
model calibration.

τbu = Cbu ·
lint
ST

(12)

For the calculation of the turbulent flame speed for this case, a mixing temperature
inside the flame front is used. With Equation (13) the temperature Tmix,FF is calculated from
the burned and unburned zone temperatures Tb and Tu, respectively, which are weighted
by the respective mass fractions inside the flame front.

Tmix, FF =
Tu ·mavail,FF + Tb ·mb,FF

mavail,FF + mb,FF
(13)

3.4. Transition between Combustion Phases

As presented in the previous subsections, the submodels for the premixed combustion
of the pilot spray and the homogeneous NG/air mixture both use the flame front area
AFF (c.f. Equations (8) and (9)). Thus, the transition factor ftrans is introduced to share
the flame front area between the two submodels or the two phases of the combustion
process respectively.

ftrans =
(

ccomb,prem,pilot

)ΦD,pilotzone+ΦNG
ΦNG (14)

The transition factor depends on the combustion progress of the premixed pilot spray
ccomb,prem,pilot and the equivalence ratios of the homogeneous NG/air mixture and the pilot
fuel respectively. Thus, the transition factor is related to the premixedness of the pilot spray.
As one can see in Figure 5, this results in a good representation of the combustion behavior
for shorter and longer ignition delays times.
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Figure 5. Comparison of the burn rates for long and short ignition delay times.

3.5. Laminar and Turbulent Flame Speed

For the laminar flame speed of the NG/air mixture two models from literature are
combined. The model published in Ref. [29] predicts the laminar flame speed for methane-
based fuels, including the components ethane, propane, butane, and hydrogen. A model
for the laminar flame speed of methane was fitted against reaction kinetics calculations and
the increase of the flame speed due to higher hydrocarbons and hydrogen is included by
a pre factor. However, the model presented in Ref. [29] is only valid up to an air-to-fuel
ratio of λ = 2. Therefore, the influence of the higher hydrocarbons and hydrogen which
is published in Ref. [29] is combined with the laminar flame speed model for methane
published in Ref. [28], which is valid up to λ of 5.

For the pilot spray, it is also relevant to account for the pilot fuel. To take this into
account, the laminar flame speed model for n-heptane from Ref. [30] is included, which
is also based on reaction kinetics calculations. As both fuels are mixed in the pilot spray
zone, the laminar flame speeds are combined, using the approach presented in Ref. [31]. In
Ref. [31] it was shown by reaction kinetics calculations that a linear interpolation based on
the mol-fractions of the respective fuels provides sufficient results for the relevant mixtures
inside the pilot spray of a dual-fuel engine.

For the turbulent flame speed, the model of Peters [32] is applied, which depends on
the laminar flame speed, the laminar flame thickness, the mean turbulent velocity, and the
turbulent length scale. The turbulence-related input parameters of the model are available
from the turbulence model in GT-Power, whereas for the laminar flame thickness, the
approach from Ref. [28] is used.

3.6. Flame Front Model

Based on the results of the optical investigations from Ref. [9] and different 3D CFD
simulations published in Refs. [31,33–35], the following approach for the geometry of the
flame front was derived:

• In the beginning, the flame front consists of multiple cones with spherical tip, whereas
the number of cones equals the number of holes in the injector nozzle;

• Adjacent flames can merge to one flame front;
• The flames are extinguished at the cylinder walls due to flame quenching at the contact

areas of the flame front and the cylinder walls.
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As a 3D simulation of the flame front would be out of the scope for a 0D/1D simulation
environment, some simplifications are made to reduce the complexity which are illustrated
in Figure 6:

• The combustion chamber is modelled with a pancake geometry;
• The single flames are assumed to be symmetrical and the spray origin is located

at the center of the combustion chamber. Thus, the combustion chamber is cut in
symmetrical sections according to the number of injector nozzle holes, whereas only
one section is modelled;

• In the first phase of the combustion (Figure 6a,b), the flame front is cone shaped with
a spherical tip, until the length of the cone equals the spray penetration in the spray
model at the start of combustion (lSOC);

• In the second phase of the combustion Figure 6c,d, the flame front spreads perpendic-
ular to the flame surface. The adjacent flames merge and at the wall contact areas the
flame front is distinguished.
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For the actual calculation of the flame front, the section of the combustion chamber
is cut in slices in axial direction of the spray and the flame surface is calculated using a
numerical root-finding algorithm. A more detailed description of the flame front modeling
approach can be found in Ref. [36].

3.7. NOx Emissions

The NOx emissions are modelled using the Extended Zeldovich Mechanism, which
is available as a built-in template in GT-Power. The version used in this work uses the
same reaction rate parameters as published by Heywood [37]. For the calibration of the
model a NOx multiplier can be adjusted in GT-Power, which is simply a multiplier for the
simulated NOx emissions.

3.8. Unburned Hydrocarbons

For the unburned hydrocarbons, three different sources are considered: scavenging,
and flame quenching in crevice volumes and on the combustion chamber walls. The fuel,
which is scavenged during valve overlap, is directly modelled due to the gas exchange
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simulation in GT-Power. In addition to this, two models are implemented for the unburned
hydrocarbons resulting from flame quenching on the combustion chamber walls and flame
quenching inside crevice volumes.

The flame quenching at the combustion chamber walls is simulated with the model
presented in Ref. [38], which is based on the thermal approach for the quench layer thickness
from Ref. [39]. At each wall, the quench layer thickness dQ is calculated as follows:

dQ,k =
λQ,k · (Tb − Tw,k)

0.2 ·YNG · Hu · SL,Q,k · ρu,Q,k
(15)

In the numerator λ is the thermal conductivity, whereas Tb and Tw are the burned
zone temperature and the wall temperature respectively. The index Q denotes the values
inside the quench layers, whereas the index k denotes the respective combustion chamber
walls: head, piston and liner. In the denominator in Equation (15) YNG and Hu are the mass
fraction of the natural gas and the respective lower heating value, SL is the laminar flame
speed and ρu the density of the unburned cylinder charge.

With the quench layer thickness and the respective areas where the flame is quenched
at the cylinder walls, the quenched mass for the combustion chamber wall is calculated
as follows:

mQ,k = Cquench · dQ,k · AQ,k · ρQ,k (16)

The area of the respective cylinder walls AQ,k is calculated by the flame front model.
The factor Cquench is used to calibrate the model. The total mass of unburned mixtures due
to flame quenching at the walls mQuench,wall (c.f. Equation (10)) results as sum of the masses
quenched at cylinder head, piston and liner.

In addition to the flame quenching at the cylinder walls, a crevice volume is added.
Assuming that the crevice volume contains only the unburned homogeneous natural
gas/air mixture, the mass inside the crevice volume is calculated with the density of the
unburned zone.

3.9. Knock

Knocking combustion is one major limitation for dual-fuel engines. As knock occurs
due to autoignition of unburned mixture, a common approach for knock model in 0D/1D
simulation is the knock integral, which is based on the work of Livengood and Wu [10]:

KI =
∫ 1

τ
dt (17)

The value of the knock integral KI is calculated by integrating the inverse of the
ignition delay time, which can be interpreted as the reaction rate. Knock occurs if the value
of KI reaches a certain threshold. In this work, the model of Urban et al. [40] is used. In
Ref. [40], a detailed model for the ignition delay time of methane-based fuels is published,
which includes higher hydrocarbons up to butane and hydrogen. As suggested in Ref. [40],
the value of KI is evaluated at the time with the highest unburned zone temperature. For
calibration of the knock model only the threshold of KI for knocking combustion has to be
selected, based on one operation point with 5% knock frequency.

4. Validation of the Combustion Model
4.1. Experimental Setup

The measurement data used for calibration and validation of the combustion model
was recorded during the FVV-Project Propeller Operation with Four-stroke Dual-fuel Engines II
at the Department of Marine Engineering at the Hamburg University of Technology [41].
The test engine used for the validation of the combustion model is a single cylinder dual-
fuel engine. The base engine is an MAN 32/40 diesel engine which was converted to
dual-fuel operation [42]. The main data of the engine can be found in Table 1. The full load
is equivalent to a brake mean effective pressure (BMEP) of 18.5 bar.
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Table 1. Main data of the test engine.

Parameter Value/Range

Bore 320 mm
Stroke 400 mm

Compression ratio 12.15
Rated power 372 kW
Engine speed 450–750 1/min

Diesel injection Bosch Common-Rail 1.6, injector nozzle 5 × 0.25 mm
Gas admission Gas admission valve in the intake manifold

4.2. Simulation Environment

The aforementioned models (except the NOx-model, which is already available) are
programmed in Fortran and implemented in GT-Power as UserCode. The engine model,
which is used for pressure trace analysis and forward simulations, is built in GT-Power
v2020. Figure 7 gives an overview of the relevant components of the engine model. The
pressure sensors at the intake and exhaust side of the test engine are located close to
the cylinder. Thus, only short pipes are needed to connect the cylinder head with the
end environments, where the measured crank angle resolved pressures are applied. The
cylinder head consists of a flow split and two equally bent tubes which are created according
to the technical drawings. On the intake side, a part of the volume of the cylinder head
is added to the previous pipe, to ensure that the volume between the gas injector and the
intake valves is analogous to the real engine. This allows estimation of the fuel mass, which
is scavenged during the short period of valve overlap.

1 
 

 

 
Figure 7. Single cylinder engine model in GT-Power.

The wall temperatures of the combustion chamber are modelled with the finite element
wall temperature solver which is available in GT-Power and the wall heat transfer coefficient
is modelled with the function WoschniGT, which is an adopted version of the original
approach by Woschni (c.f. Ref. [37]).

4.3. Ignition Delay

The ignition delay time is defined as the time between the start of combustion and
the time when 2% fuel is burned, to enable an accurate automated evaluation of the
measurement data. Figure 8 shows a comparison of the measured and simulated ignition
delay times in crank angle and time, with a coefficient of determination (R2) of 0.953 and
0.959, respectively. The injection duration for 98% of the shown cases is approx. 1.6 ms. As
the ignition delay time is a multiple of the injection duration in the majority of the cases, the
spray is highly diluted at the time of ignition. In a previous publication [22], the model was
also validated against measurement data from a different dual-fuel engine with a regular
pilot injector, showing similar good results.
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Figure 8. Comparison of measured and simulated ignition delay times: (a) in crank angle and
(b) in milliseconds.

The good prediction of the start of ignition without the necessity of calibration against
measurement data proves the ability of the presented physical/chemical approach.

4.4. Combustion Modelling

For the calibration of the combustion model, ten operation points are used, which are
evenly spread over the engine operation map. To cover the whole engine map with one set
of parameters, the burnup time multiplier Cbu is replaced with a linear equation depending
on the indicated mean effective pressure (IMEP), instead of a constant value.

The following Figures 9–11 show burn rates for different air-to-fuel ratios of the
homogeneous natural gas/air mixture (λNG) and different injection timings. For better
comparison, all three plots have the same axis scaling. One can see that a wide range of
λNG is covered due to the implemented flame speed models. Furthermore, Figure 10 shows
how the shape of the burn rates changes with later injection timings. Due to the shorter
time for preparation of the pilot fuel, a burn rate with two peaks can be observed.
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Figure 9. Comparison of the measured and simulated normalized burn rates at 450 rpm, 9.1 bar
BMEP, and an air-to-fuel ratio of the natural gas/air mixture (λNG) of 1.88. Injection timing of the
pilot fuel is varied by start of energizing (SOE): (a) −44 ◦CA; (b) −40 ◦CA; (c) −36 ◦CA.
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Figure 10. Comparison of the measured and simulated normalized burn rates at 450 rpm, 9.1 bar
BMEP, and an air-to-fuel ratio of the natural gas/air mixture (λNG) of 2.56. Injection timing of the
pilot fuel is varied by start of energizing (SOE): (a) −32 ◦CA; (b) −28 ◦CA; (c) −24 ◦CA.
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Figure 11. Comparison of the measured and simulated normalized burn rates at 675 rpm, 18.4 bar
BMEP, and a constant injection timing of the pilot fuel with SOE = −36 ◦CA. Charge air pressure is
varied, resulting in different air-to-fuel ratios of the natural gas/air mixture (λNG): (a) λNG = 2.17;
(b) λNG = 2.32; (c) λNG = 2.41.

Figure 12 shows a comparison of the measured and simulated combustion parameters
start of combustion when 2% of the fuel is burned (MFB02), center of combustion when 50%
of the fuel is burned (MFB50), and the burn duration 10–75%. For most of the operation
points the simulated values are within the ±3 ◦CA band.

As the test engine injected a constant pilot fuel mass for all operation points, the
energetic share of the pilot fuel varies with different loads. In Figures 9 and 10, the energetic
diesel share is in a range of 5–5.5%, whereas in Figure 11, the diesel share is approx. 2.8%.
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Figure 12. Comparison of the measured and simulated combustion parameters: (a) start of combus-
tion MFB02; (b) center of combustion MFB50; (c) Burn duration 10–75%.

4.5. Unburned Hydrocarbons

For the unburned hydrocarbons, two different models are included, the crevice volume
and the wall quench model. The crevice volume is used as calibration parameter. Thus,
for the unburned hydrocarbons two model parameters are adjusted, the crevice volume
and a quench layer thickness multiplier. As one can see in Figure 13, the HC-emissions are
increasing with higher load and speed, which is also partly related to higher cycle to cycle
variabilities and shorter time for post oxidation. As these effects are not captured by the
implemented models, the quench layer thickness multiplier is extended with an empirical
correlation to include the effects, which are not explicitly modeled. Thus, instead of using a
constant value for cquench, it was found during model calibration that the best results are
obtained if cquench is calculated as a function of IMEP and mean piston speed cm:

cquench = 0.0004 · (IMEP · cm)
1.6108 (18)
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Figure 13. Comparison of measured and simulated HC-emissions for the four operation points on the
120% propeller curve. The different colors indicate different charge air pressures. The variations are
plotted over the injection timing, characterized by the start of energizing (SOE) of the pilot injector.
Negative values indicate timings before top dead center. The operation points are: (a) 450 1/min and
9.1 bar BMEP; (b) 525 1/min and 11.8 bar BMEP; (c) 600 1/min and 15.0 bar BMEP; (d) 675 1/min
and 18.4 bar BMEP.
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For the calibration, measurement data from three different charge air pressures were
taken from each of the four operation points on the 120% propeller curve. The crevice
volume was only calibrated at the operation point with 450 1/min.

Figure 13 shows a comparison of the measured and simulated specific HC-emissions
at the 120% propeller curve. The emissions include both incomplete combustion and
scavenging. Except for the highest air-to-fuel ratio at 600 1/min, the trends are captured
satisfactorily.

4.6. Engine Operation Parameters

Figure 14 gives an overview of the operation parameters indicated mean effective
pressure (IMEP), maximum cylinder pressure and brake specific fuel consumption (BSFC)
for 191 different measurement points, which cover the full engine map and the λ- and
SOI-variations at the 120% propeller curve. The IMEP and the BSFC show an overall
relatively small error. The error of the maximum cylinder pressure is a bit higher, but
still the coefficient of determination (R2) is acceptably high. The results presented in
Figure 14 show that the model is able to predict the engine behavior in a wide range of
boundary conditions.
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Figure 14. Comparison of measured and simulated engine operation parameters: (a) Maximum
cylinder pressure; (b) Indicated mean effective pressure; (c) Brake specific fuel consumption.

4.7. NOx-Emissions

For the calibration of the NOx-model, the same operation points were used as for
the combustion model. The NOx multiplier was set to a value of 8.5138. Figure 15 shows
the measured and simulated NOx-emissions for 191 different measurement points, which
cover the full engine map and the λ- and SOI-variations at the 120% propeller curve. The
highlighted measurement points have low air-to-fuel ratios of λ < 1.9, which cause high
NOx-emissions. The overall trends are in good agreement with the model. In particular,
the SOI variations, which result in strongly increasing NOx-emissions, are captured well.
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Figure 15. Measured and simulated NOx-emissions for all measurement points.

4.8. Knock

The knock model was calibrated at one operating point at 600 rpm and 15 bar BMEP
with a knock frequency of 5%. The resulting KI of 0.7153 is the threshold for knock
simulation. Thus, a KI ≥ 0.7153 in the simulation refers to a knock frequency ≥ 5%.
Figure 16a shows the knock frequency which was calculated from the measurement data
for MFB50 variations at 450 rpm and 9.1 bar BMEP at different charge air pressures and
charge air temperatures, which are listed in Table 2. Figure 16b shows the respective KI
values from simulation using the combustion model. The absolute values of the measured
and simulated knock limited MFB50 are listed in Table 2. The results are promising, as not
only the trend is predicted correctly, but also the absolute error is comparably low for the
variations 1, 2, and 4.
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Table 2. Comparison of measured and simulated knock limited MFB50 at 450 1/min and
9.1 bar BMEP.

Variation λNG [-] TCh [◦C] pCh [Bar] Knock Limited MFB50 [◦CA]
Measured Simulated Error

1 1.88 47 1.68 3.53 2.46 1.07
2 2.05 47 1.83 0.51 0.74 −0.23
3 1.79 58 1.68 7.36 5.31 2.05
4 2.17 57 1.96 1.68 2.37 −0.69

However, it should be noted that knocking combustion is a stochastic phenomenon,
which is why MFB50 variations are usually captured out in a finer mesh and repeated
multiple times.

In the measurement data presented in Figure 16, the injection timing was varied in
steps of 2 ◦CA, whereas for each operation point 100 single working cycles were recorded.
Therefore, the results shown in this section may only give an impression of the capability
of the knock model.

5. Conclusions

In this paper, a predictive combustion model for medium speed dual-fuel engines was
developed, implemented in GT-Power and validated for a wide range of boundary conditions.

The pilot injection is modelled with the 1D spray model from Musculus and Kattke.
The model is extended with a mixing limited evaporation model and a new model to
calculate the temperature distribution inside the spray. The ignition process is simulated
with a detailed 2-stage ignition delay model, which was built based on extensive reaction
kinetics calculations. The reaction progress inside the spray is tracked via a new transport
equation, including the effect of overmixing. The ignition delay model is able to predict
the start of combustion correctly for all relevant boundary conditions. In this work, no
parameter of the ignition delay model was calibrated against measurement data, proving
the capabilities of the chosen physical/chemical approach.

After ignition, the spray model is terminated and the mixture inside the spray is used
to initialize the combustion model. To account for the different fuels in the combustion
chamber, the unburned zone is divided in different pseudo sub-zones, which are burned
with different combustion models using state of the art sub-models from literature. For the
flame propagation, a new flame front model was developed which calculates the flame
front in the first part of the combustion as cone shaped single flames which later merge into
one flame front. The combustion model shows good prediction of the relevant combustion
parameters over the engine map. To improve the results, one parameter of the entrainment
model was extended with an empirical correlation.

For the NOx-emissions, the Extended Zeldovich Mechanism, available as a built-in
template in GT-Power, showed good results.

As the test engine showed partially high HC-emissions, two models were imple-
mented to estimate flame quenching in crevice volumes and on the combustion chamber
walls, respectively. As the HC-emissions showed trends that are not only related to flame
quenching, the latter one was extended by an empirical correlation which summarizes
multiple other influences on the HC-emissions. This results in a satisfactory prediction of
the unburned fuel and thus improves the prediction of BSFC. This empirical correlation
can be seen as one shortcoming of the presented model which needs further investigation.

For knock prediction a model from literature was implemented. The knock-limited
MFB50 is predicted with an accuracy of approx. ±2 ◦CA for different charge air tempera-
tures and different air-fuel ratios at one operation point with 450 1/min and 9.1 bar BMEP.
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