
����������
�������

Citation: Lynch, P. A Lagrange–

Laplace Integration Scheme for

Weather Prediction and Climate

Modelling. Meteorology 2022, 1,

355–376. https://doi.org/10.3390/

meteorology1040023

Academic Editors: Jimy Dudhia

and Paul D. Williams

Received: 21 August 2022

Accepted: 21 September 2022

Published: 27 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article
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and Climate Modelling
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Abstract: A time integration scheme based on semi-Lagrangian advection and Laplace transform
adjustment has been implemented in a baroclinic primitive equation model. The semi-Lagrangian
scheme makes it possible to use large time steps. However, errors arising from the semi-implicit
scheme increase with the time step size. In contrast, the errors using the Laplace transform adjustment
remain relatively small for typical time steps used with semi-Lagrangian advection. Numerical
experiments confirm the superior performance of the Laplace transform scheme relative to the semi-
implicit reference model. The algorithmic complexity of the scheme is comparable to the reference
model, making it computationally competitive, and indicating its potential for integrating weather
and climate prediction models.
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1. Introduction

The accuracy and efficiency of weather and climate models has been greatly enhanced
by the introduction of better numerical algorithms for the solution of the equations of
motion. Two of the most notable advances were the development of the semi-implicit (SI)
scheme for treating the gravity-wave adjustment process and the semi-Lagrangian scheme
for the advection processes. For a general review of semi-Lagrangian schemes, see [1,2]; for
a review of recent and emerging time integration schemes, see [3].

Many modern operational NWP models use a semi-implicit scheme for time integra-
tion, increasing efficiency by enabling the use of a larger time step. However, this comes
at a price: while stabilisation is achieved by slowing down the high-frequency gravity
waves, the meteorologically significant components of the flow are also distorted by the
time averaging of the SI scheme. For models that use a semi-Lagrangian advection scheme,
the problem is magnified, as further increases in the time step result in greater errors.

It was pointed out in Lynch and Clancy [4] that the Laplace transform (LT) method
with analytic inversion gives an exact treatment of the linear modes. This is due to the
fact that the LT scheme does not involve time-averaging of the linear terms. Harney and
Lynch [5] described a Laplace transform integration scheme in an Eulerian baroclinic model
and showed that it yields more accurate forecasts than SI.

In this paper, we describe the implementation and performance of an integration
scheme based on semi-Lagrangian advection and Laplace transform adjustment. The new
scheme is incorporated in a spectral baroclinic atmospheric model PEAK, described in
Ehrendorfer’s book [6]. It is validated by comparison with a semi-Lagrangian semi-implicit
scheme. Both schemes have been comprehensively verified against the Eulerian semi-
implicit scheme originally implemented in the model and fully documented in [6].

Table 1 shows four integration schemes. EuSI is the original Eulerian semi-implicit
scheme described in [6]. EuLT is the Eulerian Laplace transform scheme described in
Harney and Lynch, 2019 [5]. The two Lagrangian schemes are denoted LaSI and LaLT.
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Table 1. Four numerical schemes for PEAK. The Eulerian schemes, EuSI and EuLT, are described in
earlier work, [5,6]. The Lagrangian schemes, LaSI and LaLT, are described in this paper.

Semi-Implicit
Adjustment

Laplace Transform
Adjustment

Eulerian
advection

EuSI
(Eh12)

EuLT
(HL19)

Lagrangian
advection

LaSI
(here)

LaLT
(here)

Numerical tests were carried out to confirm the correctness of the model implementa-
tions. A comparison of their performance in simulating a growing baroclinically unstable
disturbance is described in Section 4.1. The four simulations are quite similar, confirming
the integrity of the codes.

The goal of this study is to demonstrate that Laplace transform adjustment outper-
forms the semi-implicit scheme for time steps typically used for semi-Lagrangian advection,
and provides a means of producing more accurate weather forecasts and climate simu-
lations. In Section 2, we review the semi-implicit semi-Lagrangian schemes and outline
the Laplace transform adjustment scheme. We perform a simple analysis to compare the
accuracy of the two adjustment schemes. In Section 3, we apply the Laplace transform
scheme to the PEAK model equations. Treatment of orography and of diffusion are given
particular attention. In Section 4, a series of tests comparing simulations using the LaLT
scheme and the semi-implicit scheme are described. Conclusions are presented in Section 5.
Two appendices are included, one on the calculation of the commutator, and one relating
the Laplace transform scheme to exponential integration schemes.

2. Outline of the Semi-Implicit and Laplace Transform Schemes

Before considering the details of the PEAK model, we describe the general approach to
integration using the LaSI and LaLT schemes. The original EuSI scheme is comprehensively
documented by Ehrendorfer [6] and the EuLT scheme by Harney and Lynch [5].

2.1. Outline of the LaSI Scheme

We consider a general equation written in Lagrangian form

dX
dt

+ LX + N(X) = 0 (1)

where LX are the linear terms and N(X) are the nonlinear terms. Before we convert this
grid-point equation to the spectral domain, we discretise it in time using a three time-level
Lagrangian scheme. For a trajectory from departure point D at time (n− 1)∆t through
arrival point A at (n + 1)∆t, the equations are

X+
A − X−D
2∆t

+ L
X+

A + X−D
2

+ N0
M = 0

where nonlinear terms are evaluated at the midpoint M and superscripts−, 0 and + denote
values at times (n− 1)∆t, n∆t and (n + 1)∆t. We can write the solution at the advanced
time as

X+
A = [I + ∆tL]−1{(I − ∆tL)X−D − 2∆tN0

M
}

, (2)

where the right hand side may be computed from known quantities. We now convert
Equation (2) to spectral form, multiplying by Ym

n (λ, φ) and integrating over the sphere
to get

x+ = (I + ∆tL)−1{(I − ∆tL)x−D − 2∆tn0
M
}

,

where x = xm
n is the vector of spherical harmonic coefficients of X, and n = nm

n is similarly
related to N. The right hand side may be computed from known quantities. We note that
the linear operator L commutes with the spectral transform.
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2.2. Outline of the LaLT Scheme

We consider again the general equation in Lagrangian form (1). Before converting this
grid-point equation to the spectral domain, we take the Laplace transform L along the
trajectory starting from the departure point D at time (n− 1)∆t:

sX̂ − X−D + L̂X +
N0

M
s

= 0 ,

where s is the complex variable conjugate to t and X̂ := L X. As for the LaSI scheme,
we assume that the nonlinear term varies slowly, and approximate it by its value at the
mid-point of the trajectory from (D, (n− 1)∆t) to (A, (n + 1)∆t).

To get an equation for X̂ we have to change the order of the Laplace transform and
the linear operator L; in general, these do not commute. We define the commutator

Γ := [L , L] = L L− LL

so that the term L̂X = L {LX} becomes LX̂ + Γ(X), and write the transformed equation

sX̂ − X−D + LX̂ + Γ0
M +

N0
M

s
= 0 .

For computation of the commutator, see Appendix A.
We now convert to spectral form, integrating over the sphere, to get

sx̂− x−D + Lx̂ + γ0
M +

n0
M
s

= 0 ,

where x̂ = x̂m
n is the vector of spherical harmonic coefficients of X̂, x−D are the coefficients of

X−D, and γ = γm
n and n = nm

n are the coefficients of Γ and N. The solution may be written

x̂ = (sI + L)−1

(
x−D − γ0

M −
n0

M
s

)

where, after inverse transformation to the time domain, the right hand side may be com-
puted from known quantities.

2.3. Accuracy Analysis

An accuracy analysis of the Laplace transform (LT) and semi-implicit (SI) schemes
was presented in [5]. The main conclusions are reviewed here. Considering a simple
oscillation equation

∂X
∂t

= iωX + N(X) (3)

that represents a component of the full system used in numerical weather prediction, the
analysis showed that LT is more accurate than SI for both the linear and nonlinear terms.
Assuming that the nonlinear term varies slowly, we take it to be a constant N. The exact
solution of (3) at time (n + 1)∆t is then

X+ =

[
exp(2iω∆t)

]
X− +

[
exp(2iω∆t)− 1

iω

]
N (4)

where X− is the solution at time (n− 1)∆t.
The SI approximation to (3) is

X+ − X−

2∆t
= iω

X+ + X−

2
+ N
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Solving for the new value X+, we have

X+ =

(
1 + iω∆t
1− iω∆t

)
X− +

(
1

1− iω∆t

)
2∆tN (5)

Comparing this with the exact solution (4), we find that both the linear and nonlinear
components of the solution are misrepresented. For the exact solution (4), X− is multiplied
by exp(2iω∆t), while for the SI solution (5) the multiplier is

ρ =

[
1 + iω∆t
1− iω∆t

]
.

Thus, although there is no amplification, the phase error increases with ω∆t. For the
nonlinear term, the SI scheme has both modulus and phase errors; for details, see Section 2
in [5]. The errors in the SI scheme are significant when the time step is large.

We now apply the Laplace Transform L to Equation (3), taking the origin of time to
be (n− 1)∆t. The transform of (3) is

sX̂− X− = iωX̂ +
N
s

.

The solution for X̂ follows immediately:

X̂ =
X−

s− iω
+

N
s(s− iω)

. (6)

The inverse Laplace transform L −1 with time set to 2∆t yields X+ equal to the exact
solution (4) at time (n + 1)∆t. Thus, to the extent that the nonlinear term can be regarded
as constant, the LT scheme is free from error.

2.4. Filtering with the LT Scheme

The LT scheme filters high frequency components by using a modified inversion
operator L ∗: this can be done numerically by distorting the Bromwich contour for the
inversion integral to a closed curve excluding poles associated with the high frequencies,
as in [7–11]. In the present study, as in those of Lynch and Clancy [4] and Harney and
Lynch [5], we invert the transform analytically, explicitly eliminating components with
frequency greater than a specified cut-off frequency ωc.

Filtering may be done with a sharp cut-off at ωc, or with a smooth function such as a
Butterworth filter having frequency response function

H(ω) =
1

1 + (ω/ωc)L . (7)

Formally, we can define the modified inversion operator as the composition of the
filter and the inverse Laplace transform: L ∗ = L −1 ◦ H. In the numerical tests reported
in Section 4 we set L = 16 and choose the cut-off period τc = 1 h and ωc = 2π/τc. These
values were chosen on the basis of many tests which showed that they yielded the best
results for the given model resolution. Assuming that |ω| � ωc, the inverse Laplace
transform of (6) at time (n + 1)∆t gives

X+ = [exp(2iω∆t)]X− +

[
exp(2iω∆t)− 1

iω

]
N . (8)

This agrees with the exact analytic result (4) for both the linear and nonlinear terms.
Equation (8) is formally identical to Equation (4) in Cox and Matthews [12], for which

the local truncation error is 1
2 ∆t2(dN/dt)n. Assuming that the nonlinear term varies

slowly, we have dN/dt = O(∆t), and the local truncation error is third order in time.
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We note that (8) is also equivalent to a component of the vector Equation (2) in Clancy
and Pudykiewicz [13]. For the relationship between Laplace transform integration and
exponential integrators, see Appendix B.

3. Laplace Transforming the PEAK Equations

We now describe the application of the Laplace transform scheme to the PEAK model
equations. We begin with Equations (9.38)–(9.41) in Section 9.3 of Ehrendorfer [6], but writ-
ten in Lagrangian form:

dζ

dt
= Fζ − ςζ (9)

dδ

dt
= Fδ −∇2

σ(RTπ + ΦS + GT)− ςδ (10)

dT
dt

= FT −Hδ− ςT (11)

pT dΠ

dt
= −pTδ (12)

The notation is generally conventional and equations similar to these have appeared
frequently, going back to Hoskins and Simmons [14]. The dependent variables are vorticity
(ζ), divergence (δ), temperature (T) and log surface pressure π = log(pS/p00), where
p00 = 105 Pa is the reference pressure. All variables are in the spectral domain but, for com-
pactness, we suppress the spectral indices so that, for example, ζm

` is written simply as ζ.
Bold-face variables are vectors with values at allMmodel levels, which are equally spaced
in σ-coordinates. The explicit expressions for the matrices G and H are given in Ehrendor-
fer [6] and vectors are defined as follows: pT = (∆σ1, ∆σ2, . . . ∆σM), Π = (π, π, . . . , π) and
T = (T, T, . . . , T). Linear damping with coefficient ς may be applied to all variables except
the surface pressure. The surface orography is represented by ΦS.

Diffusion is generally required to control spurious oscillations. Explicit diffusion
schemes may become unstable for large time steps. To avoid this problem, we may use
a scheme that is fully implicit. However, when combined with the Laplace transform
scheme, this leads to additional complications. To circumvent these, we employ an operator
splitting method. In the first stage, the inviscid Equations (9)–(12) with ς = 0, are advanced
to time (n + 1)∆t. This is then followed by a second stage in which the damping terms are
integrated analytically (see Section 3.8).

3.1. Lagrangian Departure Points and Values

The Cartesian coordinates of a grid point at latitude φ and longitude λ are

XA = r cos λ cos φ , YA = r sin λ cos φ , ZA = r sin φ . (13)

We compute (XA, YA, ZA) for each grid-point and store them; they are independent of
the model level. We use a method described by McGregor [15] to determine the departure
points (XD, YD, ZD). The inverse transformation is

r =
√

X2
D + Y2

D + Z2
D , φ = arcsin ZD/r , λ = arctan(YD/XD) . (14)

(We use the FORTRAN function atan2(YD, XD) here). The inverse transform must be done
every time step, as the departure points change. They also depend on the model level.

Values of the variables at the departure points are obtained by interpolation in (λ, φ)
space. A bicubic interpolation scheme is used. To facilitate interpolation, the grid point
arrays are extended by two rows or columns around the boundaries. In the east–west
direction, the extension is cyclic. At the poles, we repeat the two boundary rows, reversing
their order and shifting the longitude by 180◦ to allow for crossing the poles [15].
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3.2. Orography

Preliminary tests with real data produced instabilities that were insensitive to damp-
ing and to spectral truncation. The problem first became manifest over the Andes and
Himalayas. As is well known, orography can lead to problems with semi-Lagrangian
integration schemes. Ritchie and Tanguay [16] proposed a modification that alleviates this
problem. An orographic term is subtracted from the pressure, yielding a much smoother
field that is more accurately interpolated to the departure points.

The method of Ritchie and Tanguay is used in the IFS model and described in the
documentation [17]. The variable π = log pS/p00 in (12) is separated into a constant part
involving the orography and a variable part independent of orography:

π = π + π′ (15)

where π = −ΦS/RT is, by definition, the value for an isothermal hydrostatic atmosphere.
Thus,∇π = −(1/RT)∇ΦS. We can then write(

dπ

dt

)
k
=

(
dπ′

dt

)
k
+ (Fπ)k , where (Fπ)k = −

[
1

RT
V k ·∇ΦS

]
. (16)

The term Fπ involving the gradient of orography is computed in an Eulerian manner,
and the continuity Equation (12) becomes

dπ′

dt
= pT(Fπ − δ) .

The advected variable π′ is much smoother than the original variable π since the
underlying orography has been extracted.

3.3. Inviscid Stage

We integrate the equations using a split scheme, where the diffusion is omitted in the
first stage and integrated analytically in the second. The nonlinear terms are evaluated at
the central time and averaged between the departure and arrival points:

F0
M = 1

2 (F0
D + F0

A) .

This averaging is similar to the approach adopted in the ECMWF IFS model [17].
We now take the Laplace transform of (10)–(12), after applying (15) to change the

pressure variable. Since the Laplace operator L does not commute with the spacial
Laplacian∇2

σ, we introduce the commutator

Γ := s2[L ,∇2
σ](RTπ′ + GT) (17)

The factor s2 is included here to ensure that Γ is independent of s (see Appendix A).
The transformed equations may be written

sδ̂ = (Fδ)
0
M/s− Γ0

M/s2 + δ−D −∇
2
σ(RTπ̂′ + GT̂) (18)

sT̂ = (FT)
0
M/s−Hδ̂ + T−D (19)

sπ̂′ = pT[(Fπ)
0
A − δ̂] + pTΠ−D (20)

Using the equations for T̂ and π̂′, these quantities are eliminated from the divergence
equation to obtain an equation for a single variable, δ̂:

s2δ̂ = (Fδ)
0
M −∇2

σ(RTsπ̂′ + GsT̂)− Γ0
M/s + sδ−D

= (Fδ)
0
M −∇2

σ[−RT pTδ̂ + pTΠ′−D )]

−∇2
σ[G((FT)

0
M/s−Hδ̂ + T−D)]− Γ0

M/s + sδ−D
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We transfer all terms involving δ̂ to the left:

[s2I − ∇2
σ(RT pT + GH)]δ̂ (21)

= (Fδ)
0
M − Γ0

M/s + sδ−D −∇
2
σ[RT pTΠ′−D + G(FT)

0
M/s + GT−D]

3.4. Transforming to Vertical Eigenmodes

We now define the vertical structure matrix

B := RT pT + GH .

Since B is symmetric, its eigen-structure can be written

BE = EΛ or ETBE = Λ or B = EΛET

We now transform to vertical eigen-modes by multiplying (21) by ET:[
s2I−∇2

σ(E
TBE)

]
(ETδ̂) = (22)

ET
{
(Fδ)

0
M − Γ0

M/s + sδ−D −∇
2
σ[RT pTΠ′−D + G(FT)

0
M/s + GT−D]

}
.

We note that, for a specific spectral component with total wavenumber `, the Laplacian
has a simple form −∇2

σ = `(`+ 1)/a2. Then, defining Ω2 := −∇2
σΛ, the matrix on the left

hand side of (22) is

[s2I−∇2
σ(E

TBE)] = [s2I−∇2
σΛ] = [s2I+ Ω2]

Since this is a diagonal matrix, the equation falls intoM separate scalar equations,
one for each vertical mode. We group the right hand terms of (22) according to powers of s:

RHS = ET{A× s + B × 1 + C × (1/s)
}

(23)

where the vectors A, B and C are

A = δ−D
B = (Fδ)

0
M −∇2

σ(RT pTΠ′−D + GT−D)

C = −∇2
σ(G(FT)

0
M)− Γ0

M +∇2
σ(RTFπ)

0
A .

Multiplying (22) by the inverse of the diagonal matrix s2I+ Ω2, the equation for the
k-th component is

(ETδ̂
+
A)k =

[
s

s2 + Ω2
k

]
(ETA)k +

[
1

s2 + Ω2
k

]
(ETB)k +

[
1

s(s2 + Ω2
k)

]
(ETC)k (24)

We apply the operator L ∗ to (24), noting that the vertical transform and Laplace
transform commute. The terms can be inverted using standard results from Laplace
transform theory [18]. The value at time (n + 1)∆t is denoted by a + superscript:

(ETδ+
A)k = [H(Ωk) cos 2Ωk∆t](ETA)k (25)

+

[
H(Ωk) sin 2Ωk∆t

Ωk

]
(ETB)k +

[
1−H(Ωk) cos 2Ωk∆t

Ω2
k

]
(ETC)k

The filter response functionH(ω) was defined in Equation (7) above.
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3.5. Inverse Vertical Transformation

Let us define four diagonal matrices

ΛA = diag(H(Ωk) cos 2Ωk∆t)

ΛB = diag
(
H(Ωk) sin 2Ωk∆t

Ωk

)
ΛC = diag

(
1−H(Ωk) cos 2Ωk∆t

Ω2
k

)

ΛD = diag

(
2Ωk∆t−H(Ωk) sin 2Ωk∆t

Ω3
k

)

(ΛD will be needed below). Then (25) can be written

ETδ+
A = ΛAE

TA+ ΛBE
TB + ΛCE

TC (26)

We can now calculate the divergence at the advanced time,

δ+
A = E(ETδ+

A) = EΛAE
TA+ EΛBE

TB + EΛCE
TC

For compactness, we define the propagation matrices:

PA = EΛAE
T PB = EΛBE

T

PC = EΛCE
T PD = EΛDE

T

(PD will be used below). Then we can write the solution as

δ+
A = PAA+ PBB + PCC (27)

The P-matrices can be pre-computed and stored, since they do not depend on the
model variables.

3.6. Temperature and Pressure

We return to Equations (19) and (20):

sT̂ = (FT)
0
M/s−Hδ̂ + T−D

sπ̂′ = pT[(Fπ)
0
A − δ̂] + pTΠ−D

Noting that L ∗{1/s} = 1 and L ∗{1/s2} = t, dividing these equations by s and
applying the operator L ∗ at time 2∆t, we have

T+
A = T−D + 2∆t(FT)

0
M −HL ∗

{
δ̂/s

}
(28)

π′+A = pTΠ′−D + 2∆tpT
[
(Fπ)

0
A −L ∗

{
δ̂/s

}]
. (29)

Both (28) and (29) require computation of

δ̃ = L ∗
{

δ̂/s
}

. (30)

This term involves a convolution integral that may be approximated by the trapezoidal rule

L ∗
{

δ̂/s
}
=
∫ 2∆t

0
δ dt ≈ 2∆t

(
δ−D + δ+

A
2

)
= 2∆tδ
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where δ is the average of old and new values of δ. However, this method was found not
to perform in a satisfactory manner. We therefore employed an alternative strategy: the
term (30) was computed by noting that

δ̃ = L ∗
{

δ̂/s
}
= EL ∗

{
ETδ̂/s

}
. (31)

We divide (24) by s to give(
ETδ̂

s

)
k

=

[
1

s2 + Ω2
k

]
(ETA)k +

[
1

s(s2 + Ω2
k)

]
(ETB)k +

[
1

s2(s2 + Ω2
k)

]
(ETC)k (32)

We invert this using standard results for Laplace transforms to obtain

L ∗
{
ETδ̂

s

}
k

=

[
H(Ωk) sin 2Ωk∆t

Ωk

]
(ETA)k +

[
1−H(Ωk) cos 2Ωk∆t

Ω2
k

]
(ETB)k

+

[
2Ωk∆t−H(Ωk) sin 2Ωk∆t

Ω3
k

]
(ETC)k

Then using the Λ-matrices, we can write

L ∗
{
ETδ̂

s

}
= ΛBE

TA+ ΛCE
TB + ΛDE

TC

Noting (31) and using the P-matrices, we can now write

δ̃ = PBA+ PCB + PDC . (33)

Finally, using (28) and (29), the values of T+
A and π′+A are

T+
A = T−D + 2∆t[(FT)

0
M −Hδ̃/2∆t] (34)

π′+A = pTΠ′−D + 2∆tpT
[
(Fπ)

0
A − δ̃/2∆t

]
. (35)

3.7. Integrating the Vorticity

To complete the inviscid stage of the time step, we take the Laplace transform of the
vorticity Equation (9)

sζ̂ = ζ−D + (Fζ)
0
M/s

Dividing by s and applying L ∗ at 2∆t yields

ζ+A = ζ−D + 2∆t(Fζ)
0
M , (36)

which is a standard centred Lagrangian step along the trajectory. As the poles are at s = 0,
the Laplace transform has no filtering effect here.

As is usual with the leapfrog model, a Robert-Asselin filter [19] is applied to the
prognostic variables to prevent separation of the solutions at odd and even time steps. The
coefficient is fixed at ε = 0.03 in all cases.

3.8. Diffusion Stage

The governing equation for a spectral component of any of the variables δ, ζ or T may
be written in the form

dΨ
dt

= F− ςΨ
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We split the right hand side into two parts and integrate them separately. We first
integrate the inviscid equation

dΨ
dt

= F

over a time interval 2∆t with initial condition Ψ− and denote the result as Ψ∗. We then
integrate the equation

∂Ψ
∂t

= −ςΨ

analytically with the initial condition Ψ∗ to get

Ψ+ = exp(−2∆tς)Ψ∗

which is the required solution at time (n + 1)∆t. This second stage is applied to the
divergence, vorticity and temperature; the surface pressure is not damped in this way.

The parameter ς depends only upon the horizontal scale. The diffusion is assumed to
be of the form

∂Q
∂t

= ν2∇2Q + ν6∇6Q (37)

In the spectral domain, the damping coefficient becomes

ς =

[
ν2

(
`(`+ 1)

a2

)
+ ν6

(
`(`+ 1)

a2

)3
]

We note that the spectral equations are unchanged in form by the addition of the hyper-
diffusion term (ν6); only the value of the coefficient is changed. The ν6-term more strongly
damps the smaller scales. Having applied diffusion, we have all the model variables at the
advanced time, and a new time step can be taken.

4. Numerical Evaluation of the Integration Schemes

In this section, we describe a series of tests comparing simulations using the Laplace
transform scheme (LaLT) and the semi-implicit scheme (LaSI). The LaSI and LaLT models
were run with 20, 40 and 60 min time steps. For LaLT, a cut-off value τc = 1 h was set for
all time steps. In most cases, the reference forecast was an integration of the LaSI model
with a time step ∆t = 10 min.

Eulerian models are subject to a Courant-Friedrichs-Lewy stability condition. For an
advection speed u = 100 m/s, the non-dimensional stability ratio u∆t/δx is unity for a
time step ∆t = 1500 s or 25 min. In fact, both the Eulerian models, EuSI and EuLT, were
found to be unstable for a time step of 24 min. The Lagrangian models are not subject to
this limitation.

The horizontal resolution of the model was at triangular truncation T85. The colocation
grid corresponding to this has 256× 129 grid points, with a grid interval of approximately
150 km. In all cases, there were 20 vertical levels, uniformly spaced in σ-coordinates.

The default setting of the diffusion coefficient was ν2 = 7× 105 m2s−1: the damping
of a component of total wavenumber ` is ς = ν2`(`+ 1)/a2 s−1. The default value implies
an e-folding time of 2.2 h for the shortest waves represented at truncation T85. Sixth order
diffusion (ν6 = 107 m2s−1) was also applied for runs with a 60 min time step. We note that
LaLT consistently required less explicit diffusion than LaSI.

4.1. Initial Validation Tests

Numerous tests were carried out to confirm the correct operation of the model codes.
For short time steps, the Eulerian and Lagrangian advection produced similar results, as
did the semi-implicit and Laplace Transform adjustment. As an example of the performance
of the four models, simulations of a growing baroclinically unstable disturbance [20] are
shown in Figure 1. The initial field is a zonally symmetric flow with a small perturbation
on the Greenwich meridian. The four models were integrated for 12 days, each with a time
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step ∆t = 5 min. The damping coefficient was ν2 = 7× 105 and all other parameter settings
were equal for the four runs. The four simulations are quite similar, although we notice a
slight damping for the Lagrangian runs, associated with the interpolations involved in the
treatment of advection.

Figure 1. Vorticity field at model level 20 for 12-day forecasts with four integration schemes. Top left: EuSI.
Top right: EuLT. Bottom left: LaSI. Bottom right: LaLT. All runs had time step 5 min. Units 10−5s−1.

4.2. Kelvin Waves

Kelvin waves are eastward propagating waves that play an important role in atmo-
spheric dynamics. Clancy and Lynch [7] showed that the LT scheme had a significantly
smaller phase error than the semi-implicit scheme for the integration of these waves. Ex-
act Kelvin Wave initial conditions can be generated using the method of Kasahara [21].
In this study, we use a simple analytical approximation described in [22]. We examine the
solutions for zonal wave numbers 1 and 4. The wave amplitude is 100 m in both cases.
The theoretical period for the Kelvin wave with zonal wavenumber m = 1 is about 32 h
and for m = 4 is about 8.3 h ([21], Figure 9). Figure 2 shows that the root mean square
errors for wavenumber 1 for LaLT (blue lines) are significantly smaller than for LaSI (red
lines). Forecasts were run with time steps of 20, 40 and 60 min (solid, dashed and dotted
lines, respectively).
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Figure 2. RMS errors for six integrations of Kelvin waves with m = 1. Red: LaSI scheme. Blue:
LaLT scheme.

For the LaSI forecast of wave number 4 (Figure 3) with a 20 min step, the propagation
of the wave lags by a full wavelength by the end of the integration, reducing the rms error.
The errors for the LaSI scheme with the larger time steps oscillate wildly as the wave moves
into and out of phase with the reference solution. The errors for LaLT are much smaller
and behave in a more realistic and steady manner.

Figure 3. RMS errors for six integrations of Kelvin waves with m = 4. Red: LaSI scheme. Blue:
LaLT scheme.

4.3. The Five-Day Wave

The Five-day Wave RO(1,2) is the gravest symmetric rotational Hough mode of zonal
wavenumber 1. It is closely related to the initial state chosen by Lewis Fry Richardson
for their preliminary shallow-water forecast experiment ([23], Section 4.1). The initial
conditions for a three-dimensional Five-day Wave were implemented in PEAK. The initial
pressure amplitude was 10 hPa, with mean pressure 1000 hPa. As no zonal mean flow was
included, the wave has a period close to 5 days. Figure 4 shows the root mean square errors
in surface pressure for the LaSI scheme (red) and the LaLT scheme (blue), with time steps
of 20 min (solid lines), 40 min (dashed lines) and 60 min (dotted lines). The reference is an
SI forecast with time step of 10 min. The error level for LaLT is significantly less than that
of the LaSI scheme, especially for the longer time step. The scores for vorticity at 250 hPa
(Figure 5) confirm the superior performance of LaLT.



Meteorology 2022, 1 367

Figure 4. Five-day wave RO(1,2). RMS errors of surface pressure (hPa) for 5 day forecasts.

Figure 5. Five-day wave RO(1,2). RMS errors of 250 hPa vorticity (units 10−6s−1) for 5 day forecasts.

4.4. Rossby-Haurwitz Wave

Rossby-Haurwitz (RH) waves are exact solutions of the nonlinear barotropic vorticity
equation. While they are not eigenfunctions of the shallow water equations, they have
frequently been used as test cases. Following Phillips [24], the RH(4,5) wave was chosen as
Test Case 6 by Williamson et al. [25]. This test case has been extended to three dimensions;
the initial vorticity field is as in the barotropic case, the divergence is zero and a vertical
temperature profile and surface pressure field are defined; for details, see [26].

The LaSI and LaLT schemes, with time steps of 20, 40 and 60 min, were compared to a
reference run of LaSI using a time step of 10 s. No diffusion was used for the reference or
LaLT runs, but the LaSI runs were unstable. This was overcome by applying horizontal
diffusion with a coefficient ν2 = 3× 106 m2s−1. Figure 6 shows the root mean square errors
in surface pressure for the LaSI scheme (red) and the LaLT scheme (blue). The error level
for LaLT is substantially less than for the LaSI scheme. Figure 7 shows scores for vorticity
near the tropopause (250 hPa). The forecasts for LaSI and LALT have comparable errors,
but there is a slight advantage for the Laplace transform scheme.
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Figure 6. Rossby-Haurwitz wave RH(4,5). RMS errors of surface pressure (hPa) for 6 day forecasts.

Figure 7. Rossby-Haurwitz wave RH(4,5). RMS errors of 250 hPa vorticity (units 10−6s−1) for
6 day forecasts.

4.5. Flow over a Mountain

Test Case 5 of Williamson et al. [25] treats a zonal flow over an isolated mountain. The
mountain is centred at (90◦ E, 30◦ N) with maximum height 2000 m. No analytic solution is
known so, as usual, we take the LaSI run with ∆t = 10 min as a reference. Figure 8 shows
the root mean square errors in surface pressure for the LaSI scheme (red) and LaLT scheme
(blue), with time steps of 20 min (solid), 40 min (dashed) and 60 min (dotted lines). The
error levels for the two schemes are very close in value.
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Figure 8. RMS errors in surface pressure for Test Case 5 (Williamson et al. [25]). Red lines: LaSI. Blue
lines: LaLT.

4.6. A Baroclinically Unstable Wave

Polvani et al. [20] devised a test case for baroclinic instability. The initial conditions
consist of a non-divergent zonal flow with constant surface pressure. A small perturbation
is added to the temperature to trigger the development of baroclinic instability. The test
case of Polvani et al. was used by Ehrendorfer [6] to validate the PEAK model. With a fixed
value for the diffusion coefficient, the initial conditions are ‘numerically convergent’ as
shown in [20] using two different numerical models. A test case quite similar to that of
Polvani et al. was constructed by Jablonowski and Williamson [27].

We use the test case of Polvani et al. [20] to show that the LaLT scheme can accurately
simulate baroclinic development. Using this case, Harney and Lynch [5] showed that
the EuLT scheme can accurately simulate baroclinic development. In Figure 1, above, we
showed the 12-day forecasts for all four schemes all with a small time step ∆t = 5 min. There
was no substantive difference between the four schemes. They are also indistinguishable
from the results plotted in ([20], Figure 4). Thus, all four schemes are capable of forecasting
baroclinic development with high precision.

Quantitative scores confirm that the differences in performance are small: Figure 9
shows the root mean square errors in surface pressure (hPa) for forecasts with the LaSI
scheme (red) and LaLT scheme (blue), with time steps 20, 40 and 60 min. As usual, the ref-
erence forecast is LaSI with a 10 min time step. It is clear that the time truncation error
grows with forecast range. It is also clear that the error is greater for larger time steps.
The important point is that the errors for the two integration schemes are very similar
in magnitude.
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Figure 9. RMS errors in surface pressure for baroclinic wave (Polvani et al. [20]). Red lines: LaSI. Blue
lines: LaLT.

4.7. Real Data Test

The simple wave tests described above indicate superior accuracy for the LT scheme
compared to the semi-implicit scheme. The ultimate conclusion on superiority of the scheme
must involve comprehensive comparisons for a large range of meteorological conditions.
As a first step, a single test using real atmospheric data is described here.

Data was retrieved from the European Centre for Medium-Range Weather Forecasts
MARS archive. The date chosen was 00 UTC on 15 October 2017, the day before a major
storm, Ophelia, reached Ireland. This data comprised temperature, divergence and vorticity
fields on 25 pressure levels, surface pressure and the relevant orography field. These fields
where interpolated onto the 20 sigma levels and reduced to the spectral resolution T85 used
for the PEAK forecasts. The process of interpolation introduced noise, which was removed
by initialization, as described by Harney and Lynch [5]. Using initialized data, six forecasts
were performed using the LaSI and LaLT schemes with time steps of 10, 20 and 40 min.

Figure 10 shows the root mean square error for surface pressure. The reference is
a forecast using LaSI with a time step of 5 min. The red curves are for LaSI and the
blue ones for LaLT. For the 10 min step, the errors are comparable for the two models,
although the error during the initial day is smaller for LaLT. For the larger time steps,
the Laplace transform scheme is clearly superior to the semi-implicit scheme. Scores for
mid-troposphere vorticity (Figure 11) confirm the superior performance of LaLT.

Figure 10. Real data: rms error for surface pressure (hPa) over 3 days for LaSI forecasts (red) and
LaLT forecasts (blue) with time steps 10, 20 and 40 min.
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Figure 11. Real data: rms error for 500 hPa vorticity (units 10−6s−1) over 3 days for LaSI forecasts
(red) and LaLT forecasts (blue) with time steps 10, 20 and 40 min.

5. Conclusions

An integration scheme using a Laplace transform for adjustment combined with a semi-
Lagrangian advection scheme (LaLT) has been found to yield results at least as accurate
as the popular semi-implicit semi-Lagrangian scheme. The numerical tests described in
Section 4 clearly indicate the superior accuracy for the LaLT scheme compared to the
semi-implicit scheme LaSI. The single experiment with real data reinforces this advantage.

Ultimate conclusions on the superiority of the LaLT scheme require more compre-
hensive comparisons for a large range of meteorological conditions. The potential for
operational implementation of LaLT would depend upon more exhaustive testing with
higher spatial resolution and incorporating a full package of physical processes.

There are well-known advantages of using a two time level scheme for Lagrangian
advection. There appear to be no difficulties in principle combining such a scheme with
Laplace transform adjustment.

The efficient formulation of the LaLT scheme, with analytical inversion of the Laplace
transform, is made possible through the use of a spectral model. An active debate on the
future of spectral models has been ongoing for decades. The global simulation of an entire
season of the Earth’s atmosphere, with a 1 km grid and upper boundary of 80 km [28],
suggests that spectral models will continue to be competitive in the future.

For practical reasons, the semi-Lagrangian method used in this study was applied only
to the horizontal advection. However, there is no difficulty to include vertical advection in
the scheme. The algorithmic complexity of the LaLT scheme is comparable to that of LaSI.
Averaging over a range of integrations, the processing time for LaLT was just 6% more than
for LaSI, so the Laplace transform scheme is computationally competitive.

In summary, the main result of this study is that the LaLT scheme is clearly superior in
accuracy to the LaSI scheme for the large time steps typically used with semi-Lagrangian
advection. The evidence presented gives a clear indication of the practical potential of the
LaLT scheme for integrating weather and climate prediction models.
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Abbreviations
The following abbreviations are used in this manuscript:

EuSI Eulerian advection and semi-implicit adjustment scheme
EuLT Eulerian advection and Laplace transform adjustment scheme
LaSI Lagrangian advection and semi-implicit adjustment scheme
LaLT Lagrangian advection and Laplace transform adjustment scheme

Appendix A. Calculating the Commutator

It was assumed in earlier work on implementing the Laplace Transform Integration
Scheme in a Semi-Lagrangian context that the Laplace Transform operator L along a
trajectory commutes with spatial differential operators such as the gradient operator∇
and Laplacian ∇2. This is not the case, as may be shown by simple counter-examples. In
this appendix we derive expressions for the commutator of the Laplace transform with the
Laplacian operator ∇2.

Two Laplace Transforms

For a function f (x, t) of space and time, we define two distinct Laplace transforms.
The Euler–Laplace transform (ELT) is evaluated at a fixed point in space

L[ f ](x0, s) =
∫ ∞

0 C00

e−st f (x0, t)dt . (A1)

Here, C00 is a line in the x-t space parallel to the time axis and passing through the
point (x0, 0).

The Lagrange–Laplace transform (LLT) is evaluated along a trajectory of the motion:

L [ f ](x0, s) =
∫ ∞

0 C0

e−st f (x(t), t)dt . (A2)

Here, C0 is the trajectory of the motion starting at the point (x0, 0).
The Euler–Laplace transform commutes with spatial operators like ∂x and ∇2. This is

not the case for the Lagrange–Laplace transform. We write

L∇ = ∇L + [L ,∇]

and, to replace L∇ by ∇L , we require an expression for the commutator [L ,∇] =
(L∇−∇L ).

Evaluating the Commutator [L ,∇2]

In Figure A1, we show the trajectory C0, starting at point x0
0, along which the transform

L { f (x0)} is evaluated (superscript 0 indicates the initial time t = 0). Shown also are the
trajectories CP starting from x0

P and CM starting from x0
M. The contours C+ and C− are not

trajectories, but are parallel to C0, shifted to x+ = x0 + ∆x0 and x− = x0 − ∆x0.
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Figure A1. Trajectories (solid) and pseudo-trajectories (dashed) in (x, y, t)-space. See text for details.

The transform of ∂x[ f (x0)] is given by

L {∂x[ f (x0)]} =
L { f (x+)} −L { f (x−)}

x0
P − x0

M
+ H.O.T. (A3)

(H.O.T. denotes higher order terms). The derivative of the transform L { f (x0)} is given by

∂x[L { f (x0)}] =
L { f (xP)} −L { f (xM)}

x0
P − x0

M
+ H.O.T. (A4)

We expand the variables as follows

f+ = f (x+) ≈ f 0
+ + (u0 fx + v0 fy)

0 t

f− = f (x−) ≈ f 0
− + (u0 fx + v0 fy)

0 t

fP = f (xP) ≈ f 0
+ + (uP fx + vP fy)

0 t

fM = f (xM) ≈ f 0
− + (uM fx + vM fy)

0 t

Using these expansions in (A3) and (A4) we get

[L , ∂x] f (x0
0, s) = − 1

s2

(
∂u
∂x

∂ f
∂x

+
∂v
∂x

∂ f
∂y

)0

0
. (A5)

It is easy now to obtain the following commutators:

[L ,∇] f = − 1
s2 [ux fx + vx fy, uy fx + vy fy]

0
0

[L ,∇·]∇ f = − 1
s2 [ux fxx + vx fxy + uy fxy + vy fyy]

0
0 (A6)

We can also establish the identity

[L ,∇2] = [L ,∇·]∇ f +∇ · [L ,∇] f

which leads to the result

[L ,∇2] f = − 1
s2

[
2
(

ux fxx + vx fxy + uy fxy + vy fyy

)
+

(
uxx fx + vxx fy + uyy fx + vyy fy

)]0

0
. (A7)

Appendix B. LTI and Exponential Integrators

The LT method with analytic inversion gives an exact treatment of the linear modes.
This is due to the fact that the LT scheme does not involve time-averaging of the linear
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terms. An alternative way of achieving accuracy is to use an exponential integrator (see,
for example, [29,30]. In this appendix we demonstrate the relationship between Laplace
transform integration and exponential integrators.

We may write the model equations in the form

∂X
∂t

= LX + N(X) . (A8)

where the matrix L has an orthogonal eigenvector matrix E with LE = EΛ. Assuming that
the solution of (A8) at time tn = n∆t is known, the Laplace transform with this initial
time is

sX̂− Xn = LX̂ + N̂

where L{X} = X̂ is the Laplace transform of the state vector. Solving for this, we get

X̂ = (sI− L)−1[Xn + N̂] . (A9)

We note that
(sI− L)−1 = E(sI−Λ)−1ET

and also note the transforms

(sI−Λ)−1 = L{exp(Λt)} and (sI− L)−1 = L{exp(Lt)} .

We can write the nonlinear term as

(sI− L)−1N̂ = L{exp(Lt)} · L{N} .

The convolution theorem allows this to be written

(sI− L)−1N̂ = L
{∫ t

tn
exp(L(t− τ)N(τ)dτ

}
.

The transformed Equation (A9) now becomes

X̂ = L{exp(Lt)}Xn + L
{∫ t

tn
exp(L(t− τ)N(τ)dτ

}
We invert this at time tn+1 = tn + ∆t to get

Xn+1 = eLtn+1 Xn + eLtn+1

∫ tn+1

tn
e−LτN(τ)dτ (A10)

We note that (A10) is formally identical to Equation (8) of Peixoto and Schreiber [30],
which they call the variation-of-constants formula. We have thus established a close rela-
tionship between the Laplace transform scheme and exponential integrators.

Approximating the Nonlinear Term

The convolution term must be evaluated by approximate means, since it involves
unknown quantities. Suppose we evaluate the nonlinear term at time tn and assume that
it is constant throughout the time step (tn, tn+1). Then the convolution integral can be
evaluated, giving

Xn+1 = eLtn+1 Xn + eLtn+1

(∫ tn+1

tn
e−Lτ dτ

)
Nn

= eLtn+1 Xn + (−L)−1[I− exp(L∆t)]Nn .
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Assuming a small time-step, this reduces to

Xn+1 = eLtn+1 Xn + ∆tNn .

This is perhaps the simplest version of an exponential integrator. There is a wide
range of more sophisticated and accurate approximations of the convolution integral.
For example, we might estimate N at the centre of the time step by extrapolation Nn+1/2 =
(3Nn − Nn−1)/2. Many other possibilities exist.

The time-averaging of the SI scheme also results in an error in the nonlinear term,
even when this term is constant (see Harney and Lynch ([5], Equation (3)). In this ideal
case, the LT scheme has no error in the nonlinear term ([5], Equation (4)).
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