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Abstract: Probabilistic prediction models exist to reduce surprise about future events. This paper
explores the evaluation of such forecasts when the event of interest is rare. We review how the family
of Brier-type scores may be ill-suited to evaluate predictions of rare events, and we offer an alternative
to information-theoretical scores such as Ignorance. The reduction in surprise provided by a set of
forecasts is represented as information gain, a frequent loss function in machine learning training,
meaning the reduction in ignorance over a baseline having received a new forecast. We evaluate
predictions of a synthetic dataset of rare events and demonstrate the differences in interpretation
of the same datasets depending on whether the Brier or Ignorance score is used. While the two
types of scores are broadly similar, there are substantial differences in interpretation at extreme
probabilities. Information gain is measured in units of bits, an irreducible unit of information, that
allows forecasts of different variables to be comparatively evaluated fairly. Further insight from
information-based scores is gained via a similar reliability–discrimination decomposition as found
in Brier-type scores. We conclude by crystallising multiple concepts to better equip forecast-system
developers and decision-makers with tools to navigate complex trade-offs and uncertainties that
characterise meteorological forecasting. To this end, we also provide computer code to reproduce
data and figures herein.
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1. Introduction

Rare events can cause extreme harm to human activity. In reducing uncertainty before
a high-impact event to mitigate potential damage to life and property, it is important to
optimise probabilistic predictions with the right tools to inform forecast-system development.
Herein, we argue that a common evaluation metric, the Brier Score (BS) [1], may not be
mathematically appropriate for evaluating a dataset containing rare events. The need for
information-theoretical metrics as the alternative has been addressed in multiple papers [2–8].
However, the use of logarithmic-based scores such as Ignorance [2] (IGN) is still less common
than the BS in meteorology. Below, we review studies that critique and develop alternative
scoring rules, and therefrom promote a framework of evaluation techniques and visualisations
that use the concept of information in a manner familiar to meteorologists. We aim to improve
the accessibility of the information-theory framework to academics, forecasters, and evaluators
when evaluating and optimising probabilistic predictions.

Probabilistic forecasting systems include traditional numerical weather-prediction
(NWP) models, machine learning and artificial intelligence, or less complex statistical
models reviewed in [9]. No matter the variable or event, a prediction reduces to evaluating
a forecast probability with a posterior probability of occurrence: whether an event was
observed or not, which is not always certain. This brings up the spectre of observational
uncertainty, often ignored in verification studies by assuming observations are infallible.
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In this paper, we promote the idea of measuring information that has been gained from a
baseline [10], such as a probability gained from a previous model run, or a climatological
forecast. This ignores the problem of observational error altogether. There are ways to
include observational error explicitly in some scores [11,12], but the characteristics of
observational error are not always known. The error inherent in both the chaotic flow
and sensor-derived observations is not considered when evaluating the performance of
one model over another for the same events: this lets the evaluator skirt the issue of
observational uncertainty more gracefully. Ultimately, the scoring rule we seek is used to
measure the degree of surprise. For example, a human forecaster updates their internal
confidence according to the receipt of new model guidance; this surprise manifests as a
shift in probability distribution before and after the forecast is in hand [13]. This is a similar
concept to the use of win probabilities used in sports broadcasting [14] and how large
swings may indicate a headline event (and not necessarily a poor forecasting model).

We first cover the background of Brier-family and Information-based scores in Section 2
and their suitability for evaluating rare events in Section 3. The concepts of reliability and
discrimination are discussed in Section 4. We discuss the behaviour of these scores by
evaluating a synthetic dataset as a case study in Section 5, including visualisations and
interpretations accessible to meteorologists familiar with scoring rules like the BS. We
synthesise the results and conclude in Section 6. For readability, we moved longer stretches
of procedural mathematics to Appendixes A–D. All figures and code used to produce this
manuscript are included as python code in Data Availability Statement.

2. Background: Brier Score and Information

Readers may find a wider summary of verification metrics in texts such as [13,15–18].
Evaluation of probabilistic forecasts in meteorology is commonly performed with scoring
rules that punish the “distance” between a forecast and observation probability ( f and o,
respectively). For the BS, the distance is measured with the mean-square error (MSE):

BS = ( f − o)2 (1)

which is typically given as a mean-average over a time series of forecasts f ∈ [0, 1] [1];
observational error is not considered, i.e., o ∈ {0, 1}. The BS evaluates probabilistic forecasts
with the use of mean-square-error (MSE) between forecast distributions and whether the
event occurred or not: unity and zero, respectively. This makes the score dimensionless and
symmetric: the mean-squared difference is not sensitive to the order of f and o. It forms the
basis of a commonly used method to verify spatial forecasts, the Fractions Skill Score [19]
and its probabilistic equivalents [20,21]; these scores inherit some characteristics of BS:

• The BS gives a disproportionate weight to common events.
• The units of the BS are dimensionless, rendering interpretation straightforward but

making the comparison between predictions of different variables difficult and subjective.
• The application of MSE to measure the distance between two pdfs is constrained by

the range of probabilities [0, 1], imposing a geometric behaviour on the BS function
different from the typical interpretation of MSE as between unbounded scalars.

• Overconfident forecasts of rare events that do not occur are punished less severely
than with a logarithmic score [4,10].

In contrast, in fields such as machine learning, scoring rules based on information theory
are more commonly used [22–25], though not universally [26]. In the information-theory
framework, we measure the amount of uncertainty about an event yet to occur, termed
self-entropy:

HS(p) = − log2 p (2)

where p is the event probability. This is closely related to scores such as IGN [2], the divergence
score [27], logarithmic score [28], and cross-entropy [11,13]. This self-entropy is also known as
self-information, uncertainty, surprise, ignorance, choice, amongst other terms [13,29]. Hence,
we have improvements measured by information gain [10] (IG) as difference in surprise or
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ignorance. We seek to maximise information (i.e., a large value of IG) transferred to the end
user from a correct forecast, analogous to the reduction in BS for our new model.

3. Evaluating Forecast of Rare Events

In a system with binary outcomes, there are two extremes of high uncertainty [29,30],
alternatively conceptualised as low predictability [31,32]. One statistical regime of high
uncertainty is found when predicting an event that occurs half the time, such as heads in a
coin flip. Average uncertainty is at its maximum: the observer is fully naïve before the coin
is flipped and should assume a prior probability of 50%. Another is when an event is very
rare (<1%): the closer a forecast probability is to zero, the exponentially more surprising (cf.
Equation (2)) to the user when the event occurs. The first regime represents the cusp between
two states (basins of attraction) that exist when predicting exceedance of the 50th (median)
percentile; the second represents difficulty detecting a perceived “noise in the signal” (i.e.,
outliers in an ensemble), such as predicting exceedance of a high (99th) percentile.

When optimising probabilistic forecasting systems, small gains can be practically
valuable in either high-surprise regime discussed above. There exist diminishing returns
perfecting such systems near Lorenzian limits of predictability [33] and computational
power for both traditional Eulerian and AI-driven weather prediction. We propose optimis-
ing a predictive system with a scoring rule that is more mathematically sound for measuring
informative guidance, and hence more likely to yield a useful forecast probability than the
use of BS. First, we show there is only one score that meets our desired criteria.

3.1. Desired Scoring Rule

What properties do we seek in a mathematical evaluation of our prediction
system [4,16,18,34]? Let us divide the problems of choosing a scoring rule:

1. What do we wish to quantify regarding the forecast’s benefit?
2. To convert a complex set of forecast and observed values into an insightful score, we

must shed information (in both the colloquial sense and that of information theory)
to reduce the uncertainty distributions to a single or small set of values that convey
characteristics of the forecasts. How should we perform this reduction while preserving
as much salient information as possible?

Benedetti asserts that probability, in general, represents the degree of belief an event
will occur [4]. However, upon meteorological application, if probabilities were assigned as
the belief of the forecaster, then one score does not fit all due to the human sub-optimal
assessment of confidence that varies from one forecaster to the next [35]. Instead, the standard
meteorological concept of probabilistic forecasts is that the probabilities reflect the likelihood
of the event (a proxy of confidence): given the conditions, we expect that a, say, p = 10%
risk of an event occurring should verify with the same frequencies (i.e., 1 in 10 forecasts)
within a given temporal and spatial range [36]. These probabilities are often created with an
ensemble (Monte Carlo) set of numerical integrations that differ slightly in initial conditions
and model configuration; the output should be calibrated to optimise evaluation statistics [37]
and account for the undersampling of potential future events [38–40]. In this paradigm,
a perfect probabilistic forecast should match the notional true distribution of uncertainty,
although this is unobtainable in practice—especially considering inextricable uncertainty in
the forecast of a complex, chaotic system [41]. Herein, we set problem (1) as assessing the
quality of issued forecasts under extreme uncertainty to highlight a divergence between two
related and common scoring rules; thus, we address (2) by examining how these two scores
behave in this regime.

It is well accepted that appropriate scoring rules require the property of propriety [42–44]; a
proper score punishes forecasts that hedge, i.e., forecasts that do not match the true uncertainty
distribution in order to minimise a perceived alternative error metric (e.g., MSE). Hedging
does not leverage the true belief or knowledge of the issuing party and encourages overly
safe or biased forecasts. We also prefer additivity; in short, all samples are equal in weight in
the dataset. Additivity allows us to apply our own importance to granules of information
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gain, each from a sample or event. It also lets us evaluate across sample catalogs and variables
with a like-for-like comparison. The third property is less frequently discussed [4,45]: we
seek a score that considers a probabilistic forecast a function solely of its probability bin
and no others: so-called locality. This property is required to avoid the score’s influence by
probabilities assigned to other outcomes, i.e., a reward for being close. The Brier score (and
related multi-category scores) is nonlocal: the same sequence of forecast–observation pairs may
yield different scores due to forecasts assigned to non-observed events. If we accept this as
undesirable, then the only score that fulfils these three requirements is generalised [4] as

S(x) = a log2 p + c (3)

where the base of the logarithm fixes the units, p is the evaluated probability, and a, c
represent arbitrary constants. Hence, we find the family of information-theoretical scores to
be the only sort that satisfies all three criteria [34,44]; compare Equations (2) and (3). Here,
we choose logarithms of base-2 to employ the bit: Shannon’s intrinsic unit of predictability.
The uncertainty of heads before one flips a fair coin is one bit; this is resolved once the coin’s
face is revealed. An observer’s guess beforehand is either correct or incorrect (flipped).
This single bit represents a choice between two equal outcomes. It is context-free: it has no
further inherent meaning than one gram or metre as quantised blocks of measurement.

3.2. Measuring Skill with Information Gain

Our score should measure the reduction in uncertainty (in information-theoretical
terms, entropy) by issuing a new forecast. Equation (2) represents surprise: one flip of a fair
coin (p = 0.5) yields 1 bit of uncertainty that is resolved upon receiving the result of heads
or tails. There is a high average surprise when the base rate is close to 50%; when a rare
event occurs with little warning, there is a low average surprise over the time series but a
high surprise per event. This trade-off is common for maximising communication efficiency
as in the Shannon–Hartley theory [46–48]. We aim to measure forecast skill in terms of
how much surprise was reduced after gaining new information through a forecast about a
future event. We define information gain as the baseline self-entropy Hs(b) subtracted by
the forecast self-entropy Hs( f ). Through logarithmic identities and Equation (2),

IG = HS(b)− HS( f ) (4)

IG = log2

(− log2 b
− log2 f

)
= log2

b
f

(5)

From the self-entropy HS defined in Equation (2), we consider the weighted com-
bination of all outcomes in the set of possible events X to derive the Kullback–Leibler
Divergence DKL (P ∥ Q) between a baseline distribution P to the forecast distribution Q:

IG = HS(b)− HS( f ) (6)

= ∑
x∈X

P(x) log2 P(x)− ∑
x∈X

P(x) log2 Q(x) (7)

= ∑
x∈X

P(x) log2

(
P(x)
Q(x)

)
(8)

≡ DKL(P ∥ Q) (9)

This measures a sort of distance between a priori and posterior pdfs; it is also known
as relative entropy [2,5]. We use the notation above that matches the information theory
convention. For further insight into the connection with information gain, we can rewrite
DKL as:

DKL(P ∥ Q) ≡ Ex∼P

[
log2

(
P(x)
Q(x)

)]
(10)
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Here, Ex∼P denotes the expectation of the log-ratio term (cf. Equation (4)) over the
events represented by x. This expectation can be interpreted as the mean score, weighted
by the frequency of event x in the “truth” time series of P. We then define ignorance to
refer to the scoring rule that employs DKL [2] to measure uncertainty about o remaining
after receiving f :

IGN = DKL(o ∥ f ) (11)

We return and reformulate information gain, using f1 as the old model’s baseline
forecast and f2 as the new model’s forecast (cf. b and f in Equation (5)):

IG = DKL(o ∥ f1)− DKL(o ∥ f2) (12)

= ∑
x∈X

o(x) log2

(
o(x)
f1(x)

)
− ∑

x∈X
o(x) log2

(
o(x)
f2(x)

)
(13)

Again, o ∈ {0, 1} represents observational truth. Above, we subtract one score for the
new model’s forecast f2, represented as DKL(o, f2), from that of another model, DKL(o, f1),
and thence estimate information gained (or lost) by receipt of f2. If we are setting a baseline
(i.e., there is no f2), we solely take DKL(o ∥ f1) to be the uncertainty that needs to be
removed to obtain a perfect forecast (neglecting observation uncertainty). The baseline
herein is set as the observation base-rate frequency ō, but could be persistence, another
function of the observed base-rate (i.e., entropy or uncertainty of climatology), etc.

3.3. Implications of Using Brier Score to Evaluate Predictions of Rare Events

Benedetti states that BS is proportional to a second-order approximation of its information-
theoretical brethren through Taylor expansions [4]. A longer discussion is found therein, but
for accessibility here, we lay out the full intermediate steps absent from Benedetti’s published
derivation [4] in Appendix A. Use of the BS, while making the calculation computationally
less demanding by using MSE instead of logarithms, neglects higher-order moments beyond
the mean and variance. The fourth moment (kurtosis) serves as a gauge of the distribution’s
“tailedness”, where a fatter tail indicates a higher likelihood of extreme outcomes than a
distribution with a smaller kurtosis (such as a Gaussian curve with a mean of zero and
standard deviation of unity). This underscores a potential limitation of relying solely on BS
for assessment of extreme events or outlier predictions. Employing IG and IGN, despite
the logarithm’s computational overhead, retains nuances in the higher moments about the
forecast distribution’s shape and tail behaviour.

The mathematical differences between BS and IGN motivate two tasks: (1) evaluate
a synthetic time series to better understand the differences in behaviour between the
scores, and (2) determine which family of scores may be better suited to our application in
evaluating and optimising forecasts of rare events.

4. Decomposition into Reliability and Discrimination

We can reveal more aspects of model evaluation by decomposing the information
gained into three components. There are commonalities of terminology between sub-
disciplines, and in Table 1, we compare synonyms of key terms used herein.

Table 1. Synonyms between concepts in meteorology and information theory.

Term Synonyms

Ignorance Entropy, Uncertainty, Surprise
Discrimination Resolution, Sharpness, Goodness

Reliability Calibration, Spread, Fit, Confidence

Surprise comes in three forms within information-based scores. We can form IGN
from the components of uncertainty UNC, reliability REL, and discrimination DSC:

IGN = UNC − DSC + REL (14)
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Full mathematical derivations can be found in [5] and Appendix C; full Python code
is also available in Data Availability Statement. Here, we briefly discuss the interpretation:
Equation (14) states that ignorance measures how uncertainty is reduced by the discrimina-
tion skill of the model, balanced by the surprise an end user experiences having used the
probabilistic forecast.

The first component, uncertainty (UNC), is information entropy inherent in the flow;
this component cancels when two forecast systems are evaluated over the same event
catalogue, and the remaining uncertainty is differenced. Discrimination (DSC) is also
known as resolution in meteorology, a term avoided here due to potential confusion with
grid-spacing distance in NWP models. This component measures inherent goodness—the
ability to categorise a future event (such as occurring or not). Finally, reliability (REL) is
a calibration. For a perfectly calibrated system, an event of interest would be observed
1-in-10 times that a forecast of 10% is issued. This is familiar to meteorologists as an
insufficient or excessive spread of members in an NWP ensemble. One cannot evaluate a
probabilistic forecast’s discrimination and reliability with a single data point, as the scalars
cannot be decomposed. Further, a small dataset has an insufficient amount of samples to
capture the nature of rare events: a problem for IGN and BS alike; a sufficiently long time
series is required to generate meaningful components.

Uncertainty is inextricable; in contrast, REL and DSC components can be optimised, but
potentially with one at the expense of the other. This parallels the “Doppler dilemma” [49],
where Doppler radars must balance increasing pulse-repetition frequency with a consequent
reduction in the maximum unambiguous range. In NWP ensembles, a set of members
perturbed from a “best guess" (the control or a deterministic run) may yield fewer skillful
ensemble members but a better overall probabilistic prediction. In an underdispersive pre-
diction system (i.e., too confident in a smaller range of future states), events occurring at the
tail of the underlying climatological distribution are less likely to be adequately detected.
This limits the forecast utility when risk thresholds are critical for decision-making and loss
mitigation. However, when confidence is spread quasi-uniformly across a wide range of
outcomes, the recipient cannot move far from their prior expectation probability with a wide
spread of eventualities. The use of DSC and REL components to evaluate probabilistic-forecast
performance is found in [50–52], amongst others.

5. Visualising Surprise

To compare the behaviour of information- and Brier-based scores for verification, we
use IGN to measure the remaining uncertainty in a forecast, acknowledging this symbology
is more familiar to meteorologists. Hence, information gained is the removal of ignorance
and having the new forecast over the old one, as in Equation (12), analogous to the reduction
in Brier Score (as lower scores of both IGN and BS are better). To compare the two scores,
we normalise by a baseline (such as a measure of uncertainty, a function of the base rate).
A skill score SS quantifies the relative accuracy of a forecast probability f compared to a
baseline b:

SS = 1 − f
b

(15)

A positive SS indicates that the forecast f is more accurate than the baseline b, while a
negative SS suggests that the forecast model possesses less skill compared to the baseline.
Skill scores generated using Equation (15) are labelled the ignorance skill score (IGNSS)
and Brier Skill Score (BSS).

5.1. Worked Example

We present a case study that leverages the analysis above to create insightful visu-
alisations, reveal forecast qualities that evaluators may already use, and show how the
interpretation differs or otherwise. We plot the Brier- and Information-family scores to-
gether for all figures for comparison where possible. Thus, we compare the characteristics
of both scoring rules to deduce which score may be better suited to our requirements. The
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process of generating a time series with rare events and forecasting involves several key
steps, including the initialisation of observed occurrences (o), introducing auto-correlation,
generating forecast probabilities (f ), and ensuring these probabilities remain within valid
bounds. These are discussed in Appendix D; code and figures are available in the Data
Availability Statement Python Jupyter notebook.

We generate the old and new models with 10,000 forecast–observation pairs, around
3 times more random error in the old model than the new model, and probability bins
K = {0.005, 0.01, 0.05, 0.10, 0.20, . . . 0.80, 0.90, 0.95, 0.99, 0.995}. The base rate of occurrence
ō is 0.5%. The distributions of our old and new models are shown in Figure 1. We have
deliberately set the old model to be less skillful by introducing more random errors. This
is seen in the old model as (1) a larger proportion of near-zero probability forecasts and
(2) more forecasts away from the extremes (i.e., less confident in either outcome).

Figure 1. Histogram of forecast distribution by probability bin for the old (a) and new (b) models.
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5.2. Evaluating Our Test Case

We can take the exponential of negative IGN to yield an average probability issued when
an event occurs, which may be a more intuitive way to communicate the forecast performance:

Pavg = B−IGN (16)

where B is the IGN logarithm base (here, 2). When appropriate, we show Pavg (as a
probability) against IG or IGN (in bits). We find the old and new models left 0.19 and
0.07 bit uncertainty, respectively, yielding 0.12 bit of information gained by the new model.
Alternatively, this implies the old model predicted 87.7%, on average, for events that
occurred; in contrast, the new model issued 95% for the same events.

We now show a section of a time series of observations and forecasts, taken from the
old model at a time when a rare event occurred (Figure 2). During the event occurrence
(shaded red in the figure), the old model forecast detects the event’s occurrence well (a
small difference between the probability and unity), albeit with a small delay, and it also
predicts the event lasts too long. Accordingly, the BS value is large in two zones:

1. The event occurs but was not forecast, as happens very early in the event in our
example; and

2. The event does not occur but was forecast, as happens after the event.

Figure 2. Time series of forecasts (blue solid line) and observations (red circles at 0 and 1). The
red colour-fill indicates the period during which the rare event is observed, where the x-axis is
non-dimensional timesteps. The verification score (green dotted line) per timestep evaluates the old
model against observations: panel (a) uses the Brier Score (unitless); panel (b) uses Ignorance, in bits.
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There is a small difference between maximum BS values for the two zones of high BS,
with the “probabilistic false alarm” of high (99.5%) probabilities punished harder in (2) due
to the much lower (10–30%) probabilities issued during (1). This is intuitive: there is less of
a distance between the predicted and observed probabilities. The magnitude of difference
is less instinctive, though, and we note the punishment of (1) using IGN (Figure 2b) is
around half the bits of ignorance than in zone (2). This is a difference of interpretation
when analysing the same dataset, begging the question of which score provides a better
estimate of skill.

Figure 3 shows the same time window but for forecasts from the new model. The
main difference when analysing skill is a shorter time period of (evidently unhelpful) high
probabilities after the event has finished, in comparison to the old model (Figure 2). There
is now a different time series of BS and IGN values, and we observed a similar couplet
of zones around the event where the new model gave false positives or negatives in a
probabilistic sense. As with the old model, the use of BS suggests both zones are as skilful
(penalised around equally) as each other, whereas IGN indicates the false positive in zone (2)
is punished over half as strongly as in (1). The implication is that using BS to evaluate this
event might mislead the scientist when considering the impacts of inaccurate probabilistic
forecasts: from panel a, we may conclude addressing overconfidence in an event is worth as
much as miscalibration of underconfidence. In contrast, when we consider the area under
the IGN curve as an available error we can remove, IGN indicates a different character.

Figure 3. As Figure 2 but for the new model verification against the same observations.

In Figure 4, we demonstrate the issue with reliability diagrams with extremely rare
events: insufficient data points in the centre for a better-performing new model. A domi-
nance of zeros in both datasets reduces the usefulness of the reliability curve (blue line).



Meteorology 2024, 3 221

(The problem of zeros may be avoided by prescribing a minimum of one event observed
per bin representing a Bayesian prior belief. In the figure, we leave the noisy dataset as-is
as a demonstration.) We add bars of REL and DSC that represent the error generated from
over-/under-confidence and knowledge gained from correct categorisation, respectively.
We find the new model has less reliability error, and there is more uncertainty removed
through discrimination skill (neglecting the noisy 0.5–0.7 bins, inclusive). To further explore
the extremes, we look at the set of unique Ignorance values that result from permutations
of probability bins K and the binary observation (Figure 5).

Figure 4. Reliability diagram, with forecast probability on the x-axis and frequency of occurrence on
the y-axis. The panels show evaluation for the (a) old and (b) new models. The break in data points
occurs in b due to insufficient samples to capture the full distribution.

Figure 5. Histogram distribution of ignorance remaining (in bits) after each forecast for the old
and new models, where only bins exceeding 0.7 bits are included to ignore the large proportion of
near-zero-error forecast–observation pairs.
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We only consider values greater than 0.7 bit to ignore the majority of the dataset
that occurs with low probabilities and no event (representing common but barely useful
forecasts). The values are all positive, measuring the remaining ignorance about the future
event after a forecast is received. A larger value is a worse forecast, and the largest values
occur when an event occurs with near-zero forecast probabilities, or the event does not
occur when forecast with near-certainty. We find the old and new model alike suffer similar
penalties over the dataset for their overconfidence. However, the new model accumulates
much less error at the range of IGN values of 0.7–2.5. This fits with a comparison of
Figures 2b and 3—the area of “probabilistic false alarm” is larger in the old model.

We can again use the decomposed scores of reliability (REL) and discrimination (DSC)
to analyse the error character further. We form the skill scores IGNSS and BSS using
Equation (15), where unity is a perfect forecast and zero is the no-skill line. The baseline
used in the skill scores is the UNC component (i.e., the entropy of the observation base rate).
Figure 6 depicts these scores for the old and new models. Information gain is represented in
Figure 6 as the reduction in ignorance between the old and new models (or information loss,
should the new model perform worse). For comparison, the reduction in BS represents the
analogous concept. The sharp reduction in reliability error REL suggests the new model is
more confident in making its correct forecasts; conversely, there is no gain in discrimination
skill DSC, meaning all information gain is due to better calibration. Accordingly, the
evaluator may now re-balance resources to address the low DSC skill. The skill scores
IGNSS and BSS are unbounded to negative infinity, but we use the relative change to infer
improvement from both scores. We find both scores indicate an improvement, but a larger
improvement in BSS. Even when SS is negative, models may still have utility. The example
in Figure 2 shows the double-penalty problem, where a single temporal error yields two
doses of punishment. This undesired behaviour can be addressed by techniques such as
reducing time series or gridded data to objects [53,54], or methods to allow for errors in
time and space [17,55]. The rarer the event, the more data points required to estimate this
event’s frequency sufficiently, which means the double penalty occurs more often. We
do not add a smoothing to the time series herein to avoid sensitivity to convolution or
the windowing method—this is another source of subjectivity. However, while only the
relative change is discussed herein, this does yield unfairly negative skill scores in Figure 6.
This does not impact the interpretation of IGN and BS herein (although the magnitude of
information transfer decreases due to smoothing, and hence less ignorance to begin with).

Figure 6. Components of ignorance for old and new models, with Brier-type scores for comparison.
Information gain is represented as the reduction in ignorance (red) by using the new model over the old.

Ultimately, information is gained or lost by using the new model at each time-series
sample instead of the old model. We show the distribution of information gain in Figure 7,
magnifying the tails of the distribution as inset boxes. The distribution as a whole (main
axis) shows a slight skew towards positive values (information gained over the old model).
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The inset shows new model gains are likewise larger (the integrated area of the histogram
bars; blue box) than the losses (red box) at larger information-content values.

Figure 7. The histogram of information gained or lost by using the new model over the old. The
upper-right inset axis, outlined in blue, has a smaller y-axis range, magnifying the histogram of
information gain values greater than 2. This zoom is indicated by a blue line on the x-axis. Likewise,
information loss greater than 2 bits (negative values less than −2) is shown on a larger scale by the
upper-left red-bordered inset.

Information content, having strictly defined units of bits, lends itself to an analysis
by distribution on a linear scale that has clear meaning regarding information gained.
Likewise, change in Brier Score ∆BS is in the probability space, and can be visualised
similarly (Figure 8) and intuitively. While the distribution shape is similar to Figure 7, it is
difficult to interpret values explicitly as there is no inherent meaning in the difference of
MSE of probabilities in the BS definition.

Figure 8. As Figure 7 but for the change in Brier Score ∆BS, with a magnification of the histogram at
values greater than 0.4 and less than −0.4 of ∆BS.
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6. Synthesis

Herein, we show how a scoring rule based on information theory is better suited to
fairly evaluate forecasts of rare events, rather than scores derived from the Brier Score.
This is of interest to meteorologists in a field with high-impact, low-frequency events that
are difficult to capture by operational NWP models [51]. We conceptualise skill as the
information gained by an improved forecast over a baseline, and compute information gain
by the reduction in the Ignorance score. Further,

• Information gain accounts for higher moments of the probability distribution, as the
Brier Score is equal to a second-order approximation of Ignorance. The Brier Score
captures a mean error, but not more complex aspects of the probability distributions
such as kurtosis.

• Differences between the two scores deviate sharply at extreme probabilities, such as
those that characterise a dataset of rare events, since the BS truncates the score as
probabilities tend to zero (rather than tending to infinity as in a logarithmic score);

• Information as measured in units of bits allows comparison between variables and
joins a more universal framework of information transfer or surprise removal; the idea
of optimising through information gain is shared with machine learning, for instance,
and allows cross-comparison of system-component performance;

• We can decompose the gain or loss of information into reliability–discrimination
components as with the Brier family of scores;

• While we laud objectively beneficial mathematical properties, information-based
scores (unlike the Brier family) require the subjective clipping of certain forecast
probabilities f ∈ {0, 1}—binary events that do not verify yield an infinite error that
reflects the implication of believing a prediction without question.

We showed above how visualising model performance can be interpreted similarly
to Brier-type scores. The benefit of using the information framework is the preservation
of more information at the extreme probabilities and a firmer meaning of the units of
improvement between the models. Increased use of information gain would align the
optimisation loss-function (scoring rule) for AI and meteorological models alike, especially
as ML/AI is increasingly used in the atmospheric and earth sciences [56–60]. We encourage
further work to implement information-theory metrics in a manner intuitive with which to
forecast, straightforward to interpret during evaluation, and with a clear definition of what
skill is measured. Information has a strict meaning. However, it is not a measure of utility:
a high information content gained may not necessarily be especially practically useful.

The Brier Score occurs in other verification metrics: when BS is extended to multiple
categories (i.e., o ∈ {0, 0.5, 1}), the BS can be extended to ranked (Ranked Probability Score;
RPS) [61] and continuous ranked (CRPS) [62] scores. This is useful for evaluating a continuous
or multicategory variable, such as precipitation. Unlike RPS and CRPS, the use of IGN instead
of BS renders these ranked scores statistically local—and faster computationally [45]. The
BS can be replaced with IGN for the assessment of multicategory forecasts [5]. We also find
the BS within the Fractions Skill Score (FSS): this can be replaced with IGN as the scoring
rule in FSS to create an “information fractions skill score”, albeit with appropriately modified
interpretations as discussed herein.
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Abbreviations
The following abbreviations are used in this manuscript:

IG Information Gain
IGN(SS) Ignorance (Skill Score)
B(S)S Brier (Skill) Score
f Forecast probability scalar
o Observation (0 or 1) scalar
K Probability bins
REL Reliability
DSC Discrimination
UNC Uncertainty
DKL Kullback–Liebler Divergence

Appendix A. Brier Score as an Approximation of Ignorance

A more brief derivation is found in Benedetti [4]; here, we work through the demon-
stration in more steps for accessibility. In the case of a binary event,

IGN = DKL(o ∥ f ) = o log2

(
o
f

)
+ (1 − o) log2

(
1 − o
1 − f

)
(A1)

Now, we expand DKL using a second-order Taylor series expansion around the point
o = f . First, we find the first and second derivatives of DKL with respect to f :

d
d f

DKL(o ∥ f ) =
−o

f
+

1 − o
1 − f

(A2)

d2

d f 2 DKL(o ∥ f ) =
o
f 2 +

1 − o
(1 − f )2 (A3)

Second, we expand around o = f using the Taylor series up to the second order:

DKL(o ∥ f ) ≈ DKL(o = f ) +
d

d f
DKL(o = f ) · (o − f ) +

1
2

d2

d f 2 DKL(o = f ) · (o − f )2 (A4)

At f = o, both DKL(o = f ) and d
d f DKL(o = f ) reduce to zero. Thus, the Taylor series

simplifies to:

DKL(o ∥ f ) ≈ 1
2

d2

d f 2 DKL(o = f ) · (o − f )2 (A5)
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Substituting the value of d2

d f 2 DKL(o = f ) from above, we obtain (and simplify to):

DKL(o ∥ f ) ≈ 1
2

(
o
o2 +

1 − o
(1 − o)2

)
· (o − f )2 (A6)

≈ 1
2

(
1
o
+

1
1 − o

)
· (o − f )2 (A7)

As the Brier Score (BS) is defined in Eqn. 1, we can view BS(o, f ) as an approximation
of DKL(o ∥ f ):

DKL(o = f ) ≈ 1
2

(
1
o
+

1
1 − o

)
· BS(o = f ) (A8)

We find that DKL is equal to BS scaled by two arbitrary factors, as in Equation (3).
Analogously for completeness, if we use the definition of IG in terms of DKL, observations
o, and two forecast catalogues f1 and f2,

IG(o, f1, f2) = ∑
x∈X

o(x) log2

(
o(x)
f1(x)

)
− ∑

x∈X
o(x) log2

(
o(x)
f2(x)

)
(A9)

= a ·
(

BS(o, f1)− BS(o, f2)

)
+ c (A10)

here a and c are again arbitrary constants.

Appendix B. Histogram Binning for Forecast Evaluation

From the time series, we allocate each pair of forecast and observed probabilities into
bins and generate the reliability and discrimination ability of the forecasting system. If we
have a set of probabilities from which f is issued, rather than continuous values, we can
skip the intermediate step of categorising the data into bins. If not, we generate a histogram,
quantising the data as follows. Given a set of forecast probabilities, F = { f1, f2, . . . , fn},
and corresponding observations, O = {o1, o2, . . . , on}, we define the bins into which these
probabilities will be categorised:

K = [k1, k2, . . . , km] (A11)

Each forecast probability fi is put into a bin k to generate a fully categorised (quan-
tised) time series. For each bin k, we count the number of forecasts (nk) and the sum of
observations (ok) that fall into that bin.

nk =
n

∑
i=1

1{ fi=k} (A12)

ok =
n

∑
i=1

oi · 1{ fi=k} (A13)

where 1 is the indicator function, returning 1 if the forecast fi falls into bin k and 0 otherwise.
After computing nk and ok for each bin k, we can now calculate inherent uncertainty,
discrimination, and reliability, as outlined in Appendix C.

Appendix C. Decomposition into Reliability, Discrimination, and Uncertainty

Appendix C.1. Kullback–Leibler Divergence (DKL)

We start with a full expansion of DKL. The DKL function, in the text as Equation (13),
is fully expanded as:

DKL(p || q) = p log2

(
p
q

)
+ (1 − p) log2

(
1 − p
1 − q

)
, (A14)
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for truth frequency p and forecast probability q in the application herein. The notation
used above matches the typical symbols in information theory, where it represents the
information lost when q is used to approximate p.

Appendix C.2. Uncertainty (UNC)

The uncertainty metric UNC is the entropy of the overall observed event frequency (ō):

UNC =

{
0 if ō = 0 or ō = 1,
−(ō log2 ō + (1 − ō) log2(1 − ō)) otherwise.

(A15)

This metric quantifies the inherent uncertainty in the observations on average, with
higher values indicating greater uncertainty. If the event always or never occurs, there is
no uncertainty; hence, the first choice in Equation (A15).

Appendix C.3. Reliability (REL)

The reliability metric REL is calculated as the expected DKL between observed fre-
quencies and the forecast probabilities across all bins:

REL =
1
N ∑

k∈K
DKL(ōk, k) · nk, (A16)

where ōk is the observed frequency in bin k, k is the forecast probability bin, and nk is
the count of forecasts in bin k. The DKL function measures the divergence between the
observed and forecast probabilities, with larger values indicating less reliable forecasts.

Appendix C.4. Discrimination (DSC)

The discrimination metric DSC assesses the forecast’s ability to differentiate between
different outcomes. It is computed using the overall observed frequency (ō) as the reference:

DSC =
1
N ∑

k∈K
DKL(ōk, ō) · nk, (A17)

where DKL(ōk, ō) quantifies the divergence between the observed frequency in each bin
and the overall observed frequency. In our context, it measures the ignorance reduced by
correct categorisation of the outcome, or inherent goodness.

Appendix C.5. Full Expansion and Link with Brier Score and Cross-Entropy

Hence, considering a time series of observation–forecast pairs (O,F ), the full expan-
sion of DKL (and likewise IGN) is

DKL(O || F ) = UNC − DSC + REL (A18)

= −(ō log2 ō + (1 − ō) log2(1 − ō))

− 1
N ∑

k∈K
DKL(ōk, ō) · nk

+
1
N ∑

k∈K
DKL(ōk, k) · nk, (A19)
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For reference, this is the parallel Brier Score decomposition with identical notation [1,5,18]:

BS(O || F ) = BSUNC − BSDSC + BSREL (A20)

= ō(1 − ō)

− 1
N ∑

k∈K
(ōk − ō)2 · nk

+
1
N ∑

k∈K
(k − ōk)

2 · nk, (A21)

The Cross-Entropy (CE) loss or score [13] is a scoring measure related to DKL that
permits forecasts evaluated against uncertain observations (i.e., o ∈ [0, 1]). The CE score can
be decomposed similarly [11]. We prefer to use DKL to measure skill in the present paper
as the observation-uncertainty characteristics are not required. The difference in using CE
is the addition of uncertainty in the observations; however, with binary verification, there
is no uncertainty, and CE simplifies to DKL. This is a straight comparison with BS, which
does not consider observation error (i.e., o ∈ {0, 1}). Note the difference in uncertainty of
the observation dataset (UNC and UNCBS) versus uncertainty in assigning events to what
was actually observed (zero if we have full confidence in observations).

Appendix D. Generating a Synthetic Time Series

The observed series is generated based on a predefined probability of thunderstorm
occurrence ō. We lay out the methodology below to better correspond to the Python code
provided with this manuscript. For each time i in the series of length N, the occurrence of
the event o is determined by:

oi =

{
1 if U(0, 1) < ō
0 otherwise

(A22)

where U(0, 1) represents a random draw from a uniform distribution over the interval [0, 1].
Autocorrelation is introduced to the observed series to simulate temporal dependency seen
in real-world meteorological data. This is achieved by potentially copying the occurrence
value from the previous day based on the autocorrelation factor (R), set as 0.8 herein:

oi =

{
oi−1 if U(0, 1) < R
oi otherwise

(A23)

The forecast probabilities are initialised and adjusted based on the observed series and
a maximum forecast error (E). We set the error constant for the old model Eold as 3.33 Enew
to create an inferior forecast set. The adjustment incorporates ō and a normally distributed
error term to mimic forecast uncertainty:

fi =

{
ō + ϵ if oi−1 = 0
1 − ō + ϵ if oi−1 = 1

(A24)

where ϵ ∼ N(0, E2) represents the forecast error. Autocorrelation is similarly applied to the
forecast series, adjusting subsequent forecasts based on previous values:

fi =

{
fi−1 + ϵ if U(0, 1) < R
fi otherwise

(A25)
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Finally, to ensure that forecast probabilities remain within the valid range [0, 1], they
are clipped accordingly:

f ′ =


min(K) if f ≤ 0,
max(K) if f ≥ 1,
f otherwise.

(A26)

This process discretises continuous forecast probabilities into predefined bins K. Fore-
casts with probabilities of 0% and 100% are adjusted to the smallest and largest probability
bins to enable correct binning (and avoid divergence to infinity). Each forecast probability
f ′ is then assigned to the nearest bin using the digitize function from the python numpy
package. The forecast probabilities are then replaced with their corresponding bin values,
quantising the continuous probabilities into discrete categories.
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