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Abstract: The aim of this paper is to propose a portfolio selection methodology capable to take
into account asset tail co-movements as additional constraints in Markowitz model. We apply
the methodology to the observed time series of the 10 largest crypto assets, in terms of market
capitalization, over the period 20 September 2017–31 December 2020 (1200 daily observations). The
results indicate that the portfolios selected considering tail risk are more diversified and, therefore,
more resilient to financial shocks.
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1. Introduction

Portfolio optimization is one of the most widely studied problems in finance. A special
case is to find portfolio weights that minimize the risk for a given desired return. This is
achieved by selecting assets and deciding how many shares of capital to invest in each
of them. In [1], the concept of mean-variance (MV) portfolio selection was formalized by
using the variance of returns on investment as a measure of risk. This implicitly assumes
that all risks in a portfolio can be represented by the variance of returns.

The extension of the MV assumptions has led to several studies of the portfolio
optimization problem. While some have improved the return–risk approach modifying
the reference theoretical background, under expected utility and stochastic dominance
approaches, see [2–7], others remained within the MV paradigm with the inclusion of
additional constraints, see [8–12]. We follow the latter stream of research and focus on
the inclusion of systematic risk in risk–return portfolio selection. Our model is based on
the work of [13] who generalized the concept of systematic risk to a broad class of risk
measures. They proposed an equilibrium framework that generalizes the Capital Asset
Pricing Model and an axiomatic approach which leads to a systematic risk measure as the
unique solution to a risk allocation problem.

However, systematic risk is not the only cause of return volatilities. Especially after
the Great Financial Crisis, researchers have understood the importance of systemic risk,
i.e., the inherent vulnerability of the financial system that propagates initial shocks leading
to the failure of many institutions, whose cascading effects may endanger the whole
system [14–22]. The recent financial crisis provides ample evidence of the importance of
containing systemic risks. A further cause of return volatilities, frequent among crypto
assets, is tail risk [23–27]. The importance of tail risk is well known in crypto asset markets,
which often exhibit very high volatility.

Recently, a number of papers underlined the importance of including either systemic
or tail risk in portfolio optimization, see [28–30]. In [30], a Bayesian decision theoretical
framework was introduced; ref. [28] presented an approach for dynamic portfolio selection;
ref. [31] applied a differential evolution algorithm; ref. [32] considered a nonlinear multi-
objective mathematical model; ref. [33] proposed a multiperiod robust selection with an
asymmetric uncertainty distribution, using lower partial moments to control the downside
losses of the portfolio; ref. [34] investigated how the presence of systematic skewness

FinTech 2022, 1, 63–71. https://doi.org/10.3390/fintech1010005 https://www.mdpi.com/journal/fintech

https://doi.org/10.3390/fintech1010005
https://doi.org/10.3390/fintech1010005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fintech
https://www.mdpi.com
https://orcid.org/0000-0002-6736-6432
https://orcid.org/0000-0002-4198-0127
https://orcid.org/0000-0002-7090-8159
https://doi.org/10.3390/fintech1010005
https://www.mdpi.com/journal/fintech
https://www.mdpi.com/article/10.3390/fintech1010005?type=check_update&version=1


FinTech 2022, 1 64

constraints can influence portfolio selection; and [35] focused on downside risk based on
the Value-at-Risk.

To date, there are no papers that consider tail risk as a constraint in portfolio selection.
We propose to fill this gap by embedding tail risk measures within the portfolio framework
proposed by [36]. Doing so, we provide a methodology to select portfolios that take into
account tail risk and is, therefore, particularly suited to build crypto asset portfolios.

2. Methodology

Suppose that there are n risky assets in the financial market, and let R = (R1, . . . , Rn)
denote the vector of random returns of these assets. Assume that the mean vector and
the covariance matrix of R are denoted by µ = (µ1, . . . , µn) and Σ = {σij}, respectively.
Furthermore, let x = (x1, . . . , xn) denote a portfolio—a vector of asset weights—and
P(x) = R′x its return. The expected return and variance of the portfolio are µ′x and x′Σx,
respectively. The Markowitz Mean Variance portfolio selection model can be formulated as:

min τx′Σx− µ′x (1)

s.t. e′x = 1, x ≥ 0

where e is an n× 1 vector of ones and τ ≥ 0 is a risk aversion parameter. The expected
variance of the portfolio, V(x), can be expressed as

V(x) = x′Σx = tr(Σxx′) =
n

∑
i=1

Ψii(x) =
n

∑
i=1

n

∑
j=1

σijxixj (2)

where Ψ(x) = Σxx′ and tr() is the trace operator (the sum of the diagonal elements).
The Markowitz model has been extended by [37] in a formulation that makes explicit the

dependence of the portfolio risk on a systematic factor, measured by the market index returns.
The authors proposed the portfolio selection with constraints on allocation of systematic risk.
Here, we extend the approach to consider tail risk, with the following definition.

Definition 1. Let Σ = {σij} be the covariance matrix n-assets and x = (x1, . . . , xn) denote a
vector of asset weights. The risk contribution of asset-i is measured by the difference between total
variance, V(x) and the variance calculated without asset-i, V(x−i):

V(x)−V(x−i) = σiix2
i + 2

n

∑
i=1,i 6=j

σijxjxi (3)

To establish the above relationship, we begin by considering an n = 3-assets portfolio
whose covariance matrix is Σ = {σij} and weights (xi, xj, xk). The expected variance of the
portfolio, V(x), from (2) is

V(x) = tr(Σxx′) = tr


σii σij σik

σji σjj σjk
σki σkj σkk


 x2

i xixj xixk
xjxi x2

j xjxk

xkxi xkxj x2
k


 (4)

= σiix2
i + σjjx2

j + σkkx2
k + 2σijxixj + 2σikxixk + 2σjkxjxk

The expected variance of the portfolio without asset-i, V(x−i), is

V(x−i) = tr(Σx−ix′−i) = tr

σii σij σik
σji σjj σjk
σki σkj σkk

0 0 0
0 x2

j xjxk

0 xkxj x2
k

 (5)

= σjjx2
j + σkkx2

k + 2σjkxjxk



FinTech 2022, 1 65

The risk contribution of asset-i is measured by

Vi(x) = V(x)−V(x−i) = σiix2
i + 2σijxixj + 2σikxixk (6)

It is expected that the portfolio variance must equal the sum of all assets’ risk contri-
butions to the overall index. However, in general and according to the expression in (3),
V(x) 6= ∑i Vi(x), this is due to the fact that the terms σijxixj and σikxixk are doubly counted
in the risk contributions of both assets i and j, and i and k, respectively. As discussed
in [16,38], a common approach to overcome this drawback is to decompose the common
term 2σijxixj in Vi(x) and Vk(x) into two terms as follows:

2σijxixj = ηij2σijxixj + (1− ηij)2σijxixj, 0 < ηij < 1 (7)

where ηij distributes the common term 2σijxixj into Vi(x) and Vk(x) in proportion to the
volatilities of the assets i and k, respectively.

Following the decomposition above, the risk contribution of asset-i in a portfolio
x = (x1, . . . , xn) is then defined as [16,38]

Vi(x) = σiix2
i + 2

n

∑
j=1,i 6=j

ηijσijxjxi (8)

Definition 2. Let Σ = {σij} be the covariance matrix n-assets and x = (x1, . . . , xn) denote a
vector of asset weights. Let ηij = 1/2 for all i and j. We measure the marginal risk contribution of
asset-i, MRCi(x), by

MRCi(x) =
n

∑
j=1

σijxixj = Ψii(x) (9)

From the above definition, V(x) = ∑i MRCi(x) is now achieved by the modified
definition of marginal risk contribution in (9). We remark that the MRCi(x) measure
adapts the marginal risk measure of [37], introduced to measure systematic risk, to the
systemic risk framework. In their work, the authors assumed the marginal systematic risk
of an asset is controlled by a systematic risk regulation parameter. In [39], each asset’s
marginal contribution to portfolio risk is proportional to its beta with respect to the portfolio.
Following this line of reasoning, we assume the marginal risk contribution of each asset
is controlled by a regulation parameter λ, which is related to the tail betas with respect to
the portfolio, such that, MRCi(x) ≤ λi, i ∈ C ⊆ {1, 2, . . . , n}, where C is the collection of
assets whose risk contribution should be restricted. We consider λi as a tail risk tolerance
measure that expresses an asset’s volatility in relation to other assets and the overall market
in turbulent or crisis times.

Let Yi,t = ESα(Ri,t) denote the expected shortfall (the average value-at-risk) at tail
probability α of asset-i at time t. The EDH model of [40] expresses the returns at time t of
asset-i, for i = 1, . . . , n, as a function of the variation of the expected shortfall of the other
assets and of the market, as follows:

Ri,t =
n

∑
j=1,i>j

Bij ∆Yj,t + βim ∆Ym,t + εi,t, εt ∼ N (0, Σε) (10)

where ∆Yj,t = Yj,t−Yj,t−1 and ∆Ym,t = Ym,t−Ym,t−1, whereas Bij and βim are the sensitivity
of the returns of asset-i to the tail risk of asset-j and to the tail risk of the market index,
respectively, and εi,t is a residual term, that is, the part of the returns of asset-i which cannot
be explained by the returns of other assets, or by those of the market.

We extend the additional tail risk constraint of our portfolio selection with the follow-
ing definition.
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Definition 3. Let (Y1, . . . , Yn) be expected shortfalls of n-assets and Ym denote the expected
shortfall of the market index. Let B denote the n× n full (non-symmetric) matrix and βm an n× 1
vector of tail beta’s with respect to the portfolio. Let W = (B, βm) and Ω = WW ′. We measure the
tail risk tolerance by

Λ =
1
n

diag(Ω) (11)

We illustrate the Λ computation by considering n = 3 assets with expected shortfall
series (Yi, Yj, Yk) and Ym as the expected shortfall of the market index. Let W = (B, βm) the
matrix of EDH coefficients, thus:

W = (B, βm) =

 0 bij bik βim
bji 0 bjk β jm
bki bkj 0 βkm


Then

Ω = WW ′ =

 b2
ij + b2

ik + β2
im bikbjk + βimβ jm bijbkj + βimβkm

bjkbik + β jmβim b2
ji + b2

jk + β2
jm bjibki + β jmβkm

bkjbij + βkmβim bkibji + βkmβ jm b2
ki + b2

kj + β2
km


Λ =

1
n

diag(Ω) =
1
n

 b2
ij + b2

ik + β2
im

b2
ji + b2

jk + β2
jm

b2
ki + b2

kj + β2
km


Thus, Λ measures the average tail exposure among assets and with the market index.
The intuition behind our Λ measure is based on the fact that if there are no interactions,

in which case B = 0, then each asset’s marginal contribution to portfolio variance is
constrained by its squared beta measure with respect to the market index. However, if there
are systemic interactions, in which case B 6= 0, then each asset’s marginal contribution to
portfolio variance is constrained to the average of the squared betas with respect to the
market index and other assets.

The optimal portfolio will then be obtained as follows:

min τ x′Σx− µ′x (12)

s.t. MRCi(x) ≤ λi, i ∈ C ⊆ {1, 2, . . . , n}
e′x = 1, x ≥ 0

where x is a vector of portfolio weights, Σ the variance–covariance matrix of the returns,
µ is the vector of average return, MRCi(x) is the marginal risk contribution of asset-i, τ is a
parameter representing the risk aversion of investors, λi is a tail risk tolerance parameter for
asset-i, e is an n× 1 vector of ones, and C is the collection of assets whose risk contribution
should be restricted. The comparison of Equation (12) with Equation (1) underlines our
contribution to Markowitz’ portfolio selection: the inclusion of a risk constraint which
depends on two components: a systematic tail sensitivity component, expressed by βm,
and a pairwise tail sensitivity component, expressed by B.

3. Empirical Findings

We apply the proposed methodology to the 10 most capitalized crypto assets from the
CoinMarketCap database (accessed on 21 January 2021) (https://coinmarketcap.com/),
using return time series from 20 September 2017–31 December 2020. More precisely, we
analyze the return series of Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Bitcoin Cash
(BCH), Litecoin (LTC), Binance Coin (BNB), Eos (EOS), Stellar (XLM), Chain-Link (LNK),
Tron (TRX). As a market index, we consider the CRIX Crypto Index (CRX) see [41].

https://coinmarketcap.com/
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We assume that short selling is not allowed. To understand the time dynamics of
the returns, we plot the crypto-asset log price series in Figure 1. Due to differences in the
values, plotting the original log prices would make it difficult to visualize some of them.
To overcome this limitation, we standardize each series to a zero mean and unit variance
and add the absolute minimum value of each series. This keeps the values positive and
standardizes the scale of measurement for the different series.

Sep 2017 Jan 2019 Jan 2020 Dec 2020

0

2

4

6

8

10

12
BTC
BCH
LTC

ETH
BNB
LNK

XRP
EOS
TRX

XLM
CRX

Figure 1. Normalized crypto-asset price series.

Figure 1 shows that the price of the cryptocurrencies had several fluctuations over
time, but from the first months of 2020 we see an increasing trend, which remained until
the end of the year. We report in Table 1 the summary statistics of the log-return series and
first-difference of conditional value at risk (CVaR, or Expected Shortfall).

Table 1. Statistics for crypto-assets returns and first-difference of conditional value at risk (CVaR).

Returns ∆ CVaR

Code Name Mean Sd Skew Ex.Kurt Mean Sd Skew Ex.Kurt

BTC Bitcoin 0.17 4.15 −1.08 15.61 −0.00 1.63 −3.56 213.77
BCH Bitcoin-Cash −0.03 6.78 0.07 10.40 0.00 2.98 2.15 104.04
LTC Litecoin 0.07 5.54 0.37 9.02 0.00 1.91 −1.80 117.23
ETH Ethereum 0.08 5.09 −1.22 13.19 0.00 1.88 −4.94 240.10
BNB Binance-Coin 0.33 6.09 0.23 12.99 −0.01 1.72 −5.59 265.12
LNK Chain-Link 0.34 7.76 0.18 6.93 −0.01 2.06 −0.13 224.65
XRP Ripple 0.02 6.34 0.98 20.64 0.04 2.91 6.97 118.03
EOS EOS 0.12 6.70 0.20 7.10 0.01 2.27 −0.66 96.15
TRX Tron 0.19 8.27 1.94 20.58 −0.02 2.79 0.87 178.97
XLM Stellar 0.20 6.89 1.41 13.12 −0.02 2.21 3.75 117.72
CRX CRIX 0.17 4.19 −1.37 13.94 0.00 1.61 −2.02 181.68

The table shows that the average of the daily return series are all close to zero, which
is in line with the economic theory regarding asset returns. However, the 10 crypto assets
exhibit different variability in returns. In particular, BTC shows the lowest variability, and
TRX the highest. The skewness of the returns varies between −1.37 for CRIX and 1.94 for
TRX, with BTC, ETH and CRX exhibiting negative skewness, while the rest display positive
skewness. The excess kurtosis varies between 6.93 to 20.64, indicating, for all series, a
leptokurtic behavior which reflects the non-Gaussian and heavy tailed behaviour of their
associated distribution.

Since the returns are non-Gaussian with heavy tailed behaviours, we applied the
Cornish–Fisher approximation to estimate the conditional value at risk (CVaR, or Expected
Shortfall) for each asset via a 30-day period rolling estimation of daily returns. The summary
statistics of the ∆ CVaR, calculated averaging the values from each rolling window, are also
reported in Table 1.
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Table 2 shows the correlation matrix of asset returns, based on data from 20 September
2017–31 December 2020. The largest correlation is between ETH and LTC with a degree
of association equal to 0.82. The next largest correlation is between ETH and BTC, with a
correlation coefficient of 0.76, while that of BTC and LTC is 0.74. From the results of the
correlation matrix, we will expect our portfolio not to include at least two of these three
crypto assets, i.e., ETH, LTC, and BTC.

Table 2. The correlation matrix of asset returns, based on data from 20 September 2017–31 Decem-
ber 2020.

BTC BCH LTC ETH BNB LNK XRP EOS TRX XLM CRX

BTC 1 0.63 0.74 0.76 0.63 0.46 0.51 0.64 0.54 0.53 0.11
BCH 0.63 1 0.66 0.72 0.49 0.41 0.54 0.67 0.44 0.49 0.05
LTC 0.74 0.66 1 0.82 0.59 0.45 0.60 0.69 0.51 0.55 0.03
ETH 0.76 0.72 0.82 1 0.62 0.56 0.66 0.73 0.58 0.61 0.03
BNB 0.63 0.49 0.59 0.62 1 0.44 0.44 0.55 0.44 0.47 0.04
LNK 0.46 0.41 0.45 0.56 0.44 1 0.43 0.46 0.40 0.46 -0.01
XRP 0.51 0.54 0.60 0.66 0.44 0.43 1 0.61 0.52 0.64 0.04
EOS 0.64 0.67 0.69 0.73 0.55 0.46 0.61 1 0.56 0.56 0.04
TRX 0.54 0.44 0.51 0.58 0.44 0.40 0.52 0.56 1 0.44 0.08
XLM 0.53 0.49 0.55 0.61 0.47 0.46 0.64 0.56 0.44 1 0.06
CRX 0.11 0.05 0.03 0.03 0.04 −0.01 0.04 0.04 0.08 0.06 1

Although this is not the focus of the paper, we remark that the correlation among
crypto returns may have changed over the years, particularly due to the impact of COVID-
19 (see e.g., [42]).

We now apply our portfolio selection model based on the crypto asset returns of the
years 2018, 2019 and 2020. Before doing so, we present in Figure 2a graphical representation
of the tail dependence among the different crypto currencies, following the model in (10).
This can help in understanding the impact of both the tail and the systemic risk component
on the chosen portfolio weights. Once the Extreme Downside Hedge (EDH) value are
calculated, we can determine the optimal portfolio according to our proposed model in (12).

BTC

BCH

LTC

ETH

BNB

LNK XRP

EOS

TRX

XLM

CRX

(a)

BTC

BCH

LTC

ETH

BNB

LNK XRP

EOS

TRX

XLM

CRX

(b)

BTC

BCH

LTC

ETH

BNB

LNK XRP

EOS

TRX

XLM

CRX

(c)

Figure 2. Tail dependence networks among crypto assets. A red link indicates a negative dependence;
a green link a positive effect, and the bolder the link the higher the magnitude of the correlation.
(a) 2018, (b) 2019, (c) 2020.

Figure 2 shows that the strongest tail dependencies are connected with Bitcoin and
Bitcoin Cash; they are mostly negative in 2018 and 2019, and mostly positive in 2020.

For comparison purposes, we present in Tables 3 and 4 the optimal portfolio selection
via the EDH and Markowitz method, respectively. We do so by reporting the optimal
portfolio weights for the years 2018, 2019 and 2020, under two values of the risk aversion
parameter: τ = 0.5 and τ = 5. The choice of the different risk aversion parameter is to
evaluate the robustness of the results.
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Table 3. Optimal portfolios with EDH, comparing the years 2018, 2019 and 2020 and two alternative
values of the risk aversion parameter: τ = 0.5 and τ = 5.

Year τ BTC BCH LTC ETH BNB LNK XRP EOS TRX XLM

2018 0.5 0.05 0.06 0.10 0.11 0.11 0.06 0.14 0.13 0.06 0.17
2018 5 0.05 0.06 0.10 0.11 0.11 0.06 0.14 0.13 0.06 0.17
2019 0.5 0.13 0.14 0.08 0.09 0.07 0.08 0.10 0.10 0.11 0.10
2019 5 0.13 0.14 0.09 0.09 0.07 0.08 0.10 0.10 0.11 0.10
2020 0.5 0.19 0.03 0.11 0.03 0.09 0.06 0.19 0.09 0.07 0.13
2020 5 0.19 0.02 0.12 0.04 0.10 0.07 0.19 0.07 0.06 0.13

Table 4. Optimal portfolios with Markowitz, comparing the years 2018, 2019 and 2020 and two
alternative values of the risk aversion parameter: τ = 0.5 and τ = 5.

Year τ BTC BCH LTC ETH BNB LNK XRP EOS TRX XLM

2018 0.5 0.80 0 0 0.15 0 0.02 0.02 0 0 0
2018 5 0.80 0 0 0.17 0 0.01 0.01 0 0 0
2019 0.5 0.77 0 0 0 0.12 0.03 0.08 0 0 0
2019 5 0.76 0 0 0 0.11 0.01 0.12 0 0 0
2020 0.5 0.57 0 0 0 0.04 0.02 0.36 0 0 0.01
2020 5 0.53 0 0 0 0.04 0.01 0.40 0 0 0.02

Table 3 shows that the selected portfolio using the EDH method is different over the
years. For instance, in 2018, XLM followed by XRP recorded the highest weights, while in
2019, the highest weights were recorded by BCH followed by BTC and, in 2020, BTC and
XRP were jointly tied as the top portfolio-weighted crypto assets. These results corroborate
the findings of [43,44] which indicates the prevalence of BTC during the COVID-19-induced
crisis. The authors argue that the importance of BTC to a portfolio of crypto assets especially
in 2020 is due to its relatively higher stability during the COVID-19 pandemic.

The results from Table 3 suggests that the optimal portfolio weights under the EDH
method do not change significantly for the different levels of the risk aversion. Thus, the
EDH method is very robust to the risk aversion parameter. From a statistical viewpoint,
the low sensitiveness of the weights to the risk aversion parameter indicates that the tail
risk prevails over the expected systematic risk.

The results of the Markowitz in Table 4 shows that, in all years, BTC constitutes the
largest part of a portfolio of crypto assets. The comparison of these results with those in
Table 3 clearly indicates that, when tail risks are not considered, as in Markowitz portfolios,
investors place high weights in BTC, the most capitalized cryptocurrency. However, when
tail risk is incorporated in the portfolio optimization, as in our proposal, the weights are
more balanced, and such portfolio construction are better against the (tail and systemic) risk
of shocks. In other words, by considering tail risk, along with systematic and systemic risk,
as a constraint in Markowitz’ portfolio selection, we obtain a more diversified portfolio.
This is consistent with the fact that when investors spread investments among more assets,
crisis times impact less.

To summarize, our proposed portfolio selection method is more suitable than the
Markowitz method in optimizing portfolio diversification. This is especially true in the
presence of relevant components of tail risk, along with systematic and systemic risk. In
this context, the proposed method is particularly effective in minimizing each risk type in a
portfolio diversification strategy.

4. Conclusions and Future Research

The main goal in choosing an optimal portfolio structure is to help individuals to
decide in which assets to invest and in which proportions. There are many aspects which
can influence people’s decisions. One of them is the perceived risk, which should be
measured appropriately. In this paper we consider measuring tail risk. Taking it into
account is particularly important for highly volatile and relatively illiquid market such
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as crypto asset markets. We proposed a way to measure all the three risks together, and
embed them as constraints in a portfolio optimization problem.

Our empirical findings show that the portfolio weights calculated by our models lead
to portfolios that are more diversified than those obtained with the classical Markowitz
approach. Under our approach, investors do not concentrate their portfolio on Bitcoin as in
the standard case, but diversify and, therefore, obtain a better hedge to shocks.

Further research should consider the application of the proposed method to other
asset classes, and further comparison with standard methods, to better show where the
advantages of the proposed method are most evident.

In particular, as further data becomes available, it would be very important to compare
the performance of the proposed method, in an out-of-sample perspective, against other
portfolios, such as the basic mean-variance portfolio and the equally weighted portfolio,
which in other contexts have proved to give good results (see, e.g., [6]).
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