
Citation: Sambhus, K.; Liu, Y.

Automating SQL Injection and

Cross-Site Scripting Vulnerability

Remediation in Code. Software 2024, 3,

28–46. https://doi.org/10.3390/

software3010002

Academic Editor: Paolino Di Felice

Received: 19 November 2023

Revised: 1 January 2024

Accepted: 9 January 2024

Published: 12 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Automating SQL Injection and Cross-Site Scripting Vulnerability
Remediation in Code
Kedar Sambhus † and Yi Liu *

Department of Computer and Information Science, University of Massachusetts Dartmouth, 285 Old Westport
Road, Dartmouth, MA 02747, USA; kedarsambhus@outlook.com
* Correspondence: yliu11@umassd.edu
† Current address: Amazon, Bellevue, WA 98004, USA.

Abstract: Internet-based distributed systems dominate contemporary software applications. To
enable these applications to operate securely, software developers must mitigate the threats posed
by malicious actors. For instance, the developers must identify vulnerabilities in the software and
eliminate them. However, to do so manually is a costly and time-consuming process. To reduce these
costs, we designed and implemented Code Auto-Remediation for Enhanced Security (CARES), a web
application that automatically identifies and remediates the two most common types of vulnerabilities
in Java-based web applications: SQL injection (SQLi) and Cross-Site Scripting (XSS). As is shown by
a case study presented in this paper, CARES mitigates these vulnerabilities by refactoring the Java
code using the Intercepting Filter design pattern. The flexible, microservice-based CARES design
can be readily extended to support other injection vulnerabilities, remediation design patterns, and
programming languages.

Keywords: vulnerability mitigation; secure design pattern; automated code refactoring

1. Introduction

A security vulnerability is a weakness in system security procedures, architectures,
designs, implementations, or internal controls that attackers can exploit to serve their
ill intentions. With rising advancement in software development technology, the risk of
security threats is also rising rapidly. The National Vulnerability Database (https://nvd.nist.
gov/ (accessed on 1 January 2024)) holds over 23,800 vulnerabilities published alone in 2022.
This is a higher number than in previous years (21,822 in 2021 and 20,248 in 2020). Edgescan,
a cybersecurity company that specializes in providing vulnerability management and
application security services, publishes an annual vulnerability statistics report. According
to its year 2023 report [1], about 33% of the internet-facing web application vulnerabilities
are high or critical risk. Such a high number of risks requires a considerable amount of
time to remediate. With the current techniques, as indicated by Edgescan, the “Mean Time
to Remediation (MTTR) (the calendar days it takes to fix vulnerabilities across the Full
Stack) for Critical Severity vulnerabilities on the web application/API layer is 73.9 days”.
Veracode, a cybersecurity company that specializes in providing automated application
security testing and software security solutions, summarizes the results from scanning
their customers’ applications, and in its annual report of 2023, it found that over 74% of
applications had at least one security vulnerability found in the last scan over the last
12 months. These include over 69% that have at least one OWASP Top 10 flaw, and over
56% have at least one CWE Top 25 flaw [2].

Many of the vulnerabilities found in Edgescan’s 2021 report were more than three years
old [3]. In 2020, 65% of the attacks utilized vulnerabilities that were at least 3 years old,
and 32% of them were approximately five years old, dating back to 2015. The oldest
vulnerability discovered is 21 years old and remains unpatched by the company [3,4]. This
highlights the lack of investment in the time and effort required to secure applications.

Software 2024, 3, 28–46. https://doi.org/10.3390/software3010002 https://www.mdpi.com/journal/software

https://doi.org/10.3390/software3010002
https://doi.org/10.3390/software3010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/software
https://www.mdpi.com
https://orcid.org/0009-0002-5779-1221
https://orcid.org/0000-0002-1571-5442
https://nvd.nist.gov/
https://nvd.nist.gov/
https://doi.org/10.3390/software3010002
https://www.mdpi.com/journal/software
https://www.mdpi.com/article/10.3390/software3010002?type=check_update&version=2

Software 2024, 3 29

Security is an essential nonfunctional requirement of a successful software system,
which should be addressed during all phases of software development. Unfortunately, it
is seen that security is implemented vastly during or after the development phase of the
software development life cycle. The cost of fixing vulnerabilities after their first appearance
is much higher than addressing them in earlier software development life cycle stages.

There are a few mature vulnerability scanners [5,6] that can scan web applications
for security vulnerabilities. After vulnerabilities are identified, the development team
needs to remediate them. However, removing vulnerabilities manually can be expensive
and time-consuming [7], and managing vulnerabilities and deploying patches can be
challenging [8].

This research aims to design and develop CARES (Code Auto-Remediation for En-
hanced Security), an application that automatically identifies, allocates, and mitigates two
of the most common web vulnerabilities, SQL injection (SQLi) and Cross-Site Scripting
(XSS), in pre-existing web applications developed in Java.

Our research focuses primarily on SQLi and XSS vulnerabilities, given their substantial
prevalence and potential for exploitation. The Edgescan 2023 report [1] reveals that injection
vulnerabilities, including SQL injection, code injection, and more, continue to dominate
the realm of application layer and API vulnerabilities. SQLi stands out as the most critical
vulnerability, accounting for 23.4% of web application vulnerabilities. XSS, ranking third at
19.1%, also poses a significant risk. These statistics underscore the importance of addressing
SQLi and XSS vulnerabilities as they persist as key attack vectors, despite the availability
of effective mitigation measures and detection techniques.

For the first version of CARES, we focus on applications developed in the Java pro-
gramming language. According to Veracode’s annual report, based on the analysis of
760,000 applications [2], Java commands a significant share of applications scanned by
Veracode clients (44%). However, it exhibits vulnerability remediation challenges when
compared to .NET and JavaScript. Java applications tend to lag behind in reducing technical
debt and improving security, with roughly 56% of them experiencing increased security
debt. In addition, Java applications take notably longer to address vulnerabilities, requiring
243 days to close 50% of flaws, as opposed to the quicker response observed in .NET and
JavaScript [2]. These data support our decision to focus on Java application in our research.

The main contributions of this study are as follows:

1. Automated vulnerability mitigation: This study develops CARES, a novel code refac-
toring application, to automate the mitigation of SQL injection (SQLi) and Cross-Site
Scripting (XSS) vulnerabilities in Java web applications. It simplifies a tradition-
ally manual and time-consuming security task, improving the efficiency of handling
prevalent web vulnerabilities.

2. Secure design integration: This study emphasizes the integration of secure design
patterns into CARES, going beyond simple code fixes to embed best practices directly
into the application. This approach enhances the overall system security by addressing
the security at the design level.

3. Extensibility and flexibility: Focusing on extensibility and flexibility, CARES is designed
with a microservices architecture. This design allows CARES to adapt to changes,
such as diverse programming languages, additional vulnerability types, and more
vulnerability scanners.

The rest of this paper is organized as follows. Section 2 provides an overview of
two common vulnerabilities, SQLi and XSS, and introduces secure design patterns and the
microservices architecture. Section 3 details the system design that uses microservices and
incorporates a chosen secure design pattern. Section 4 evaluates the effectiveness of the
developed refactoring tool in mitigating SQLi and XSS vulnerabilities using the Tolven web
application as a case study. Section 6 discusses the findings and potential areas of further
investigation. Finally, Section 7 summarizes the work and outlines possible extensions to
this study.

Software 2024, 3 30

2. Background

This section provides a brief introduction to two software vulnerabilities: SQL in-
jection and Cross-Site Scripting, overviews the secure design patterns and microservices
architecture, and discusses related work.

2.1. SQL Injection (SQLi)

Identified in Common Weakness Enumeration as CWE-89, “Improper Neutralization
of Special Elements used in an SQL Command (‘SQL Injection’)” [9], SQL injection (SQLi)
is a web security vulnerability type that allows an attacker to interfere with the queries that
an application makes to its database.

SQLi involves the insertion or “injection” of an SQL query via the input data from the
client to the application. A successful SQLi attack enables the attacker to read sensitive
data from the database, modify its data, or execute administration operations. The code
in Listing 1 contains an SQLi vulnerability that reads in the request parameters collecting
the credentials (username and password) from users’ input fields (line 1–2) and uses them to
directly construct a final query (line 3).

Listing 1. An SQLi vulnerability example.

1 S t r i n g userName = RequestParameter (" username ") ;
2 S t r i n g pwd = RequestParameter (" password ") ;
3 S t r i n g s q l = ’SELECT * FROM Users WHERE Name =" ’ + userName + ’ "
4 AND Pass =" ’ + pwd + ’ " ;

An attack can occur when a client enters ’1’ OR ’1’ =’1’ in both the username
and password input fields. The server will form the query as SELECT * FROM Users WHERE
Name =’1’ OR ’1’ =’1’ AND Pass= ’1’ OR ’1’ =’1’ , which is sent to the database for
execution. Since the ’1’ =’1’ condition always holds, the database returns a nonempty
result, granting access to the attacker.

The code segment in Listing 2 demonstrates a real-world SQLi vulnerability found
in class SnapshotBean in the package org.tolven.analysis.ejb of the Tolven Health
Record application [10]. In this code snippet, an SQL query is dynamically created in the
createQuery() method by appending a String variable cohortType to a prebuilt query
(line 420–422).

Listing 2. An SQLi vulnerability in Tolven.

418 @override
419 publ ic void dele teCohortPlaceholder (Account account , S t r i n g cohortType) {
420 Query query = em. createQuery (" d e l e t e PlaceholderID pi where "
421 + " pi . account . id = : account and pi . extens ion LIKE ’ "
422 + cohortType + " % ’ ") ;
423 query . setParameter (" account " , account . get Id ()) ;
424 query . executeUpdate () ;
425 }

There is no validation in place to restrict the possible contents of the variable cohortType.
Attackers can exploit this SQL query by sending a malicious request, for example, by
setting the cohortType to ’ OR 1=1 - -. This manipulation leads to the construction of
the following query.

d e l e t e PkaceholderID pi
Where pi . account . id = : account and pi . extens ion LIKE ’ ’ OR 1=1 −−%’

OR 1=1 makes the condition always true, and the double-dash sequence - - serves
as a comment indicator in SQL, treating the remainder of the query as a comment. Thus,
the condition in the where clause is evaluated as true, and all the records in the table
PlaceholderID will be removed.

The cause of SQLi vulnerabilities is the lack of validation and sanitization for the data
from outside sources. Prevention strategies include input validation, data sanitization, and

Software 2024, 3 31

technology-specific or configuration solutions, such as prepared statements [11], stored
procedures [12], and more. Blacklisting and whitelisting are two input validation strategies
to prevent SQLi vulnerabilities. Blacklisting involves rejecting external input containing
malicious keywords (e.g., select, delete, insert, union, ’, - -, etc.). Whitelisting only
allows requests with "good" inputs, such as alphanumeric characters, and reject others.
Data sanitization involves escaping all external inputs to ensure that external data are
treated as data rather than part of the SQL query construct by the underlying database. For
example, we can escape the input “ ’ ” to “ \’ ” to neutralize the effect of the apostrophe (’)
during the SQL query formation.

2.2. Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS), identified as CWE-79, “Improper Neutralization of Input
During Web Page Generation (’Cross-site Scripting’)” [13], is one of the most commonly
recurring security vulnerabilities in web applications. XSS allows an attacker to compromise
the interactions that users have with a vulnerable application [14]. This is a type of injection
in which an attacker uses a web application to send malicious code in the form of browser-
side script to a different end user. The end user’s browser has no way to know that it
is a malicious script and will execute it because it thinks the script came from a trusted
source. This opens up a vast amount of information to the attacker, such as cookies, session
tokens, or other sensitive information retained by the browser. Liu et al. [14] surveyed
and classified the XSS attacks into DOM-based XSS attack, stored XSS attack, and reflected
XSS attack.

The code in Listing 3 shows an example of a typical DOM-based XSS attack. When a de-
veloper constructs a web page and uses the client input without sanitization to write to the
DOM, attackers can exploit it to conduct an XSS attack using malicious input. In the exam-
ple, the attacker sends a malicious script (<script>alert(document.cookie)</script>)
embedded in the URL to a victim. Upon the victim’s click, a request is sent to the server.
Then, the victim’s browser renders the response (with the JavaScript malicious code) from
the server and executes it, generating an alert pop-up with a cookie. Attackers can use
similar techniques to steal sensitive information.

Listing 3. Simple DOM-based XSS attack.

1 < s c r i p t type =" t e x t / j a v a s c r i p t ">
2 var val= ’ . . / t e s t . php? cookie = ’+ escape (document . cookie)) ;
3 </ s c r i p t >

Listing 4 presents an XSS vulnerability found in the file GenericServlet.java under
package org.tolven.component.tolvenweb/src/org/tolven/ajax in the Tolven applica-
tion. In this case, the application directly obtains String data from the client request (line
165–167), which is then used as is (in lines 181 to 183) without proper validation, allowing
malicious code to be injected and executed as JavaScript.

Listing 4. An XSS vulnerability in Tolven.

165 S t r i n g path = req . getParameter (" element ") ;
166 S t r i n g rolename = req . getParameter (" r o l e ") ;
167 S t r i n g source = req . getParameter (" source ") ;
168 // get menu s t r u c t u r e
169 AccountMenuStructure ams = menuBean . findAccountMenuStructure (
170 activeAccountUser . getAccount () . get Id () , path) ;
171 MenuStructure ms = menuBean . findMenuStructure (activeAccountUser , ams) ;
172 S t r i n g d e f P a t h S u f f i x = ms . g e t D e f a u l t P a t h S u f f i x () ;
173 // get i t s pre fer red ch i ldren
174 Lis t <MenuStructure > ch i ldren =
175 menuBean . f indSortedChi ldren (activeAccountUser , ams) ;
176 TolvenResourceBundle tolvenResourceBundle =
177 TolvenRequest . g e t I n s t a n c e () . getResourceBundle () ;
178 S t r i n g t i t l e = tolvenResourceBundle . g e t S t r i n g (" U s e r P r e f e r e n c e s T i t l e ") ;
179 // prepare xml

Software 2024, 3 32

180 wr i t e r . wri te (" < ajax −response > ") ;
181 wr i t e r . wri te (" < response path =\"" + path + "\" r o l e =\""
182 + rolename +"\" defpath =\"" + d e f P a t h S u f f i x + "\" "
183 + " t i t l e =\"" + t i t l e + "\" >") ;

An attacker can pass the following malicious JavaScript to one of the String variables,
such as rolename, and the malicious code will be executed in the victim’s browser.

< s c r i p t >/* Bad s t u f f here . . . */</ s c r i p t >

Similar to the cause of SQLi vulnerabilities, XSS vulnerabilities are rooted in the lack
of proper validation and sanitization of input data. Prevention strategies include input
validation, data santization, and other technology-specific solutions such as implementing
a Content Security Policy [15], using the HTTPOnly cookie flag [16], SameSite cookie param-
eter [17], and more. Input validation can be either blacklist- or whitelist-based. Blacklist
validation disallows web requests from processing malicious content, such as <SCRIPT>,
HTML tags, JavaScript tags, etc., while whitelist validation only allows requests with harm-
less characters. Data sanitization for preventing XSS is achieved by encoding or escaping
the input data to ensure that inputs are treated as data rather than markup for the browser
to process. For example, <script> is converted to <script> after sanitization using
encoding. While displayed, the browser will output the original input string to the user
but will not execute it.

2.3. Secure Design Patterns

A pattern is a general reusable solution to a commonly occurring design problem.
Secure design patterns are meant to eliminate the accidental insertion of vulnerabilities into
code [18]. A secure design pattern is a well-proven, reusable solution to a recurring security
problem within specific contexts. They address security concerns at different levels of
specificity, ranging from high-level architectural patterns that influence the overall system
design to implementation-level patterns that provide guidance on implementing specific
functionalities within the system [19].

Ratnaparkhi et al. [20] developed a methodology for selecting appropriate secure
design patterns to mitigate software vulnerabilities. Their study proposed a collection
of secure patterns across architecture, design, and implementation levels to address XSS
and SQLi vulnerabilities. At the design level, they recommended patterns such as the
Intercepting Filter, Secure Chain of Responsibility, and Secure Strategy Factory. For our study,
we have chosen to apply the Intercepting Filter to mitigate XSS and SQLi vulnerabilities.

The Intercepting Filter pattern is a presentation-tier pattern for the Java 2 platform,
Enterprise Edition (J2EE) [21]. This design pattern is used to facilitate preprocessing or
postprocessing of requests or responses in an application. It is particularly useful when
there is a need to filter and manipulate incoming requests before they reach the core
functionality of an application or to process responses before they are sent back to the
client. Figure 1 illustrates the structure of this pattern, and the participants in the pattern
are described as follows.

• Client: The client initiates the request to the target component by sending it to
FilterManager.

• Filter: This is an interface that defines the core execute method, which is implemented
by Concrete Filters.

• Concrete filters: Concrete filters are classes that implement the filter interface. They
are responsible for performing the actual filtering of requests and responses.

• Filter chain: A filter chain is an ordered collection of independent filters. Each filter in
the chain is responsible for handling a specific aspect of request or response processing.
The filters are executed sequentially.

• Filter manager: The filter manager class manages the filter processing flow. It creates
the filter chain with the appropriate filters, ensuring they are in the correct order and
and initiating the processing of requests or responses.

Software 2024, 3 33

• Target: The target represents the resource or functionality that is requested by the
client. It is the endpoint that the processed request is forwarded to after passing
through the filters.

Figure 1. Intercepting Filter pattern.

The Client sends a web request to the server and the request invokes the FilterMan-
ager. The FilterManager has a FilterChain that is made up of individual filters. Once
the request from the Client arrives, the FilterManager delegates the task of preprocessing
or postprocessing the request to individual Filters defined by the FilterChain before
sending the request to the real target. Adding or removing filters is made easier by mod-
ifying the FilterChain. The Target is the intended destination of the web request, and
a Filter interface can be introduced for all individual filters to communicate with the
FilterChain and FilterManager.

2.4. Microservice Architecture

Microservices architecture is a contemporary approach to structuring software applica-
tions. As described by Martin Fowler [22], in a microservices setup, a software application
is built using small services, and each microservice has its own process, serving a specific
purpose and communicating with other services through application programming inter-
faces (APIs). These services are designed to be easily deployed and scaled, which can lead
to quicker development, improved scalability, and better resilience.

A microservices architecture exhibits many favorable characteristics, and the following
two have the most significant impact on the design of our study.

Modularity: Microservices are intentionally designed to be small in size and focus on
specific business functions. Each microservice encapsulates its own logic and contributes to
the overall functionality of the system. This modular approach minimizes interdependen-
cies between modules, promoting low coupling among them. Consequently, the system
becomes easier to maintain and more flexible in adapting to future requirements changes.

Simple communication: Microservices architecture emphasizes lightweight communi-
cation methods. The simplicity in communication facilitates modifications to individual
services without affecting the overall communication of the entire system, ultimately
enhancing scalability [23]. Common communication approaches include using HTTP
(Hypertext Transfer Protocol) and the RPC (Remote Procedure Call) for request–response
communication and employing lightweight messaging. HTTP requests are stateless and
typically use text-based formats such as JSON and XML, commonly used in RESTful APIs.
RPC messages are in various formats, including binary or text-based, and use protocols
like gRPC [24]. While the RPC offers a higher performance than HTTP [25], its setup can
be complex, requiring additional protocol buffers or code generation, and it has potential

Software 2024, 3 34

security considerations [26]. HTTP, however, is widely supported and is more interoperable
across different programming languages and platforms compared to the RPC.

2.5. Related Work

Few automated vulnerability remediation tools have been developed. At the point of
preparing this paper, we found only one tool with that aim, a commercial product named
Barracuda [27]. Barracuda provides a vulnerability remediation service to automatically
“create security configurations customized to specific applications and vulnerabilities,
eliminating errors in manual configuration” [28]. The approach Barracuda adopts is distinct
from ours, which aims at mitigating the vulnerabilities in code. Citing research by the
Software Engineering Institute (SEI), the U.S. Department of Homeland Security (DHS)
states in its Software Assurance information sheet that “90% of reported security incidents
result from exploits against defects in the design or code of software” [29]. If a vulnerability
is identified in the code, it is better to patch the code than to address the vulnerability in
the configurations.

As indicated in Sections 2.1 and 2.2, various mitigation and prevention strategies can
be applied to tackle SQLi and XSS vulnerabilities. Tools can be designed to address a
specific type of vulnerability with a strategy tailored exclusively to that vulnerability. For
example, a study by Courant et al. [30] suggested a method to prevent SQL injection attacks
by automatically generating prepared statements based on user input and implemented it
to mitigate the SQLi vulnerabilities in Java applications. In contrast, CARES generalizes
a mitigation strategy by identifying the root causes of vulnerabilities and accommodat-
ing specificity for addressing each individual vulnerability through realizing the general
strategy. This approach facilitates the potential for CARES to expand its support to other
injection vulnerabilities, such as the CRLF (Carriage Return Line Feed) Injection (CWE-93),
which share similar root causes with SQLi and XSS.

Our study applies the Intercepting Filter pattern to mitigate XSS and SQLi vulnerabili-
ties. Other secure design patterns can be used to tackle these vulnerabilities. Ratnaparkhi
et al. [31] suggested applying the Secure Strategy Factory pattern to address XSS and SQLi
vulnerabilities with sanitizing inputs. Both applications of the Intercepting Filter and Secure
Strategy Factory have demonstrated effective results in mitigating these vulnerabilities.

3. The Design of CARES

CARES’s vulnerability mitigation process involves several key functionalities, as
shown in Figure 2. The client uploads a target application, which is stored in a GitHub
repository. CARES imports the target application, preparing it for vulnerability assessment.
Using a language-specific scanner tailored to the programming language of the project,
CARES checks the application for SQLi and XSS vulnerabilities. Upon locating these
vulnerabilities in the code, CARES proceeds with the remediation process. To address SQLi
and XSS, it deploys an Intercepting Filters implementation, integrating filters designed
specifically to counteract these vulnerabilities. CARES instantiates the respective filter
associated with the vulnerability type and injects the filter object into the code at the
identified vulnerability points, thereby mitigating these security risks.

Figure 2. CARES vulnerability remediation process.

Software 2024, 3 35

3.1. Design Decisions

The system design involved the following key design decisions:

• Design decision 1 is to integrate an existing open source vulnerability scanner for the
detection and allocation of XSS and SQLi vulnerabilities.
Numerous mature scanners have been developed for identifying web application
vulnerabilities. When selecting the most suitable scanner for developing CARES, we
set the following criteria: Firstly, the tool should be an open-source static analysis tool
so that we can integrate it to the system. Secondly, the scanner must demonstrate
proficiency in analyzing Java projects. Thirdly, the tool must effectively identify Cross-
Site Scripting (XSS) and SQL injection (SQLi) vulnerabilities in code. Lastly, it should
not only report the existence of these vulnerabilities but also provide detailed reports
specifying the exact locations, e.g., class names and line numbers, so that the system
can fix the vulnerabilities in code. An ideal choice fitting these criteria is the open-
source static analysis tool SpotBugs, which has the ability of identifying and allocating
XSS and SQLi vulnerabilities in Java code, aligning well with the objectives of CARES.

• Design decision 2 is to introduce secure patterns for mitigating SQLi and XSS vulnera-
bilities in code.
The secure patterns are proven solutions to commonly occurring vulnerability chal-
lenges. This design choice allows us to move beyond simply fixing the immediate
problems in the code to integrate best practices for secure design directly into the
application.

• Design decision 3 is to ensure the flexibility and extensibility of the application.
We anticipate that CARES will be extensible, accommodating the addition of new
features, such as mitigating more vulnerability types and supporting projects coded
in languages beyond Java. The application’s design should provide the flexibility to
address each requirement change independently within specific modules, minimizing
potential impacts on other parts of the application.

3.2. Architectural Design

As stated in design decision 3, we envision CARES as a flexible and extensible solution.
The primary functionalities of the application include importing the target application,
scanning it for vulnerabilities, and removing these vulnerabilities from the code. To achieve
this, we intend to design the code importer, static code analyzer, and code fixer as loosely
coupled components, allowing for independent deployment. While the current version of
CARES focuses on Java applications, we plan to extend its support to applications devel-
oped in other programming languages, such as PHP, AgularJS, and more. Microservices are
an ideal fit for addressing design decision 3 due to their inherent characteristics. The modular
nature of microservices allows us to create independent components, each responsible for
a specific task. The simple communication methods used in microservices provide the
flexibility to modify individual services without impacting the entire system. Thus, these
components can evolve independently, facilitating future enhancements and extensions.

On the server side, we have designed three microservices: the Repository Importer
Service, the Vulnerability Checker Service, and the Fixer Service. Each of these services caters
to one of the three independent functionalities, including importing a project, analyzing
the code, and fixing it. Specifically, the Repository Importer Service handles the cloning of the
target repository from a remote Git resource and stores it in File Storage. The Vulnerability
Checker Service scans the target application for potential security vulnerabilities, and the
Fixer Service uses the report generated by the Vulnerability Service to locate and refactor the
target application to eliminate vulnerabilities. In this version of CARES, we have configured
File Storage as a file directory on the server. The architecture of CARES is illustrated in
Figure 3.

The front-end has been developed as a single-page application, calling all three mi-
croservices directly. Clients interact with this single-page application to obtain results.

Software 2024, 3 36

Figure 3. Architecture of CARES.

3.3. Design of Microservices

This section explores the design of the three key microservices, the Repository Importer
Service, Vulnerability Checker Service, and Fixer Service, that form the foundation of the
backend of CARES. Implementation code snippets of each microservice are provided to
highlight the key functionalities. CARES was implemented using the open-source Java
Spring Boot framework [32], which provides Java developers with a platform for easily
creating auto-configurable, production-grade Spring applications.

3.3.1. Repository Importer Service

The role of the Repository Importer Service is to clone the target repository and then
compress it for storage in the shared storage space. Compressing the repository provides
easy management of the storage. Figure 4 illustrates the classes and their interactions in
the Repository Importer Service.

Clients access this service by making a POST request to the endpoint provided by the
RepositoryResource class, which creates a repository using the URL provided by the client.
It interacts with the RepositoryDao (Data access object) to create a POJO (Plain old java
object) for the particular repository. This object is added to a list of Repository objects for
future reference. The list of repositories can be accessed using the method retrieveURLs().
The Repository class encapsulates a repository’s url and provides methods for accessing it.

To implement the cloning of the repository into local storage, we utilize JGit [33], a
Java library designed for Git operations. Listing 5 presents the code segment of the clone()
method in the class Importer.

Listing 5. Cloning from a Git repository.

publ ic void clone (S t r i n g u r l) {
t r y {

Git . c loneReposi tory ()
. setURI (u r l)
. s e t D i r e c t o r y (new F i l e (" . . / . . / c l o n e d r e p o s i t o r i e s "))
. c a l l () ;

} ca tch (Exception e) {
System . out . p r i n t l n (" e r r o r s in c loning from g i t r e p o s i t o r y : "
+ e . t o S t r i n g ()) ;

}
}

Software 2024, 3 37

Figure 4. Design of the Repository Importer Service.

3.3.2. Vulnerability Checker Service

Once the repository has been successfully stored in the shared space, clients initiate
a call to the Vulnerability Checker Service to identify potential vulnerabilities. This service
employs the SpotBugs static analyzer to scan the target application for SQLi and XSS
vulnerabilities. SpotBugs generates a detailed report outlining the location of vulnerabilities
and their severity. The service places this report in the shared storage for access by the fixer
service. In addition, it maintains a record of the URLs and the number of URLs submitted
by users.

Figure 5 illustrates the design of the Vulnerability Checker Service. Clients use the
endpoint provided by the Checker Service to initiate the scanning process of the target
application. The Checker retrieves the repository from shared storage and decompresses
it for scanning. The newFile() method serves as a helper utility for the unzip() method.
After obtaining the repository, the Checker service proceeds to scan thetarget application
for the SQLi and XSS vulnerabilities by invoking the SpotBugs application through the
Command Line Interface (CLI). The IOStreamConsumer class is used internally to display
command line output to the terminal.

Figure 5. Design of the Vulnerability Checker Service.

Initially, the system checks the operating system to determine the correct command.
CLI Commands in Linux and Windows differ. Two different commands are executed

Software 2024, 3 38

sequentially: one scans for XSS, and the other scans for SQL injection vulnerabilities.
Listing 6 presents the code snippet for invoking the XSS scanner and SQLi scanner in
SpotBugs in Windows.

Listing 6. Invoking SpotBugs.

i f (isWindows) {
bui lder . command (" cmd . exe " , "/ c " , "\ t e x t i t { SpotBugs } " , "− t e x t u i " ,

"− conserveSpace " , "− p l u g i n L i s t " , " f indsecbugs −plugin − 1 . 1 1 . 0 " ,
"− v i s i t o r s " , " C r o s s S i t e S c r i p t i n g " , "− nested : f a l s e " , "−maxHeap " ,
" 2 0 0 0 " , "−xml " , "− output " , " xssbugs . xml " , " . / ") ;

command2 . command (" cmd . exe " , "/ c " , "\ t e x t i t { SpotBugs } " , "− t e x t u i " ,
"− conserveSpace " , "− p l u g i n L i s t " , " f indsecbugs −plugin − 1 . 1 1 . 0 " ,
"− v i s i t o r s " , " S q l I n j e c t i o n D e t e c t o r " , "− nested : f a l s e " , "−maxHeap " ,
" 2 0 0 0 " , "−xml " , "− output " , " sq l ibugs . xml " , " . / ") ;

}

3.3.3. Fixer Service

The Fixer Service, shown in Figure 6, uses the Intercepting Filter pattern to address SQli
and XSS vulnerabilities. When a client requests the Fixer Service, the service is responsible
for parsing the report generated by the Checker Service. Using the report, the Fixer Service
identifies the location of vulnerable code in the target application. This information is
used to retrieve input from the target application and pass it through a chain of filters for
sanitization. Once the data are sanitized, they are returned to the target application.

The Fixer Service is called by clients through a REST endpoint exposed by the Fixer.
Initially, the service retrieves the location of the target repository and then parses the
vulnerability report generated by the Checker module to identify the type and location of
the vulnerabilities in the target repository. Based on this report, a BugInstance is created,
depending on whether the bug is an XSS or SQLi vulnerability. This is achieved using
the Factory Method pattern [34]. The XSSBug and SQLIBug classes extend the BugInstance
class, although they currently share the same implementation in their bodies. This design
choice is made to enhance code extensibility. In the future, if additional states or behaviors
are required, they can be easily incorporated.

This BugInstance is passed to the fix() method for remidiation. This method parses
the target file to locate a vulnerable line of code. It then inserts a new line of code just
before the vulnerable section, instantiating a filter based on the type of the vulnerability.
The vulnerable code is passed as a parameter to this instantiation. The relevant filter is then
copied to the target repository, effectively implementing the Intercepting Filter pattern.

The execution sequence in the target application is as follows: A client initiates a
request to a module (Module_1) for information. Module_1 accepts the request as-is and
passes it to the processor module, where the request is processed accordingly. However,
Module_1 receives the raw request in a string format, which is vulnerable to SQLi and
XSS attacks.

The Fixer Service identifies this vulnerable string, intercepts it, and passes it through
a series of filters. A call to this new filtering process is then inserted into Module_1.
Before forwarding the parameter string to the processor module, Module_1 invokes the
FilterManager to process the string. The FilterManager determines which filter chain
to activate based on the type of vulnerability. Currently, we are focusing on injection
vulnerabilities. The input string undergoes sanitization in the InjectionFilters, using
appropriate classes such as the SQLiFilter and XssFilter. The sanitized string is then
returned to the original caller, which is Module_1, allowing for the continuation of normal
execution processes.

Figure 7 presents the how the Intercepting Filter pattern is applied in CARES.

Software 2024, 3 39

Figure 6. Design of the Fixer Service.

Figure 7. Application of Intercepting Filters in CARES.

The FilterManager is responsible for determining the category of filters to employ,
whether they are injection filters or other types catering to different vulnerabilities. The
code snippet of FilterManager can be found in Listing 7. In the scope of this study, our
primary focus is on mitigating injection vulnerabilities. Consequently, a direct call to
injection filter’s sanitize() method has been incorporated. If CARES were to incorporate
additional filters, a collection of additional filter classes would be developed and added
to for a filter chain, and the filter() method would be responsible to identifying and
sending the input to the appropriate filter in the filter chain.

Listing 7. FilterManager class.

publ ic c l a s s Fi l terManager {
p r i v a t e I n j e c t i o n F i l t e r s i n j e c t i o n F i l t e r ;
publ ic Fi l terManager () {

t h i s . i n j e c t i o n F i l t e r = new I n j e c t i o n F i l t e r s () ;
}
publ ic S t r i n g f i l t e r (S t r i n g input) {

re turn i n j e c t i o n F i l t e r . s a n i t i z e (input) ;
}

}

The InjectionFilters class handles injection vulnerabilities, specifically SQLi and
XSS. As shown in Listing 8, in the sanitize() method, it determines whether the vulnera-
bility is XSS or SQLi and then directs the input to the respective filters for sanitization. Since
this version of CARES only deals with XSS and SQLi, we have simplified the hierarchy by
omitting a Filter interface for SQLiFilter and XssFilter to implement.

Software 2024, 3 40

Listing 8. InjectionFilters class.

publ ic c l a s s I n j e c t i o n F i l t e r s {
p r i v a t e S Q L i F i l t e r s q l F i l t e r ;
p r i v a t e X s s F i l t e r x s s F i l t e r ;

publ ic S t r i n g s a n i t i z e (S t r i n g input) {
i f (getType (input) . equalsIgnoreCase (" s q l i ")) {

s q l F i l t e r = new S Q L i F i l t e r () ;
re turn s q l F i l t e r . s a n i t i z e (input) ;

}
e l s e i f (getType (input) . equalsIgnoreCase (" xss ")) {

x s s F i l t e r = new X s s F i l t e r () ;
re turn x s s F i l t e r . s a n i t i z e () ;

}
e l s e {

re turn input ;
}

}
}

To mitigate XSS vulnerabilities, we follow the recommended strategies outlined by
OWASP [35]. Using the Java HTML Sanitizer API, as illustrated in Listing 9, we create
a policy for validating the input string, specifying all permitted tags within the policy.
After sanitizing the string based on the policy, we encode it using the Java Encoder API to
properly handle HTML tag escaping.

Listing 9. sanitize() in XssFilter.

publ ic S t r i n g s a n i t i z e (S t r i n g input) {
Po l i cyFac tory pol i cy = new HtmlPolicyBuilder ()

. allowElements (" p " , " s trong " , " h1 " , " h2 " , " h3 "
, " h4 " , " h5 " , " h6 " , " div " , " l i " , " ul " , " o l ")
. toFac tory () ;

S t r i n g s a f e S t r i n g = pol i cy . s a n i t i z e (input) ;
s a f e S t r i n g = Encode . forHtml (input) ;
re turn s a f e S t r i n g ;

}

For sanitizing an input string to SQL injection, we utilize the Apache Commons
library’s StringEscapeUtils class, which sanitizes the string, rendering it suitable for
execution. The code snippet is shown in Listing 10.

Listing 10. sanitize() in SQLiFilter.

publ ic S t r i n g s a n i t i z e (S t r i n g input) {
S t r i n g s a f e S t r i n g = S t r i n g E s c a p e U t i l s . escapeSql (input) ;
re turn s a f e S t r i n g ;

}

3.4. The Microservice Communications

We have chosen HTTP request–response communication to enable the independent
development of each microservice. The communication speed is not a priority concern for
CARES. However, as part of our future expansion plans, CARES will support different
programming languages beyond Java. Using standard HTTP/HTTPS protocols allows
compatibility with different languages and platforms without the requirement for distinct
protocol buffers and code generators to be tailored to each language, as seen in gRPC. Thus,
we have implemented the Representational State Transfer (REST) API, allowing access to
each module through endpoints.

Software 2024, 3 41

An API, or application programming interface, serves as a contract between an in-
formation provider and an information user, specifying the content required for both the
consumer’s request and the producer’s response. REST is a set of architectural constraints
that developers conform to while building the APIs. When a client request is made via a
RESTful API, it transfers a representation of the resource’s state to the requester or endpoint.
This information is delivered in one of several formats via HTTP: JSON (Javascript Object
Notation), HTML, Python, PHP, or plain text. JSON, known for its language-agnostic
nature and human-machine readability, is the most commonly used format.

As an example, Listing 11 illustrates a REST endpoint in the Repository Importer Service
implemented in Spring Boot.

Listing 11. A typical REST endpoint in Spring Boot.

@PostMapping ("/ repos ")
publ ic ResponseEntity createRepo (@RequestBody Repository repo) {

s e r v i c e . save (repo) ;
repoImporter . c lone (repo . getUrl ()) ;
URI l o c a t i o n =

ServletUriComponentsBuilder . fromCurrentRequest () . bui ld () . toUri () ;

re turn ResponseEntity . c rea ted (l o c a t i o n) . bui ld () ;
}

4. Results

In this section, we present the application of CARES in remediating SQLi and XSS
vulnerabilities in a health application, using the Tolven platform [10] as our case study.
The Tolven platform is an electronic health record system, allowing both consumers and
clinicians to manage their health records. Specifically, the Tolven ePHR is an intuitive
web-based application designed for creating, viewing, storing, and sharing healthcare
information. This application was developed using the Java Enterprise Edition (EE) with
the Enterprise Java Beans (EJB) module and is an open-source project. The last update
to its source code, dating back to 2016, is available on SourceForge [36]. Despite its
powerful functionalities, the application has numerous security vulnerabilities, with over
500 instances of XSS and SQLi vulnerabilities identified during scanning with SpotBugs.
In addition to security bugs, SpotBugs flags incorrectness coding, bad coding practices,
performance issues, and more as bugs. However, CARES only retrieves bugs specifically
indicated as SQLi or XSS vulnerabilities. Bugs falling outside the scope of SQLi and XSS
are not reported within CARES to align with the focus of our study. When SpotBugs is
used independently to scan the code of Tolven, it reports over 9000 bugs of different types.
Among them, around 5% are designated as XSS and SQLi vulnerabilities.

To use CARES to remediate the vulnerabilities, the application code needs to be hosted
on GitHub. Therefore, we downloaded the Tolven application and uploaded it to GitHub.
The GitHub link to the application was provided in the Repository URL textbox in the
CARES user interface, as depicted in Figure 8. The Importer Service cloned the repository
to local storage. The duration of the cloning process may vary, particularly when dealing
with larger repositories, and could take several minutes to complete.

After the repository was cloned, we initiated the scanning process by clicking the
“Check” button. The Checker Service then called the SpotBugs application, which scanned the
repository and generated a vulnerability report in XML. Figure 9 displays a partial report.
The provided details includes the vulnerablity type (SQLi or XSS), the priority attribute
indicating the severity of each vulnerability (with lower values signifying a higher severity),
full class name, file path, start and end line numbers of each vulnerability instance, and
bytecode information. While bytecode information can be used to enhance the execution
speed, it falls outside the scope of this study. This report highlighted an SQLi vulnerabil-
ity located in line 420 of the class SnapshotBean within the org.tolven.analysis.bean

Software 2024, 3 42

package. Specifically, it identified the method deleteCohortPlaceholder and the vul-
nerable code location in createQuery(). The vulnerable code has been demonstrated in
Listing 2. CARES analyzed and stored the type and location of each vulnerability for
further remediation.

Figure 8. CARES user interface.

Figure 9. Partial vulnerability report.

The “Fix” button triggered the Fixer Service to address these two types of the vulnera-
bilities in code. The Fixer Service carried out this remediation by copying and integrating
the filter classes, including FilterManager and InjectionFilters, into its target reposi-
tory. Then, the Fixer Service instantiated filter objects corresponding to the vulnerability
type and inserted them into the code at the reported location of each vulnerability. For
instance, in the code shown in Listing 2, an SQLi vulnerability was identified at line 420.
CARES addressed this by instantiating a FilterManager object, configuring the appro-
priate filter (SQLiFilter in this case) and applying it to sanitize the query string in the
createQuery() method, transforming it into a secure query string. The auto-corrected
code is presented in Listing 12.

Listing 12. Fixed SQLi vulnerability in code.

418 @override
419 publ ic void dele teCohortPlaceholder (Account account , S t r i n g cohortType) {
420 Query query = em. createQuery (new Fil terManager () . f i l t e r (
421 " d e l e t e PlaceholderID pi where "
422 + " pi . account . id = : account and pi . extens ion LIKE ’ "
423 + cohortType + " % ’ ")) ;
424 query . setParameter (" account " , account . get Id ()) ;
425 query . executeUpdate () ;
426 }

Software 2024, 3 43

Listing 4 exhibited an XSS vulnerability at line 181. To remediate this vulnerability,
the Fixer Service followed the same procedure used for SQLi vulnerabilities, instantiated
a FilterManager object, configured the filter XssFilter, and passed the argument in
writer.write() to the filter for sanitization. As a result, the input for the Ajax request was
secured, as demonstrated in Listing 13.

Listing 13. Fixed XSS vulnerability in code.

179 // prepare xml
180 w r i t e r . wri te (" < ajax −response > ") ;
181 w r i t e r . wri te (new Fil terManager () . f i l t e r (" < response path =\"" + path
182 + "\" r o l e =\"" + rolename +"\" defpath =\"" + d e f P a t h S u f f i x
183 + "\" " + " t i t l e =\"" + t i t l e + "\" >")) ;

The entire refactoring process from cloning the code to fixing the code takes around
7 min. Upon completing the code refactoring process, we further checked the refactored
Tolven system with CARES. The outcome was highly successful, as all SQLi and XSS
vulnerabilities identified in the original Tolven application had been successfully mitigated.
SpotBugs no longer reported any instances of these two types of vulnerabilities in the
refactored Tolven system.

The design of the CARES facilitates the development of the system. Using microser-
vices in the architectural design, we developed and tested each microservice independently.
By applying the Intercepting Filter pattern in the Fixer Service, we were able to implement
each filter separately and test it thoroughly. In addition, we developed different versions of
SQLiFilter and XssFilter with different mitigation algorithms to test their effectiveness.
We selected the implementations presented Section 3.3. Due to the independence of the
Fixer Service as a microservice and the flexibility of replacing filters in the Intercepting Filter
pattern, the code modifications were limited to the most affected part in the Fixer Service.

5. Threats to Validity

This section summarizes the potential threats to the validity of our findings.
The first aspect concerns the implementation of the mitigation strategies. The cur-

rent implementation of XSS mitigation, applying a whitelist of allowed HTML elements,
poses validity challenges. While the whitelist prevents malicious script inclusion, it may
unintentionally exclude legitimate content that requires other HTML elements for proper
rendering and functionality. In addition, the whitelist lacks consideration for potential
vulnerabilities within attributes of the allowed elements. The implementation of SQLi
mitigation uses Apache Commons library functions for sanitizing input strings. Validity
concerns for this approach are twofold: firstly, the system must stay updated with the latest
version of the library; secondly, the library is designed for broad and general character
patterns in SQLi, which may not cover all possible edge cases. Future enhancements will
address these validity concerns, as indicated in Section 6.

The second aspect is that the current version of CARES is implemented for mitigating
SQLi and XSS vulnerabilities in Java applications only. Thus, the validity of the testing and
evaluations is limited to Java applications. CARES will be extended to support multiple
languages as part of the research plan. Although the Intercepting Filter pattern originated
in the Java world, its nature as a design pattern allows for implementation in different
languages, which enables future extensions beyond Java applications.

6. Discussion

The outcomes of the current version of CARES in mitigating SQLi and XSS in Java
applications indicate that applying the Intercepting Filter pattern is efficient. However, we
have identified aspects that should be improved in CARES.

As indicated in Section 5, CARES uses a whitelist to allow specific HTML elements
as the mitigation strategy for XSS vulnerabilities. Such an approach can still pose vul-
nerabilities when an attacker injects malicious script using an attribute. For example, the

Software 2024, 3 44

following input would pass the XssFilter, yet it has a potential threat when the code in
onmouseover is malicious:

<p onmouseover="bad s c r i p t here ">Hover</p>

To address this, we will implement context-aware sanitization [37] in addition to the
existing whitelist input sanitization.

CARES applies the method escapeSql() to sanitize a string for use in an SQL query.
The method does not specifically escape semicolons (;) or double hyphens (--). If an attacker
includes a semicolon and a double hyphen in forming a malicious input, it may still pass
the SQLFilter. Our enhancement to this approach is to introduce prepared statements as
an additional strategy for the input sanitization.

To support multiple mitigation strategies, the Fixer Service will integrate the Secure
Strategy Factory pattern in addition to the existing Intercepting Filters pattern.

With future extension and modification to CARES in mind, we employed microservices
to design each component on the server-side, making CARES a foundational step towards
a more extensive application for code refactoring. Every functionality in the application has
the potential to expand into a broader domain, facilitated by the independent deployability
and development of microservices.

Currently CARES’s Repository Importer Service focuses on cloning projects solely from
the GitHub repository. This capability could be extended to include the cloning of reposi-
tories from various version control systems or even local sources. For example, projects
utilizing Centralized Version Control (CVS), Apache Subversion, or Mercurial can be ac-
commodated by modifying the Repository Importer Service. Enabling these options offers
users greater flexibility. Any necessary changes can be facilitated by re-implementing the
Importer class within the Repository Importer Service.

In the current version of CARES, the Checker Service uses SpotBugs to identify and
locate SQLi and XSS vulnerabilities in Java code. This capability could be expanded to
scan applications developed in different programming languages. For example, Secu-
rity Code Scan for .NET platform (https://security-code-scan.github.io/ (accessed on 1
January 2024)) is an open-source static vulnerability analysis tool for .NET applications.
Incorporating such a tool within the Checker Service would facilitate the identification and
location of SQLi and XSS vulnerabilities in .NET applications. If CARES is to be extended
to support the identification of other vulnerabilities in applications developed in various
programming languages, and no suitable open-source static analysis tools are available,
custom scanner development will be needed to integrate with the Checker Service.

The Fixer Service in CARES could be extended to address applications developed in
various programming languages. In this scenario, an implementation of the Intercepting
Filters pattern using the specific language would be added. CARES is flexible to expand the
supported vulnerability types, such as addressing CRLF vulnerabilities. For this extension,
new Filter classes tailored to the newly introduced vulnerability type would be developed
as part of the implementation of the Intercepting Filters pattern.

7. Conclusions

In this study, we designed and developed CARES, a novel code refactoring application
that automatically mitigates the SQLi and XSS vulnerabilities from Java web applications.
By integrating the SpotBugs static analysis tool to locate vulnerable code in target appli-
cations and employing the Intercepting Filters pattern to dynamically inject specific code
addressing vulnerability types, CARES effectively eliminates XSS and SQLi vulnerabilities
from the target application.

Designed with a microservice architecture, CARES demonstrates extensibility and
flexibility to adapt to future changes in the application. These changes may include
alternative repository options for importing target applications, support for mitigating
more vulnerability types, the addition of secure design patterns for multi-level mitigation
strategies, and more. Each change can be addressed by modifying one microservice at a
time without impacting others.

https://security-code-scan.github.io/

Software 2024, 3 45

Moving forward, several enhancements can further enhance the system and enrich
user experience:

• Enhanced front-end: The current front-end application is minimalistic. Enhancements
could include postscan features, such as displaying the number of identified bugs
within the target project and possibly presenting selected or all bugs in an organized
report. This report could report the details of each bug type and its severity.

• User profiles: Implementing a profile-based system allows users to create accounts
to store records of their past actions, including scanned repositories and gener-
ated reports.

• Support for diverse programming languages: CARES will expand its capabilities to scan
and fix applications developed in different programming languages other than Java.
A new version of CARES will target vulnerabilities in applications built with .NET.

• Broader vulnerability support: In alignment with OWASP’s top ten vulnerability cate-
gories, CARES will be expanded to address a wider range of injection-based security
vulnerabilities, such as Path Traversal (CWE-22).

Author Contributions: Conceptualization, Y.L.; methodology, Y.L. and K.S.; software, K.S.; validation,
K.S. and Y.L.; writing—original draft preparation, K.S. and Y.L.; writing—review and editing, K.S.
and Y.L.; All authors have read and agreed to the published version of this manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The study used the publicly available dataset “Tolven Health Record”
to evaluate CARES. The dataset can be accessed at the following link: https://sourceforge.net/
projects/tolven.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Edgescan. 2023 Vulnerability Statistics Report. 2023. Available online: https://www.edgescan.com/intel-hub/stats-report/

(accessed on 1 January 2024).
2. Veracode. State of Software Security 2023: Annual Report on the State of Application Security. Available online: https://www.

veracode.com/state-of-software-security-report (accessed on 1 January 2024).
3. Edgescan. 2021 Vulnerability Statistic Report Press Release, 2021. Available online: https://www.edgescan.com/2020

-vulnerability-statistic-report-press-release/ (accessed on 1 January 2024).
4. O’Driscoll, A. 25+ Cyber Security Vulnerability Statistics and Facts of 2023. Available online: https://www.comparitech.com/

blog/information-security/cybersecurity-vulnerability-statistics/ (accessed on 1 January 2024).
5. Vulnerability Scanning Tools. Available online: https://owasp.org/www-community/Vulnerability_Scanning_Tools

(accessed on 1 January 2024).
6. Wapiti. The Web-Application Vulnerability Scanner. Available online: https://wapiti-scanner.github.io/ (accessed on 1 January 2024).
7. Higgins, J.K. The Cost of Fixing an Application Vulnerability. Available online: https://www.darkreading.com/risk/the-cost-of-

fixing-an-application-vulnerability/d/d-id/113104 (accessed on 1 January 2024).
8. Ross, A. Why Fixing Security Vulnerabilities Is Not That Simpley. Available online: https://securityintelligence.com/posts/

why-fixing-security-vulnerabilities-is-not-that-simple/ (accessed on 1 January 2024).
9. CWE-89: Improper Neutralization of Special Elements Used in an SQL Command (‘SQL Injection’). Common Weakness

Enumeration. Available online: https://cwe.mitre.org/data/definitions/89.html (accessed on 1 January 2024).
10. Mathis, B. The “Unified Platform” That Delivers All-in-One EHR/PHR/HIE. Available online: https://www.openhealthnews.

com/articles/2014/tolven-%E2%80%9Cunified-platform%E2%80%9D-delivers-all-one-ehrphrhie (accessed on 1 January 2024).
11. Janot, E.; Zavarsky, P. Preventing SQL injections in online applications: Study, recommendations and Java solution prototype

based on the SQL DOM. In Proceedings of the OWASP Application Security Conference, Ghent, Belgium, 19–22 May 2008.
12. Wei, K.; Muthuprasanna, M.; Kothari, S. Preventing SQL Injection Attacks in Stored Procedures. In Proceedings of the Australian

Software Engineering Conference (ASWEC’06), Sydney, Australia, 18–21 April 2006; IEEE: Piscataway, NJ, USA, 2006; p. 8.
13. CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-Site Scripting’). Common Weakness Enumera-

tion. Available online: https://cwe.mitre.org/data/definitions/79.html (accessed on 1 January 2024).

https://sourceforge.net/projects/tolven
https://sourceforge.net/projects/tolven
https://www.edgescan.com/intel-hub/stats-report/
https://www.veracode.com/state-of-software-security-report
https://www.veracode.com/state-of-software-security-report
https://www.edgescan.com/2020-vulnerability-statistic-report-press-release/
https://www.edgescan.com/2020-vulnerability-statistic-report-press-release/
https://www.comparitech.com/blog/information-security/cybersecurity-vulnerability-statistics/
https://www.comparitech.com/blog/information-security/cybersecurity-vulnerability-statistics/
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://wapiti-scanner.github.io/
https://www.darkreading.com/risk/the-cost-of-fixing-an-application-vulnerability/d/d-id/113104
https://www.darkreading.com/risk/the-cost-of-fixing-an-application-vulnerability/d/d-id/113104
https://securityintelligence.com/posts/why-fixing-security-vulnerabilities-is-not-that-simple/
https://securityintelligence.com/posts/why-fixing-security-vulnerabilities-is-not-that-simple/
https://cwe.mitre.org/data/definitions/89.html
https://www.openhealthnews.com/articles/2014/tolven-%E2%80%9Cunified-platform%E2%80%9D-delivers-all-one-ehrphrhie
https://www.openhealthnews.com/articles/2014/tolven-%E2%80%9Cunified-platform%E2%80%9D-delivers-all-one-ehrphrhie
https://cwe.mitre.org/data/definitions/79.html

Software 2024, 3 46

14. Liu, M.; Zhang, B.; Chen, W.; Zhang, X. A Survey of Exploitation and Detection Methods of XSS Vulnerabilities. IEEE Access 2019,
7, 182004–182016. [CrossRef]

15. Franken, G.; Van Goethem, T.; Desmet, L.; Joosen, W. A Bug’s Life: Analyzing the Lifecycle and Mitigation Process of Content
Security Policy Bugs. In Proceedings of the 32nd USENIX Security Symposium (USENIX Security 23), Anaheim, CA, USA,
9–11 August 2023; pp. 3673–3690.

16. Chen, J.; Jiang, J.; Duan, H.; Wan, T.; Chen, S.; Paxson, V.; Yang, M. We still {Don’t} have secure {Cross-Domain} requests: An
empirical study of {CORS}. In Proceedings of the 27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD, USA,
15–17 August 2018; pp. 1079–1093.

17. Khodayari, S.; Pellegrino, G. The State of the SameSite: Studying the Usage, Effectiveness, and Adequacy of SameSite Cookies.
In Proceedings of the 2022 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 22–26 May 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 1590–1607.

18. Dougherty, C.; Sayre, K.; Seacord, R.C.; Svoboda, D.; Togashi, K. Secure Design Patterns; Software Engineering Institution,
Carnegie-Mellon University: Pittsburgh, PA,USA, 2009.

19. Fernandez, E.B. Security Patterns in Practice: Designing Secure Architectures Using Software Patterns; John Wiley & Sons: Hoboken,
NJ, USA, 2013.

20. Ratnaparkhi, A.; Ezenwoye, O.; Liu, Y. From Vulnerability Anti-Patterns to Secure Design Patterns. In Proceedings of the
International Conference on Software Engineering and Knowledge Engineering, Pittsburgh, PA,USA, 1–10 July 2021.

21. Alur, D.; Crupi, J.; Malks, D. Core J2EE Patterns: Best Practices and Design Strategies; Gulf Professional Publishing, Houston, TX,
USA, 2003.

22. Fowler, M. Microservices: A Definition of This New Architectural Term. Available online: https://martinfowler.com/articles/
microservices.html (accessed on 1 January 2024).

23. Cerný, T.; Donahoo, M.J.; Pechanec, J. Disambiguation and Comparison of SOA, Microservices and Self-Contained Sys-
tems. In Proceedings of the International Conference on Research in Adaptive and Convergent Systems, Krakow, Poland,
20–23 September 2017.

24. Google. Introduction to gRPC, 2021. Available online: https://grpc.io/docs/what-is-grpc/introduction/ (accessed on 1 January 2024).
25. Fernando, R. Evaluating Performance of REST vs. gRPC, 2019. Available online: https://medium.com/@EmperorRXF/

evaluating-performance-of-rest-vs-grpc-1b8bdf0b22da (accessed on 1 January 2024).
26. Barnea, B.; Harpaz, O. Critical Remote Code Execution Vulnerabilities in Windows RPC Runtime, 2022. Available online:

https://www.akamai.com/blog/security/critical-remote-code-execution-vulnerabilities-windows-rpc-runtime (accessed on
1 January 2024).

27. Baracuda. Available online: https://www.barracuda.com/ (accessed on 1 January 2024).
28. Barracuda Automates Web Application Vulnerability Remediation and Security Policy Enforcement. Available online:

https://solutionsreview.com/backup-disaster-recovery/barracuda-automates-web-application-vulnerability-remediation-
and-security-policy-enforcement/ (accessed on 1 January 2024).

29. Software Assurance. Available online: https://www.us-cert.gov/sites/default/files/publications/infosheet_SoftwareAssurance.
pdf (accessed on 1 January 2024).

30. Courant, J. Developer-Proof Prevention of SQL Injections. In Proceedings of the International Symposium on Foundations and
Practice of Security, Montreal, QC, Canada, 1–3 December 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 82–99.

31. Ratnaparkhi, A.; Liu, Y. Towards Tackling Common Web Application Vulnerabilities Using Secure Design Patterns. In Proceedings
of the IEEE International Conference on Electro Information Technology, Mt. Pleasant, MI, USA, 14–15 May 2021.

32. VMware. Spring Boot, 2023. Available online: https://spring.io/projects/spring-boot (accessed on 1 January 2024).
33. Eclipse Foundation. JGit: Java Implementation of Git. Available online: https://www.eclipse.org/jgit/ (accessed on 1 January 2024).
34. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software; Addison-Wesley

Professional: Boston, MA, USA, 1994.
35. KirstenS. Cross Site Scripting (XSS). Available online: https://owasp.org/www-community/attacks/xss/ (accessed on

1 January 2024).
36. Tolven. Tolven Health Record, 2016. Available online: https://sourceforge.net/projects/tolven/ (accessed on 1 January 2024).
37. Gupta, S.; Gupta, B.B. CSSXC: Context-sensitive Sanitization Framework for Web Applications against XSS Vulnerabilities in

Cloud Environments. Procedia Comput. Sci. 2016, 85, 198–205. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ACCESS.2019.2960449
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://grpc.io/docs/what-is-grpc/introduction/
https://medium.com/@EmperorRXF/evaluating-performance-of-rest-vs-grpc-1b8bdf0b22da
https://medium.com/@EmperorRXF/evaluating-performance-of-rest-vs-grpc-1b8bdf0b22da
https://www.akamai.com/blog/security/critical-remote-code-execution-vulnerabilities-windows-rpc-runtime
https://www.barracuda.com/
https://solutionsreview.com/backup-disaster-recovery/barracuda-automates-web-application-vulnerability-remediation-and-security-policy-enforcement/
https://solutionsreview.com/backup-disaster-recovery/barracuda-automates-web-application-vulnerability-remediation-and-security-policy-enforcement/
https://www.us-cert.gov/sites/default/files/publications/infosheet_SoftwareAssurance.pdf
https://www.us-cert.gov/sites/default/files/publications/infosheet_SoftwareAssurance.pdf
https://spring.io/projects/spring-boot
https://www.eclipse.org/jgit/
https://owasp.org/www-community/attacks/xss/
https://sourceforge.net/projects/tolven/
http://dx.doi.org/10.1016/j.procs.2016.05.211

	Introduction
	Background
	SQL Injection (SQLi)
	Cross-Site Scripting (XSS)
	Secure Design Patterns
	Microservice Architecture
	Related Work

	The Design of CARES
	Design Decisions
	Architectural Design
	Design of Microservices
	Repository Importer Service
	Vulnerability Checker Service
	Fixer Service

	The Microservice Communications

	Results
	Threats to Validity
	Discussion
	Conclusions
	References

