Supplementation of Japanese Quail (Coturnix coturnix japonica) Breeders with Tagetes erecta Flower Extract and Vitamin E Improves the Oxidative Status of Embryos and Chicks †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assessment of the Antioxidant Status (Experiment I)
2.1.1. Animals and Their Management
2.1.2. Experimental Diets
2.1.3. Sample Collection
2.1.4. Determination of α-Tocopherol
2.1.5. Determination of Total Carotenoids
2.1.6. Determination of Lipid Peroxidation
2.1.7. Determination of Oxidative Status
2.1.8. Determination of Superoxide Dismutase (SOD) Activity
2.1.9. Total RNA Extraction and Real-Time Quantitative Polymerase Chain Reaction (qPCR)
2.2. Progeny Performance (Experiment II)
2.2.1. Experimental Design and Animals
2.2.2. Animal Management and Diet
2.3. Statistical Analysis
3. Results
3.1. α-Tocopherol and Carotenoid Levels
3.2. TBARS and Oxidative Status
3.3. Progeny Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kayang, B.B.; Vignal, A.; Inoue-Murayama, M.; Miwa, M.; Monvoisin, J.L.; Ito, S.; Minvielle, F. A first-generation microsatellite linkage map of the Japanese quail. Anim. Genet. 2004, 35, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F.; Fisinin, V.I.; Karadas, F. Antioxidant systems in chick embryo development. Part 1. Vitamin E, carotenoids and selenium. Anim. Nutr. 2016, 2, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hohtola, E. Facultative and obligatory thermogenesis in young birds: A cautionary note. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2002, 131, 733–739. [Google Scholar] [CrossRef]
- Speake, B.K.; Noble, R.C.; Murray, A. The utilization of yolk lipids by the chick embryo. Worlds Poult. Sci. J. 1998, 54, 319–334. [Google Scholar] [CrossRef]
- Surai, P.F. Natural Antioxidants in Avian Nutrition and Reproduction; Nottingham University Press: Nottingham, UK, 2002. [Google Scholar]
- Surai, P.F. The antioxidant properties of canthaxanthin and its potential effects in the poultry eggs and on embryonic development of the chick. Part 1. Worlds Poult. Sci. J. 2012, 68, 465–476. [Google Scholar] [CrossRef]
- Bonagurio, L.P.; Cruz, F.K.; Kaneko, I.N.; Matumoto-Pintro, P.T.; Murakami, A.E.; Santos, T.C. Dietary supplementation with canthaxanthin and 25-hydroxycholecalciferol has beneficial effects on bone and oxidative metabolism in European quail breeders. Poult. Sci. 2020, 99, 4874–4883. [Google Scholar] [CrossRef]
- An, S.; Liu, G.; Guo, Y.; Sun, Q. Effects of maternal and posthatch dietary oils and vitamin E on antioxidant capability and muscle quality of the progeny broilers. J. Poult. Sci. 2012, 49, 191–195. [Google Scholar] [CrossRef]
- Azzi, A. Many tocopherols, one vitamin E. Mol. Asp. Med. 2018, 61, 92–103. [Google Scholar] [CrossRef]
- Surai, A.P.; Surai, P.F.; Steinberg, W.; Wakeman, W.G.; Speake, B.K.; Sparks, N.H.C. Effect of canthaxanthin content of the maternal diet on the antioxidant system of the developing chick. Brit. Poult. Sci. 2003, 44, 612–619. [Google Scholar] [CrossRef]
- Surai, P.F. Effect of selenium and vitamin E content of the maternal diet on the antioxidant system of the yolk and the developing chick. Brit. Poult. Sci. 2000, 41, 235–243. [Google Scholar] [CrossRef]
- Bohm, F.; Edge, R.; Land, E.J.; McGarvey, D.J.; Truscott, T.G. Carotenoids Enhance Vitamin E Antioxidant Efficiency. J. Am. Chem. Soc. 1997, 119, 621–622. [Google Scholar] [CrossRef]
- Englmaierová, M.; Skřivan, M.; Bubancová, I. A comparison of lutein, spray-dried Chlorella, and synthetic carotenoids effects on yolk colour, oxidative stability, and reproductive performance of laying hens. Czech J. Anim. Sci. 2013, 58, 412–419. [Google Scholar] [CrossRef]
- Sujatha, T.; Sunder, J.; Kundu, A.; Kundu, M.S. Production of pigment enriched desi chicken eggs by feeding of Tagetes erecta petals. Adv. Anim. Vet. Sci. 2015, 3, 192–198. [Google Scholar] [CrossRef]
- Moeini, M.M.; Ghazi, S.H.; Sadeghi, S.; Malekizadeh, M. The Effect of Red Pepper (Capsicum annuum) and Marigold Flower (Tagetes erectus) Powder on egg production, egg yolk color and some blood metabolites of laying hens. Iran J. Appl. Anim. Sci. 2013, 3, 301–305. [Google Scholar]
- Rostagno, H.S.; Albino, L.F.T.; Hannas, M.I.; Donzele, J.L.; Sakomura, N.K.; Perazzo, F.G.; Saraiva, A.; Teixeira, M.L.; Rodrigues, P.B.; Oliveira, R.F.; et al. Brazilian Tables for Poultry and Swine: Composition of Foods and Nutritional Requirements, 4th ed.; Rostagno, H.S.: Viçosa, Brazil, 2017. [Google Scholar]
- National Research Council—NRC. Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- McMurray, C.H.; Blanchflower, W.J.; Rice, D.A. Influence of extraction techniques on the determination of a-tocopherol in animal feedstuffs. J. Assoc. Off. Anal. Chem. 1980, 63, 1258–1261. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Amaya, D.; Kimura, M. Harvest Plus Handbook for Carotenoid Analysis; HarvestPlus Technical Monographs; International Center for Tropical Agriculture: Palmira, Colombia, 2004. [Google Scholar]
- Vital, A.C.P.; Guerrero, A.; Monteschio, J.O.; Valero, M.V.; Carvalho, C.B.; De Abreu Filho, B.A.; Prado, I.N. Effect of edible and active coating (with rosemary and oregano essential oils) on beef characteristics and consumer acceptability. PLoS ONE 2016, 11, e0160535. [Google Scholar] [CrossRef]
- Li, W.; Hydamaka, A.; Lowry, L.; Beta, T. Comparison of antioxidant capacity and phenolic compounds of berries, chokecherry and seabuckthorn. Cent. Eur. J. Biol. 2009, 4, 499–506. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, D. Analysis of relative gene expression. Data using real time quantitative PCR and the 2−ΔΔCt method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Karadas, F.; Grammenidis, E.; Surai, P.F.; Acamovic, T.; Sparks, N.H.C. Effects of carotenoids from lucerne, marigold and tomato on egg yolk pigmentation and carotenoid composition. Brit. Poult. Sci. 2006, 47, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Kojima, S.; Koizumi, S.; Kawami, K.; Shigeta, Y.; Osawa, A. Effect of dietary carotenoid on egg yolk color and singlet oxygen quenching activity of laying hens. J. Poult. Sci. 2022, 59, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Reda, F.M.; Madkour, M.; El-Azeem, N.A.; Aboelazab, O.; Ahmed, S.Y.A.; Alagawany, M. Tomato pomace as a nontraditional feedstuff: Productive and reproductive performance, digestive enzymes, blood metabolites, and the deposition of carotenoids into egg yolk in quail breeders. Poult. Sci. 2022, 101, 101730. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.M.; Khalil, M.; Männer, K.; Raila, J.; Rawel, H.; Zentek, J.; Schweigert, F.J. Effect of dietary α-tocopherol on the bioavailability of lutein in laying hen. J. Anim. Physiol. Anim. Nutr. 2016, 100, 868–875. [Google Scholar] [CrossRef]
- Carreras, I.; Guerrero, L.; Guàrdia, M.D.; Esteve-Garcia, E.; Regueiro, J.A.G.; Sárraga, C. Vitamin E levels, thiobarbituric acid test and sensory evaluation of breast muscles from broilers fed α-tocopheryl acetate and β-carotene supplemented diets. J. Sci. Food Agric. 2004, 84, 313–317. [Google Scholar] [CrossRef]
- Ruiz, J.A.; Pérez-Vendrell, A.M.; Esteve-Garcia, E. Effect of β-carotene and vitamin E on oxidative stability in leg meat of broilers fed different supplemental fats. J. Agric. Food Chem. 1999, 47, 448–454. [Google Scholar] [CrossRef]
- Bendich, A.; Shapiro, S.S. Effect of â-carotene and cathaxanthin on the inmune response of the rats. J. Nutr. 1986, 116, 2254–2262. [Google Scholar] [CrossRef]
- Ingkasupart, P.; Manochai, B.; Song, W.T.; Hong, J.H. Antioxidant activities and lutein content of 11 marigold cultivars (Tagetes spp.) grown in Thailand. Food Sci. Technol. 2015, 35, 380–385. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, X.; He, W.H.; Xu, H.G.; Yuan, F.; Gao, Y.X. Investigation into the antioxidant activity and chemical composition of alcoholic extracts from defatted marigold (Tagetes erecta L.) residue. Fitoterapia 2012, 83, 481–489. [Google Scholar] [CrossRef]
- Kim, E.J. The dietary effects of marigold extracts on egg production, egg quality and the production of lutein fortified chicken eggs. Korean J. Poult. Sci. 2014, 41, 135–142. [Google Scholar] [CrossRef]
- Jang, I.; Ko, Y.; Kang, S.; Kim, S.; Song, M.; Cho, K.; Ham, J.; Sohn, S. Effects of dietary lutein sources on lutein-enriched egg production and hepatic antioxidant system in laying hens. J. Poult. Sci. 2014, 51, 58–65. [Google Scholar] [CrossRef]
- Rajput, N.; Naeem, M.; Ali, S.; Rui, Y.; Tian, W. Effect of dietary supplementation of marigold pigment on immunity, skin and meat color, and growth performance of broiler chickens. Braz. J. Poult. Sci. 2012, 14, 233–304. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Li, J.; Cong, J.; Gao, F.; Zhou, G. Effects of dietary marigold extract supplementation on growth performance, pigmentation, antioxidant capacity and meat quality in broiler chickens. Asian-Australas J. Anim. Sci. 2017, 30, 71–77. [Google Scholar] [CrossRef]
- Panda, A.K.; Cherian, G. Role of Vitamin E in Counteracting Oxidative Stress in Poultry. J. Poult. Sci. 2014, 51, 109–117. [Google Scholar] [CrossRef]
- Surai, P.F. Antioxidant Systems in Poultry Biology: Superoxide Dismutase. J. Anim. Res. Nutr. 2016, 1, 8. [Google Scholar] [CrossRef]
- Lin, Y.F.; Tsai, H.L.; Lee, Y.C.; Chang, S.J. Maternal Vitamin E Supplementation Affects the Antioxidant Capability and Oxidative Status of Hatching Chicks. J. Nutr. 2005, 135, 2457–2461. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ding, X.; Bai, X.; Wang, J.; Zeng, Q.; Peng, H.; Xuan, Y.; Su, Z.; Zhang, K. The effects of broiler breeder dietary vitamin e and egg storage time on the quality of eggs and newly hatched chicks. Animals 2020, 10, 1409. [Google Scholar] [CrossRef]
- Araújo, I.C.S.; Café, M.B.; Mesquita, M.A.; Caiado, B.N.; Faria, A.M.; Mello, H.H.C.; Stringhini, J.H.; Leandro, N.S.M. Effect of a commercial product containing canthaxanthin for in ovo feeding to broiler embryos on hatchability, chick quality, oxidation status, and performance. Poult. Sci. 2020, 99, 5598–5606. [Google Scholar] [CrossRef]
- Araújo, I.C.S.; Café, M.B.; Noleto, R.A.; Martins, J.M.S.; Ulhoa, C.J.; Guareshi, G.C.; Reis, M.M.; Leandro, N.S.M. Effect of vitamin E in ovo feeding to broiler embryos on hatchability, chick quality, oxidative state, and performance. Poult. Sci. 2019, 98, 3652–3661. [Google Scholar] [CrossRef]
- Salary, J.; Sahebi-Ala, F.; Kalantar, M.; Matin, H.R.H. In ovo injection of vitamin E on post-hatch immunological parameters and broiler chicken performance. Asian Pac. J. Trop. Biomed. 2014, 4 (Suppl. S2), 616–619. [Google Scholar] [CrossRef]
- Johnson-Dahl, M.L.; Zuidhof, M.J.; Korver, D.R. The effect of maternal canthaxanthin supplementation and hen age on breeder performance, early chick traits, and indices of innate immune function. Poult. Sci. 2017, 96, 634–646. [Google Scholar] [CrossRef] [PubMed]
Ingredients (%) | Laying | Chicks | |||||
---|---|---|---|---|---|---|---|
3 g TFE | Initial (1–14 day) | Growth (15–28 day) | |||||
25 mg VE | 25 mg VE | 100 mg VE | 175 mg VE | 250 mg VE | |||
Corn | 57.09 | 57.09 | 57.09 | 57.09 | 57.09 | 54.03 | 58.55 |
Soybean meal (45% PB) | 30.86 | 30.86 | 30.86 | 30.86 | 30.86 | 38.90 | 35.94 |
Soybean oil | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 2.23 | 1.28 |
Dicalcium phosphate | 1.28 | 1.28 | 1.28 | 1.28 | 1.28 | 2.20 | 1.75 |
Limestone | 7.17 | 7.17 | 7.17 | 7.17 | 7.17 | 1.05 | 0.89 |
Salt | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.43 | 0.46 |
DL-Methionine (99%) | 0.41 | 0.41 | 0.41 | 0.41 | 0.41 | 0.15 | 0.12 |
L-Lysine HCl (78%) | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.01 | 0.01 |
Vit–Mineral Supplement (laying) 1 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | - | - |
Vit–Mineral Supplement (chicks) 2 | - | - | - | - | - | 1.0 | 1.0 |
Tocopherol acetate (Basf®) | 0 | 0 | 0.015 | 0.030 | 0.045 | - | - |
Tagetes erecta floral extract (TFE) | 0 | 0.3 | 0.3 | 0.3 | 0.3 | - | - |
Inert (Caulim) | 0.4 | 0.1 | 0.085 | 0.070 | 0.055 | - | - |
Calculed composition (%) | |||||||
Crude Protein (N × 6.25) | 19.00 | 19.00 | 19.00 | 19.00 | 19.00 | 22.00 | 21.00 |
AME (Kcal/Kg) | 2800 | 2800 | 2800 | 2800 | 2800 | 2900 | 2900 |
Met (digestible) | 0.66 | 0.66 | 0.66 | 0.66 | 0.66 | 0.447 | 0.41 |
Met + Cys (digestible) | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.744 | 0.69 |
Lys (digestible) | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 | 1.095 | 1.03 |
Sodium | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.205 | 0.21 |
Calcium | 3.18 | 3.18 | 3.18 | 3.18 | 3.18 | 1.092 | 0.91 |
Phosphorus (disponible) | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.513 | 0.43 |
TBARS (µg MDA/g Freeze-Dried Sample) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
3 g TFE | p-Value | |||||||||
25 mg VE | 25 mg VE | 100 mg VE | 175 mg VE | 250 mg VE | Mean VE + TFE 1 | SEM | L | Q | C 2 | |
Egg yolk and yolk sac | ||||||||||
Egg yolk | 1.10 | 0.94 | 0.66 | 0.57 | 0.65 | 0.69 | 0.07 | 0.002 | <0.001 | 0.023 |
Embryo yolk sac (11 day) | 2.83 | 2.89 | 1.99 | 1.87 | 1.10 | 1.96 | 0.136 | <0.001 | 0.563 | 0.595 |
Embryo yolk sac (15 day) | 5.73 | 5.73 | 4.75 | 4.52 | 3.83 | 4.71 | 0.263 | <0.001 | 0.325 | 0.991 |
Chick yolk sac (1 day) | 5.55 | 5.56 | 4.94 | 3.43 | 3.11 | 4.21 | 0.439 | <0.001 | 0.473 | 0.981 |
Liver | ||||||||||
Embryo (15 day) | 5.38 | 5.40 | 4.81 | 4.74 | 4.51 | 4.86 | 0.116 | <0.001 | 0.026 | 0.823 |
Chick (1 day) | 3.49 | 3.37 | 3.31 | 3.08 | 2.81 | 3.14 | 0.131 | <0.001 | 0.093 | 0.206 |
Chick (3 day) | 3.28 | 3.36 | 3.34 | 2.52 | 2.43 | 2.92 | 0.194 | <0.001 | 0.806 | 0.550 |
Regression equations | R2 | Point max./min. | ||||||||
Egg yolk and yolk sac | ||||||||||
Egg yolk: 1.06424 − 0.0053VE + 0.000014VE2 | 0.90 | 189 | ||||||||
Embryo yolk sac (11 day): 2.0933 − 0.0072VE | 0.89 | - | ||||||||
Embryo yolk sac (15 day): 5.9773 − 0.0079VE | 0.86 | - | ||||||||
Chick yolk sac (1 day): 5.8806 − 0.0119VE | 0.82 | - | ||||||||
Liver | ||||||||||
Embryo (15 day): 5.5542 − 0.0078VE + 0.0000153VE2 | 0.85 | 255 | ||||||||
Chick (1 day): 3.49977 − 0.0025VE | 0.75 | - | ||||||||
Chick (3 day): 3.57690 − 0.0048VE | 0.75 | - |
DPPH (% Radical Scavenging) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
3 g TFE | p-Value | |||||||||
25 mg VE | 25 mg VE | 100 mg VE | 175 mg VE | 250 mg VE | Mean VE + TFE 1 | SEM | L | Q | C 2 | |
Egg yolk and yolk sac | ||||||||||
Egg yolk | 13.91 | 15.83 | 20.84 | 29.14 | 33.06 | 24.71 | 2.22 | <0.001 | 0.641 | 0.189 |
Embryo yolk sac (11 day) | 18.17 | 18.65 | 26.32 | 31.37 | 33.01 | 27.35 | 1.91 | <0.001 | 0.002 | 0.699 |
Embryo yolk sac (15 day) | 16.78 | 17.32 | 34.24 | 41.66 | 64.64 | 39.63 | 2.83 | <0.001 | 0.153 | 0.766 |
Chick yolk sac (1 day) | 38.67 | 40.02 | 59.21 | 82.33 | 80.74 | 65.00 | 3.43 | <0.001 | <0.001 | 0.543 |
Liver | ||||||||||
Chick (1 day) | 50.23 | 50.55 | 68.5 | 76.66 | 89.63 | 70.11 | 2.58 | <0.001 | 0.127 | 0.856 |
Chick (3 day) | 32.64 | 31.14 | 34.19 | 37.53 | 38.69 | 35.38 | 2.18 | <0.001 | 0.377 | 0.346 |
Regression equations | R2 | Point max./min. | ||||||||
Egg yolk and yolk sac | ||||||||||
Egg yolk: 13.7155 + 0.080VE | 0.88 | - | ||||||||
Embryo yolk sac (11 day): 15.3416 + 0.1374VE − 0.00026VE2 | 0.91 | 264.38 | ||||||||
Embryo yolk sac (15 day): 11.9700 + 0.2012VE | 0.94 | - | ||||||||
Chick yolk sac (1 day): 28.2976 + 0.4453VE − 0.00092VE2 | 0.95 | 241.11 | ||||||||
Liver | ||||||||||
Chick (1 day): 48.0057 + 0.1688VE | 0.95 | - | ||||||||
Chick (3 day): 30.6226 + 0.0346VE | 0.69 | - |
ABTS (% Radical Scavenging) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
3 g TFE | p-Value | |||||||||
25 mg VE | 25 mg VE | 100 mg VE | 175 mg VE | 250 mg VE | Mean VE + TFE 1 | SEM | L | Q | C 2 | |
Egg yolk and yolk sac | ||||||||||
Egg yolk | 13.58 | 15.92 | 17.15 | 21.50 | 23.66 | 19.56 | 1.40 | <0.001 | 0.532 | 0.016 |
Embryo yolk sac (11 day) | 24.05 | 26.04 | 33.02 | 35.29 | 39.94 | 33.74 | 2.63 | <0.001 | 0.213 | 0.248 |
Embryo yolk sac (15 day) | 26.33 | 28.25 | 34.99 | 42.73 | 49.43 | 36.68 | 2.49 | <0.001 | 0.132 | 0.240 |
Chick yolk sac (1 day) | 40.92 | 41.44 | 41.70 | 60.16 | 67.55 | 51.47 | 3.32 | <0.001 | 0.081 | 0.807 |
Liver | ||||||||||
Chick (1 day) | 57.94 | 58.87 | 63.29 | 68.65 | 76.39 | 66.59 | 1.82 | <0.001 | 0.103 | 0.458 |
Chick (3 day) | 34.44 | 34.57 | 37.78 | 43.85 | 49.57 | 41.45 | 2.17 | <0.001 | 0.201 | 0.934 |
Regression equations | R2 | |||||||||
Egg yolk and yolk sac | ||||||||||
Egg yolk: 14.5059 + 0.0367VE | 0.80 | |||||||||
Embryo yolk sac (11 day): 25.7661 + 0.0580VE | 0.78 | |||||||||
Embryo yolk sac (15 day): 21.3283 + 0.1116VE | 0.88 | |||||||||
Chick yolk sac (1 day): 34.9684 + 0.1277VE | 0.82 | |||||||||
Liver | ||||||||||
Chick (1 day): 56.1226 + 0.0774VE | 0.91 | |||||||||
Chick (3 day): 32.0848 + 0.0681VE | 0.91 |
3 g TFE | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | 25 mg VE | 25 mg VE | 100 mg VE | 175 mg VE | 250 mg VE | Mean VE + TFE 1 | SEM | L | Q | Contrast 2 |
Initial, 1 a 14 day | ||||||||||
BW at 14 day, g | 53.41 | 52.90 | 52.80 | 53.60 | 53.55 | 53.21 | 0.96 | 0.186 | 0.431 | 0.661 |
Feed intake, g | 104.60 | 103.91 | 104.22 | 103.14 | 105.79 | 104.26 | 3.14 | 0.540 | 0.652 | 0.815 |
BW gain, g | 45.48 | 44.94 | 44.75 | 45.58 | 45.55 | 45.21 | 0.93 | 0.200 | 0.447 | 0.619 |
FCR, g/g | 2.30 | 2.31 | 2.33 | 2.26 | 2.32 | 2.31 | 0.09 | 0.858 | 0.911 | 0.854 |
Grower, 15 a 28 day | ||||||||||
BW at 28 day, g | 110.95 | 111.04 | 111.39 | 111.47 | 111.44 | 111.34 | 1.06 | 0.596 | 0.820 | 0.927 |
Feed intake, g | 193.13 | 195.66 | 194.58 | 196.06 | 195.14 | 195.38 | 3.15 | 0.980 | 0.999 | 0.722 |
BW gain, g | 57.54 | 58.14 | 58.59 | 57.87 | 57.88 | 58.12 | 1.08 | 0.513 | 0.745 | 0.721 |
FCR, g/g | 3.36 | 3.37 | 3.32 | 3.39 | 3.37 | 3.36 | 0.06 | 0.640 | 0.848 | 0.680 |
Total, 1 a 28 day | ||||||||||
Feed intake, g | 103.02 | 103.08 | 103.34 | 103.45 | 103.43 | 103.33 | 4.61 | 0.791 | 0.668 | 0.469 |
BW gain, g | 297.73 | 299.57 | 298.89 | 299.20 | 300.93 | 299.65 | 1.04 | 0.857 | 0.618 | 0.600 |
FCR, g/g | 2.89 | 2.91 | 2.89 | 2.89 | 2.91 | 2.90 | 0.05 | 0.859 | 0.884 | 0.675 |
Viability, % | 91.53 | 94.43 | 92.00 | 97.48 | 95.00 | 94.73 | 4.58 | 0.790 | 0.484 | 0.231 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roza, L.F.; de Oliveira, E.M.; Staub, L.; Dornelas, T.C.E.; Pintro, P.T.M.; Hermoso, D.A.M.; Iwamoto, E.L.I.; Murakami, A.E.; Santos, T.C. Supplementation of Japanese Quail (Coturnix coturnix japonica) Breeders with Tagetes erecta Flower Extract and Vitamin E Improves the Oxidative Status of Embryos and Chicks. Poultry 2023, 2, 449-462. https://doi.org/10.3390/poultry2040034
Roza LF, de Oliveira EM, Staub L, Dornelas TCE, Pintro PTM, Hermoso DAM, Iwamoto ELI, Murakami AE, Santos TC. Supplementation of Japanese Quail (Coturnix coturnix japonica) Breeders with Tagetes erecta Flower Extract and Vitamin E Improves the Oxidative Status of Embryos and Chicks. Poultry. 2023; 2(4):449-462. https://doi.org/10.3390/poultry2040034
Chicago/Turabian StyleRoza, Lenilson Fonseca, Evandro Menezes de Oliveira, Lidiane Staub, Tainara Ciuffi Euzébio Dornelas, Paula Toshimi Matumoto Pintro, Danielle Aparecida Munhos Hermoso, Emy Luiza Ishii Iwamoto, Alice Eiko Murakami, and Tatiana Carlesso Santos. 2023. "Supplementation of Japanese Quail (Coturnix coturnix japonica) Breeders with Tagetes erecta Flower Extract and Vitamin E Improves the Oxidative Status of Embryos and Chicks" Poultry 2, no. 4: 449-462. https://doi.org/10.3390/poultry2040034
APA StyleRoza, L. F., de Oliveira, E. M., Staub, L., Dornelas, T. C. E., Pintro, P. T. M., Hermoso, D. A. M., Iwamoto, E. L. I., Murakami, A. E., & Santos, T. C. (2023). Supplementation of Japanese Quail (Coturnix coturnix japonica) Breeders with Tagetes erecta Flower Extract and Vitamin E Improves the Oxidative Status of Embryos and Chicks. Poultry, 2(4), 449-462. https://doi.org/10.3390/poultry2040034